Electrospinning Polymer Fibers -...

Preview:

Citation preview

Perform an audio check by going to

Tools > Audio > Audio Setup Wizard

The webinar will begin at 1pm Eastern Time

Electrospinning Polymer Fibers: A Simple Technique of Introducing Nanoscience to Undergraduates

May 15, 2014

Chat Box

Chat Box

Send Questions

and Message

Here

Begin Recording

The webinar will begin at 1pm Eastern Time

Electrospinning Polymer Fibers: A Simple Technique of Introducing Nanoscience to Undergraduates

May 15, 2014

Hosted by MATEC NetWorks www.matecnetworks.org

Brought to You By:

The NACK Network, established at the Pennsylvania State

College of Engineering, and funded in part by a grant from

the National Science Foundation (DUE 1205105).

Brought to you by:

Dr. Nicholas Pinto Professor in the Department of Physics and

Electronics at the University of Puerto Rico, Humacao

Campus.

• His research is in the field of conducting polymers

for use as gas sensors, devices and in organic

electronics at the nanoscale.

• He is also engaged in efforts to integrate

undergraduate research into the Senior Lab course

Moderator: Mike Lesiecki

MATEC

Today’s Presenter

Electrospinning polymer fibers: A simple technique of introducing nanoscience to undergraduates

Nicholas J. Pinto

Dept. of Physics and Electronics

University of Puerto Rico-Humacao

http://www.freeworldmaps.net/centralamerica/puertorico/location.html

Bonding p 2 eV

10 eV

En

erg

y

D.L. Smith, MRS Bull 29, 647 (2004).

Polyaniline Electronic structure

Conducting polymers/Metal oxides

Figure 1: Chemical structure of 4-polyethylenedioxythiophene (PEDOT)

doped with poly(styrene sulfonic acid) (PSS) PEDOT-PSS blend (Baytron P).

PSS

PEDOT

SO3 -

SO3

SO3SO

3SO3 -

SO3 -SO

3

H

SO3 H

SO3

H

H H

H

SSS S

O O

S

O O O O

S

O O

S

O O

O O

S

O O

O O

S

O O

+++

SO3 -

SO3

SO3SO

3SO3 -

SO3 -SO

3

H

SO3 H

SO3

H

H H

H

SSS S

O O

S

O O O O

S

O O

S

O O

O O

S

O O

O O

S

O O

+++

Figure 1: Chemical structure of 4-polyethylenedioxythiophene (PEDOT)

doped with poly(styrene sulfonic acid) (PSS) PEDOT-PSS blend (Baytron P).

PSS

PEDOT

SO3 -

SO3

SO3SO

3SO3 -

SO3 -SO

3

H

SO3 H

SO3

H

H H

H

SSS S

O O

S

O O O O

S

O O

S

O O

O O

S

O O

O O

S

O O

+++

SO3 -

SO3

SO3SO

3SO3 -

SO3 -SO

3

H

SO3 H

SO3

H

H H

H

SSS S

O O

S

O O O O

S

O O

S

O O

O O

S

O O

O O

S

O O

+++

Poly(3-hexylthiophene)

[P(ND12OD-T2)]n - ActivInkTM

SnO2

ZnO

Antibonding s

Antibonding p

Bonding p

Bonding s

Conductivity of Electronic Polymers

106

104

102

100

10-2

10-4

10-6

10-8

10-10

10-12

10-14

10-16

Ag, CuFeMg

In, Sn

Ge

Si

AgBr

Glass

Diamond

Nylon

Quartz

INS

UL

AT

OR

SS

EM

ICO

ND

UC

TO

RS

ME

TA

LS

INC

RE

AS

ING

DO

PIN

G L

EV

EL

S

Conductivity increases with increased doping

S/cm

Doped trans-(CH)x

[105 S/cm]

Doped polyaniline

[103 S/cm]

trans-(CH)x

[10-5 S/cm]

Polyaniline

[10-10 S/cm]

Electrospinning

High Voltage

Supply

Polymer

solution

Cathode

Fibers

Polystyrene in THF (MW 212,000) – 20kV/ 20cm Average diameter 60 nm

MacDiarmid, Johnson, Pinto, Synth. Metals 119, 27 (2001)

(a) (b)

(c) (d)

H H

FF F

H

n

F

F

m

Figure 1: Chemical structure of 4-polyethylenedioxythiophene (PEDOT)

doped with poly(styrene sulfonic acid) (PSS) PEDOT-PSS blend (Baytron P).

PSS

PEDOT

SO3 -

SO3

SO3SO

3SO3 -

SO3 -SO

3

H

SO3 H

SO3

H

H H

H

SSS S

O O

S

O O O O

S

O O

S

O O

O O

S

O O

O O

S

O O

+++

SO3 -

SO3

SO3SO

3SO3 -

SO3 -SO

3

H

SO3 H

SO3

H

H H

H

SSS S

O O

S

O O O O

S

O O

S

O O

O O

S

O O

O O

S

O O

+++

Figure 1: Chemical structure of 4-polyethylenedioxythiophene (PEDOT)

doped with poly(styrene sulfonic acid) (PSS) PEDOT-PSS blend (Baytron P).

PSS

PEDOT

SO3 -

SO3

SO3SO

3SO3 -

SO3 -SO

3

H

SO3 H

SO3

H

H H

H

SSS S

O O

S

O O O O

S

O O

S

O O

O O

S

O O

O O

S

O O

+++

SO3 -

SO3

SO3SO

3SO3 -

SO3 -SO

3

H

SO3 H

SO3

H

H H

H

SSS S

O O

S

O O O O

S

O O

S

O O

O O

S

O O

O O

S

O O

+++

(b)

(a)

PVDF-TrFE/PEDOT-PSSA

(a) (b)

(c) (d)

(e) (f)

PVDF-TrFE/PEDOT-PSSA

Pinto, Macromolecules 42, 7924 (2009).

Diameter comparison between human hair and e-spun fiber

N.J. Pinto (ACS Book Chapter 2010)

Substrates

SiO2

Isolated polymer nanofibers

5mm

50 mm

0 5 10 15 mm

250

0

-250

nm

I V

(b)

(a)

VB (V)

0 1 2 3 4 5

I (n

A)

0

10

20

30

s = 0.08 S/cm

Simple resistor (PANi-HCSA)

Pinto, Am. J. Phys. 76, 1163 (2008).

0 500 1000 1500 2000

R/R

N

0

1

2

3

N2

methanol

T(s)

0 500 1000 1500 2000

R/R

N

0

1

2

3

methanol

N2

Gas sensor (PANi-HCSA)

Pinto, Johnson, MacDiarmid, Sens. Actuator B 129 , 621 (2008).

EF EF

EC

EV

EF

EC

EV

EF

EC

EV

EF

EC

EV

EF

EF

EF

Metal semiconductor

before contact

Metal semiconductor

after contact

Metal semiconductor

junction under reverse

bias

Metal semiconductor

junction under forward

bias

Metal

n-doped Si

Schottky Diode

Schottky nano-diode (contd.) n-doped Si/SiO2 (r=0.1-1.0 W-m)

Vbias

I SiO2n-doped Si

Au electrode

Electrospun fiber

cleaved surface

Schottky diode using PANi nanofibers

Au contact

Si-- contact

fiber

Device characteristics at 300 K

• Ifor/Irev = 30

• Ideality factor n 4

• 0.4 V < Von < 0.6 V

• b = 0.49 V

Vbias (V)

-1.0 -0.5 0.0 0.5 1.0

I (n

A)

-2

-1

0

1

2

Diode / Sensor

Vbias (V)

-2 -1 0 1 2

I (n

A)

0.0

0.4

0.8

1.2

1.6

vac

vac

NH3

Pinto, Johnson, MacDiarmid, Appl. Phys. Lett. 89, 033505 (2006).

Field effect transistor ([P(ND12OD-T2]n*)

* poly[N,N-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyll-alt-5,5-(2,2-bithiophene)]

Rosado, Pinto, IJCE 6, 175 (2013).

VDS (V)

0 10 20 30 40I D

S (

nA

)

0.0

0.1

0.2

0.3

0.4

0.5

0 V

40 V

60 V

80 V

100 V

VDS

(V)

0 20 40 60 80 100

I DS (

nA

)

0

50

100

150

200

70V

30V0V

Effect of UV radiation ([P(ND12OD-T2]n*)

Rosado, Pinto, PMSE Preprints 109, 1 (2013).

t (s)

0 100 200 300 400

R (

GW

)

4

8

UVOFF

UVON

50mm

P3HT SnO2

Crossed nanofibers: n-SnO2 and p-P3HT

0 1 2 3 4 5

I DS

(nA

)

0.00

0.04

0.08

0.12

VDS (V)

-5 -4 -3 -2 -1 0

I DS

(nA

)

-0.6

-0.4

-0.2

0.0

5V

5V

0V0V

-5V

-5V

Crossed nanofibers: n-SnO2 and p-P3HT

VG VDS

VGS IDS

Si++

V (V)-4 -2 0 2 4

I (p

A)

0

100

200

300

400

LUMO

HOMO

EC

EV

EF

EG=2.2V

EG=3.6V

Crossed nanofibers: n-SnO2 and p-P3HT

Pinto, Agarwal, Appl. Phys. Lett. 94, 083504 (2009).

V (V)-4 -2 0 2 4

I (p

A)

-60

-40

-20

0

20

40

60

80

Crossed nanofibers: n-SnO2 and PEDOT-PSSA

75 mm

SnO2

PEDOT-PSSA

VG VDS

VGS IDS

Si++

V (V)

-1.0 -0.5 0.0 0.5 1.0

I ( m

A)

-6

-4

-2

0

2

4

6

I ( m

A)

-0.2

-0.1

0.0

0.1

0.2

-40V

0V

+40V

V (V)

-1.0 -0.5 0.0 0.5 1.0

I ( m

A)

0.0

0.5

1.0

1.5

T (s)

0.0 0.1 0.2 0.3

V (

V)

-2

0

2

Carrasquillo, Pinto, Mat. Sci. Engg. B 177, 805 (2012).

Crossed nanofibers: n-SnO2 and PEDOT-PSSA

P3HT

PEDOT

Crossed nanofibers: p-P3HT and PEDOT-PSSA

VDS

(V)

-4 -2 0

I DS (

nA

)

-0.4

-0.2

0.0

VGS

(V)-40 -20 0

I DS (

pA

)

-40

-20

0

0V, -10V

-20V

-30V

-40V

-50V

Crossed nanofibers: p-P3HT and PEDOT-PSSA

VDS

VGS IDS

Si++

VTS

+1V

0V

-1V

-2V

-3V

-4V

-5V

-50 -40 -30 -20 -10 0

I T (

nA

)

-1.2

-0.8

-0.4

0.0

VGS

(V)

-50 -40 -30 -20 -10 0

I DS (

nA

)

-0.6

-0.4

-0.2

0.0

VTS

(V)

-4 -2 0

m (

cm2

/Vs)

10-3

10-2

-4.9 eV

-5.0 eV

-5.1 eV

Au(D) P3HT PEDOT P3HT Au(S)

-5.1 eV E

VTS = 0

VTS < 0

E

Crossed nanofibers: p-P3HT and PEDOT-PSSA

VDS

IDS

VGS VTS 1 2

3

4

Conclusions

Electrospinning is a simple technique to make fibers

Diodes, FET’s, Sensors

Some of these devices are multifunctional

All of the work presented was done by High School students and Undergraduates

Acknowledgements

National Science Foundation

DoD

Final Questions

Please type all questions into the Chat Box

Whether you are joining us live or watching the recorded version of this webinar, please take 1 minute to provide your feedback and

suggestions.

How Can We Better Serve You?

http://questionpro.com/t/ABkVkZQFNq

To access this recording, slides, and handout visit

nano4me.org/webinars.php

Webinar Recordings

If you attended the live version of this

1.5 hour webinar and would like a

certificate of participation, please email:

sbarger@engr.psu.edu

Certificate of Participation

Aug 11 – 14: Nanotechnology Course Resources II: Patterning,

Workshop Characterization, and Applications

June 4 – 6: MNT Conference, Albuquerque, NM

July 21 – 24: HI-TEC Conference, Chicago, IL

Want more events? Visit www.nano4me.org/webinars for more

details about these and other upcoming workshops and webinars in

2014.

2014 Events Calendar

Thank you for attending the NACK Network webinar:

Electrospinning Polymer Fibers:

A Simple Technique of Introducing

Nanoscience to Undergraduates

Thank you!

Recommended