ESRC National Conference 2011 - masndar.files.wordpress.com fileDESIGN FOR INDONESIA'S NEW...

Preview:

Citation preview

ESRC National Conference 2011DESIGN FOR INDONESIA'S NEW

EARTHQUAKE MAP 2010Feb 26, 2011

ASPEK PENTING DALAM PEMODELAN DAN ANALISIS DINAMIK GEDUNG TAHAN GEMPA

DENGAN SANSPRO (TINJAUAN TERHADAP PETA GEMPA 2010)

ByNATHAN MADUTUJUH

ESRC

DESIGN FOR INDONESIA'S NEW EARTHQUAKE MAP 2010

1. POTENSI BAHAYA GEMPA

- Telah terjadi banyak gempa Besar (Aceh 9.2, Nias 8.6, Padang 7.6, Jogja 6.3, Tasikmalaya 7.4, Jambi 6.6, dsb)

- Terjadi berbagai Fenomena: Tsunami (Aceh, Nias, Mentawai, Pangandaran), Liquefaction (Padang, Ende)

- Terjadi banyak korban jiwa dan gedung

Aceh, Jogja, Tasik, Pangalengan, dsb

DESIGN FOR INDONESIA'S NEW EARTHQUAKE MAP 2010

PENYEBABNYA :

- Indonesia terletak di daerah bahaya gempa Berapa besar bahayanya ? Potensi Tsunami dan Liquefaction ? Gempa vertikal ?

Peta 1983 → Peta 2003 → Peta 2010 → NEXT ?

- Banyak gedung tidak direncanakan dengan baik : Kenapa ? Siapa yang bertanggung jawab ?

- Tidak ada Manajemen Pencegahan / Penanggulangan Bencana yang baik

DESIGN FOR INDONESIA'S NEW EARTHQUAKE MAP 2010

POTENSI BAHAYA GEMPA

- Percepatan Tanah akibat gempa dan Durasi getaran gempa → Peta PGA (1983 → 2003 → 2010) Padang +15%, Bandung +70%

- Potensi kerusakan pada gedung- Potensi Liquefaction (→ Peta ?)- Potensi Tsunami (→ Peta ? )- Potensi Landslide (→ Peta ?)

DESIGN FOR INDONESIA'S NEW EARTHQUAKE MAP 2010

(Mahsyur Irsham, 2010)

DESIGN FOR INDONESIA'S NEW EARTHQUAKE MAP 2010

DESIGN FOR INDONESIA'S NEW EARTHQUAKE MAP 2010

● Peta 2010 terhadap peta 2003:(Indonesia Bagian Barat)

- Secara keseluruhan hampir sama

– Ada kenaikan nilai pada pantai barat Sumatra karena adanya data baru akibat gempa 2005, 2009

– Pulau Jawa, pembagian Zona lebih halus dan ada zona lokal (Sukabumi, Bandung, Jogja) akibat data yang lebih lengkap

● Peta 2010 terhadap peta 2003:(Indonesia Bagian Tengah dan Timur)

– Ada perbaikan signifikan akibat penggunaan data yang lebih banyak dibandingkan 2003

– Terutama Daerah Sulawesi tengah, Kepala Burung, Maluku, dan Pegunungan tengah Papua

– Zona gempa pada peta banyak yang bergeser → Hati-hati

DESIGN FOR INDONESIA'S NEW EARTHQUAKE MAP 2010● Keakuratan Peta Gempa Baru 2010:

– Probabilistik 1/2500 (1 kejadian per 2500 thn)(2% untuk 50 tahun umur bangunan)

– Data yang digunakan adalah 200 tahun terakhir saja (data sebelumnya tidak ada)

Kalau ada data sebelumnya → mungkin beda– Lokasi dan magnitude pusat gempa sulit

ditentukan secara akurat (apalagi 100 tahun yang lalu, belum ada PC) → USGS vs BMKG, dsb

– Fungsi peredaman yang berbeda-beda dan seharusnya tergantung pada kondisi lokal dan jenis sumber gempa

– Interpolasi akibat peta kontur by computer

PERHITUNGAN Cd MENURUT ASCE-07 dan IBC-2009

1. Dari Peta Gempa : Ss, S1 2. Tentukan Site Class atau Soil Classification (Tbl 20.3-1) 3. Dari Site Class dan Ss → didapat Fa (Table 11.4-1) 4. Dari Site Class dan S1 → Didapat Fv (Table 11.4-2) 5. Hitung Sms dan Sm1 : Sms = Fa * Ss,

Sm1 = Fv * S1 6. Hitung Sds dan Sd1 : Sds = (2/3) Sms,

Sd1 = (2/3) Sm1

7. Buat Kurva Respons Spektra:

Untuk T ≤ T0 : Sa = (0.60) (SDS/To)T + 0.40 SDS

Untuk T = 0 : Sa = 0.40 SDS

Pada puncak kurva : Sa = SDS

PERHITUNGAN Cd MENURUT ASCE-07 dan IBC-2009

BERIKUT INI ADALAH CONTOH PERHITUNGAN YANG DILAKUKAN IR. STEFFIE (2010) YANG

MEMBANDINGKAN :

PETA LAMA + SNI-1726-2003 DAN

PETA BARU + ASCE-07 + IBC-2009

KESIMPULAN: UNTUK KONDISI JAKARTA & TANAH LUNAK,

GUNAKAN Ss, S1 YANG LEBIH BESAR

ASCE 7-05. Table 20.3-1

From Steffie 2010

~ 0.60g-0.70g

Misalkan diambil : SS = 0.65g

Peta Gempa 2010 (Daerah Jakarta)

From Steffie 2010

~ 0.25g

Misalkan diambil : S1 = 0.25g

Peta Gempa 2010 (Daerah Jakarta)

From Steffie 2010

SS = 0.65g

Fa = 1.40

S1 = 0.25g

Fv = 3.0

ASCE 7-05

Steffie 2010

Adjusted Maximum Considered Earthquake (MCE)

Spectral Response Accelerations

SMS = Fa SS = 1.40 (0.65g) = 0.91g

SM1 = Fv S1 = 3.0 (0.25g) = 0.75g

Design Spectral Response Acceleration Parameters

SDS = 2/3 SMS = 2/3 (0.91g) = 0.61g

SD1 = 2/3 SM1 = 2/3 (0.75g) = 0.50g

From Steffie 2010

Untuk Perioda T ≤ T0 ; Sa = (0.60) (SDS/To)T + 0.40 SDS

Untuk T = 0 ; Sa = 0.40 SDS = 0.40 (0.61g)

= 0.24g

Pada puncak kurva : Sa = SDS = 0.61g

Steffie 2010

SNI 03-1726-2002

From Steffie 2010

Jakarta -

from Steffie 2010

SNI 03-1726-2002 (Tanah Lunak)

SNI 03-1726-2010 (Tanah Lunak)

Sa = (SD1)/T

Steffie 2010

PERBANDINGAN PETA LAMA (2003) dan BARU (2010)

UNTUK DAERAH LAIN DAN JENIS TANAH LAIN BAGAIMANA ?

PERLU DIAMBIL NILAI YANG LEBIH BESAR ANTARA METODE LAMA DAN BARU.

DENGAN BANTUAN PROGRAM SANSPRO DAPAT DIHASILKAN TABEL BERIKUT INI:

NILAI Cd dengan SANSPRO (SNI-1726-2003)

NILAI Cd dengan SANSPRO (SNI-1726-2010)

GEDUNG 15 LT, MEDIUM SOIL

2003 2010 % DiffJakarta 0.022 0.023 4.5Padang 0.034 0.044 29.4

0.030 0.044 46.7Bandung 1 0.026 0.038 46.2Bandung 2 0.026 0.027 3.8

0.026 0.031 19.20.026 0.075 188.50.014 0.017 21.4

Jayapura 0.030 0.075 150.00.034 0.075 120.6

Perbandingan Nilai Cd (Lama vs Baru)Bangunan Menengah 15 Lt, Medium Soil

Kota

Aceh

JogjaPalu

Balikpapan

Nias

GEDUNG 4 LT, MEDIUM SOIL

2003 2010 % DiffJakarta 0.131 0.082 -37.4Padang 0.206 0.141 -31.6

0.183 0.141 -23.0Bandung 1 0.160 0.188 17.5Bandung 2 0.160 0.089 -44.4

0.160 0.141 -11.90.160 0.235 46.90.086 0.056 -34.9

Jayapura 0.183 0.188 2.70.206 0.235 14.1

Perbandingan Nilai Cd (Lama vs Baru)Bangunan Rendah 4 Lt, Medium Soil

Kota

Aceh

JogjaPalu

Balikpapan

Nias

DESIGN FOR INDONESIA'S NEW EARTHQUAKE MAP 2010

SOLUSI:– Gunakan nilai PGA yang konservatif dari

Peta Gempa Baru– Hindari daerah yang memiliki patahan atau

gunakan nilai PGA yang lebih tinggi– Untuk daerah dengan tanah lunak →

Gunakan nilai yang lebih tinggi (Peta Lama vs Baru ?)

– Untuk daerah dengan potensi Liquefaction → Gunakan disain pondasi khusus

→ Perhatikan differential settlement– → Jangan membangun diatas lereng– Untuk daerah dekat pusat gempa : av

2. FAKTOR PENTING LAINNYA DALAM ANALISIS DINAMIK GEMPA:

● JENIS LAPISAN TANAH + M.A.T● JARAK TERHADAP PUSAT GEMPA● ARAH RAMBATAN GEMPA● PERCEPATAN GEMPA VERTIKAL● FUNGSI BANGUNAN (IMPORTANCY)● REDUKSI BEBAN HIDUP● NILAI R (TINGKAT DAKTILITAS STRUKTUR)● BENTUK BANGUNAN DAN TINGKAT

PENGARUH JARAK TERHADAP PUSAT GEMPA: (Posisi Anda ?)

1. Jauh (> 60km)- Getaran horizontal, arah beraturan

- Pada Getaran durasi panjang → berbahaya untuk gedung tinggi

2. Dekat (< 60 km)- Getaran horizontal + Vertikal,

Arah tidak beraturan- Differential settlement akibat gelombang

gempa vertikal dan Liquefaction- Tambahan beban gravitasi akibat

percepatan gempa vertikal

DESIGN FOR INDONESIA'S NEW EARTHQUAKE MAP 2010

Besar av = 0.3g – 1.0g, Disp. Vertical = s/d 50cm SNI-2003 av,max = 0.304 (Zone 6, I=1.0) → Use 0.5g

DESIGN FOR INDONESIA'S NEW EARTHQUAKE MAP 2010

Akselerasi Vertikal Besar:

Besar av = 0.3g – 1.0gSNI-2003 av,max = 0.304 (Zone 6,I=1) → Use 0.5g

Perlu Pencatatan av aktual untuk validasi

Antisipasi untuk Large av :- Hindari penggunaan Balok/Pelat Prestress- Kombinasi Beban dengan pengaruh av = 0.5- Penambahan Tulangan Lapangan Balok 20%

1.2 DL + 1.6 LL1.5 * (DL + LL) +/- EQx +/- 0.3 EQz1.5 * (DL + LL) +/- EQz +/- 0.3 EQx

DESIGN FOR INDONESIA'S NEW EARTHQUAKE MAP 2010

Pengaruh displacement vertikal permukaan yang besar :

- Differential Settlement Besar, pondasi dapat turun/terangkat naik, Potensi Kegagalan Sloof besar → Gunakan ∆min = L/100

- Arah Gempa = Arah Panjang Gedung -> Berbahaya Karena sebagian bangunan dapat terangkat.

- Arah tipis bangunan sebaiknya sejajar arah gempa, dengan rasio L:W max = 4:1

- Arah kuat bangunan (arah kolom/wall) sebaiknya sejajar arah gempa

IMPORTANCY FACTOR

Category I,II (STANDARD) : 1.0Category III (PUBLIC) : 1.25Category IV (EMERGENCY) : 1.5

STANDARD: Houses, Farms, Temporary

PUBLIC: School, Hotel, Auditorium, Power Plant, Water supply

EMERGENCY : SAR, Fire, Pusat Bencana, Toxic, Chemical, Aviation, Nuclear

SOIL TYPE

VERY SOFT SOIL → SPECIAL CASE Response Spectrum

SOFT SOILMEDIUM SOILSTIFF SOIL = SOFT ROCKROCK

SOFTER SOIL → LARGER Cd

FINE / LOOSE SAND LAYER + HIGH GROUND WATER LEVEL → POTENSI LIQUEFACTION

REDUKSI BEBAN HIDUP

Gunakan Faktor Reduksi maksimum = 50%(Peraturan beban lama = 30%)

Untuk Daerah dengan Potensi Gempa Vertikal, Faktor Reduksi Beban Hidup diambil 100%

(Tanpa Reduksi)

Tidak menggunakan faktor reduksi ? Why not.

PENENTUAN NILAI R

Nilai R menentukan :1. Besar gempa yang diberikan pada

bangunan2. Disain kapasitas balok/kolom

3. Drift maksimum4. Disain kapasitas pondasi

Nilai R maksimum yang diperbolehkan diberikan dalam SNI-1726-2003 dan IBC-2009

Untuk Daerah dengan Potensi Gempa Besar, dan/atau Mutu pekerjaan kurang baik, Gunakan Nilai R yang

lebih rendah

Tidak menggunakan Rmax ? Why not.

LATERAL RESISTANT SYSTEM

Komponen Struktur mana yang direncanakan menahan beban gempa :

Kolom, Shearwall, atau keduanya

Lateral System harus ada pada kedua arah dominan gempa

Lateral System harus tersebar merata (Mengurangi eksentrisitas)

Kekakuan lateral setiap tingkat jangan terlalu berbeda jauh (Soft-Story / Stiff-Story effects)

EFEK DARI LIQUEFACTION

Gaya aksial dan Displacement Vertikal besar :

- Kegagalan pondasi (Daya dukung pondasi berkurang, fs=0)

- Kegagalan sloof- Kegagalan struktur balok- Bangunan terguling

Bangunan di lereng bergerak ke samping (Horizontal Liquefaction) :

- Kalau bisa dihindari- Gunakan pondasi tiang menembus bedrock

MENGURANGI EFEK DARI LIQUEFACTION

- Menggunakan Pondasi Tiang menembus sampai bedrock

- Perbaikan tanah dengan menggunakan grouting air semen sampai lapisan

Liquefaction dengan tekanan

- Menggunakan kombinasi Pile + Raft

SOFT STORY EFFECTSSHORT-COLUMN EFFECTSEFEK TORSI YANG BESARFLAT SLAB STRUCTUREWALL-SLAB STRUCTUREPILE-RAFT FOUNDATION

HAL-HAL LAIN YANG PERLU DIPERHATIKAN

Soft-Story Effects

Short-Column Effects

Short-Column Effects

Torsion

FLAT SLAB STRUCTURE

- Konstruksi mudah, Daktilitas rendah, penulangan pelat rapat

- Maksimum Tingkat NF <= 20

- Untuk daerah gempa kecil/sedang

- Kolom Kantilever (Tanpa Shear Wall) : Nilai R = 2.2 (sangat kecil), NF <= 8

- Kolom + Shearwall :Nilai R = 4.0, NF <= 20

Penempatan Shearwall harus seimbang pada kedua arah dominan gempa

FLAT SLAB STRUCTURE

- Alt. 1 : Menggunakan balok ekivalenMisalkan: B=400cm, h=20cm

Untuk bangunan dengan denah regular- Efek Pons tidak dapat dicheck

- Penulangan seperti untuk balok- Unit weight balok ekivalen = 0

- Alt. 2 : Flat slab menggunakan elemen shell, dengan ukuran a <= 1.0-1.5m, t=20-30cm

Untuk bangunan dengan denah sembarang- Efek pons dapat dicheck

- Penulangan dengan mencari Mx,My,Mxy dari FEM dan program tulangan balok/pelat.

KONTUR MOMEN FLAT SLAB / RAFT

KONTUR MOMEN FLAT SLAB / RAFT

SANSPRO dapat menghitung momen lentur dan melakukan penulangan pelat Flat Slab dan Pelat RAFT secara otomatis, termasuk koreksi

terhadap Mx,My akibat Mxy.

Alternatif: Menggunakan Program SAFE dari CSI.

PILE-RAFT FOUNDATION MODEL

- Pile / Pile-Raft Foundation Model menggunakan Model pelat raft dengan

elemen shell dengan berbagai ketebalan

- Pada bagian pilecap elemen dapat lebih tebal

- Dibawah raft, diberikan Spring vertikal, lateral dengan beberapa opsi model spring

- Penulangan raft prosedurnya sama dengan penulangan flat slab

PILE-RAFT FOUNDATION MODEL

1. Spring vertikal dan lateral Ksp untuk setiap tiang atau spring vertikal dan lateral dari grup

tiang untuk satu pilecap (Unit = N/cm)

Ksp = dari loading test vertikal dan lateralAproksimasi : Ksp = Pijin/dmax

2. Spring vertikal terdistribusi Ksd untuk tanah dibawah raft (Unit = N/cm3)

Aproksimasi : Ksd = qall / dmax

Ksd dapat diperoleh dari Plate Bearing Test.

EFEK DINDING BESMEN TERHADAP GEMPA

1. Efek dinding Besmen terhadap gempa dapat dimodelkan dengan Spring lateral ekivalen Ks1 (tanpa elemen shell) atau Spring lateral terdistribusi ksd (dengan elemen shell) pada

dinding besmen. (Ks1 = Ksd x Area)

2. Karena tanah hanya dapat menahan tekan, Nilai Ks direduksi 50% (kalau ada dua sisi

dinding yang berhadapan).

3. Kalau hanya ada satu dinding besmen, sebaiknya diabaikan, karena perlu metode

analisis Kontak/Time History.

3. PEMODELAN BEBAN LATERAL GEMPA

1. STATIK (Static Equivalent Model)Tergantung Zona, Jumlah tingkat, denah, SDC

2. DINAMIK (Dynamic Response Spectrum)Untuk bangunan menengah, tinggi, ada torsi

3. TIME HISTORY (Dynamic Direct Integration)Untuk bangunan tidak beraturan, sangat

tinggi, Interaksi tanah-struktur, dsb

Metode 2 umumnya dapat digunakan untuk semua gedung tipikal.

4. VERIFYING DYNAMIC ANALYSIS OUTPUT

Effective Mass Participant:EMF > 90%

Naikkan jumlah Eigen bila perlu

Dominant Mode direction:Mode 1,2 = Translasi

Atur kembali masa dan kolom/wall bila perlu

Time Period:T1,T2 <= 0.17 NF (or 0.13 NF)

Perkaku kolom/wall, naikkan mutu beton, Perpendek tingkat

4. VERIFYING DYNAMIC ANALYSIS OUTPUT

Base Shear: Vd >= 80% VsSesuaikan Td dan Ts terlebih dahulu

Design Eccentricity:Eksentrisitas Rencana <= edmax

Atau gunakan koreksi Eksentrisitas

P-Delta Effect:Gunakan P-delta Effect bila NF >= 20, dan

Kolom langsing

Lateral Drift:Check drift <= drift,max

Drift overall (per floor) or per column

KESIMPULAN METODE ANALISIS

Karena kompleksitas yang tinggi, analisis struktur harus dikerjakan dengan bantuan

komputer

Pemodelan dan penggunaan program komputer harus dilandasi dasar pengetahuan

yang benar.

Dengan adanya program SANSPRO, keahlian ini dapat dipelajari dengan mudah dan cepat.

5. DISAIN KAPASITAS

Keruntuhan Daktail harus lebih dahulu terjadiKolom lebih kuat dari Balok

Kapasitas geser lebih kuat dari lenturPondasi harus kuat pada saat gempa kuat

Disain Kapasitas → harus dengan bantuan komputer (SANSPRO dll) kalau tidak akan lama dan sulit → akhirnya tidak dikerjakan.

Disain kapasitas → Bergantung pada kualitas pendetailan (Paper Prof. Iswandi)

Short-Column Effects

Torsion

Detail Balok

Detail Balok

Detail Balok

Detail Kolom

Detail Kolom

Disain Tulangan dengan SANSPRO

Gambar Detail Pondasi

Disain Kapasitas dengan SANSPRO

Mengurangi Potensi Kegagalan Pondasi

Pemilihan Jenis Pondasi:- Pondasi Tiang Pancang

- Pondasi Pile-Raft- Pondasi Raft + Grouting

Perencanaan Pondasi dengan Cara Kapasitas:DL + Llrt <= P

DL + Llrf + EQx +/- 0.3 Eqz <= 1.3 PDL + Llrf + W(EQx +/- 0.3 Eqz) <= 2.0 P

Redundansi Sistem Pondasi:Large Pilecap (s >= 3.0 D)

Grouting sekeliling PileConcrete Slab on ground + Pile

Detail Balok

Detail Balok

Detail Balok

Detail Kolom

Detail Kolom

6. MENGURANGI EFEK KERUNTUHAN

Masih mungkin gagal ?Kalaupun gagal bagaimana ?

- Meningkatkan Redundansi Tulangan lapangan tambahan, Kolom praktis, Pelat besmen, dsb

- Jalur Evakuasi (Perhatikan koridor dan penulangan

angkur tangga)

- Tempat berkumpul pada saat gempa

7. KESIMPULAN

DISAIN TAHAN GEMPA YANG BAIK MEMERLUKAN:

1. Data gempa yang lebih akurat (2010)

2. Pemahaman bahan dan perilaku model struktur

3. Pemodelan, analisis, disain dengan program komputer

4. Pendetailan secara kapasitas5. Cadangan kekuatan dengan redundansi

6. Penyediaan jalur evakuasi

TERIMA KASIH