Excited state spatial distributions in a cold strontium gas Graham Lochead

Preview:

Citation preview

Excited state spatial distributions in a cold strontium gas

Graham Lochead

Outline

• Motivation and Rydberg physics

• Experimental details

• Rydberg spatial distributions

The strontium Rydberg project – April 2012

Strong interactions

The strontium Rydberg project – April 2012

Eint > Epot,Ekin

Problem: Correlations make modelling difficultSolution: Simulate in controlled environment

Quantum simulator

The strontium Rydberg project – April 2012

Need single site addressability

Need strong interactions

Weitenberg et al, Nature 471, 319–324 (2011)

…Rydberg atoms

Rydberg properties

The strontium Rydberg project – April 2012

n = 5

n = 8

n = 7

n = 6

Ionization limit

Properties

High principal quantum number n

n = 68n = 67

n = 66

H ~ 0.1 nm

n = 100 ~ 1 μm

Rydberg physics

The strontium Rydberg project – April 2012

Strong, controllable interactions

Dipole blockade

The strontium Rydberg project – April 2012

Separation

En

erg

y

One excitation per atom pair when

Interaction shift

Experimental blockade

The strontium Rydberg project – April 2012

L. Isenhower et al, Phys. Rev. Lett. 104, 010503 (2010)

Saturation ofexcitation

CNOT gateoperation

H. Schempp et al, Phys. Rev. Lett. 104, 173602 (2010)

Experimental plan

The strontium Rydberg project – April 2012

Project aim

The strontium Rydberg project – April 2012

Position

Colu

mn

den

sity

Excited stateGround state

Investigate excited state spatial distributions

T. Pohl et al, Phys. Rev. Lett. 104, 043002 (2010)

Cold atom setup

The strontium Rydberg project – April 2012

• Zeeman slowed atomic beam

• 5 x 106 strontium atoms at ~5 mK

• 2 x 109 atoms/cm3

• Rydberg laser locked using EIT

R. P. Abel et al, Appl. Phys. Lett. 94, 071107 (2009)

Coherent population trapping

The strontium Rydberg project – April 2012

• Ions detected on MCP

• Ions Rydberg atoms

• Sub natural linewidth

• Control mJ

5s2

5s5p

5sns(d)

λ1 = 461 nm

λ2 = 413 nm

Autoionization

The strontium Rydberg project – April 2012

5s2

5s5p

5sns(d)5s Sr+

5pns(d)

λ1 = 461 nm

λ2 = 413 nm

λ3 = 408 nm

• Resonant ionization

• Independent of excitation

• State selective

5s Sr+ e-

J. Millen et al, Phys. Rev. Lett. 105, 213004 (2010)

Focusing and translating

The strontium Rydberg project – April 2012

Spatial distribution

The strontium Rydberg project – April 2012

Focus coupling beam as well

Scan one direction along ensemble

Ground state from camera image

2D spatial distribution

The strontium Rydberg project – April 2012

Ground state Excited state

Multiple slices → 2D spatial map

Looking for blockade

The strontium Rydberg project – April 2012

Vary density of ground state

Looking for blockade

The strontium Rydberg project – April 2012

No blockade so farDenser sample needed → second stage cooling → dipole trap

Summary

The strontium Rydberg project – April 2012

• Rydberg states have strong interactions

• Coherently excited cold strontium to Rydberg states

• Measured excited state spatial distributions

The team

The strontium Rydberg project – April 2012

Matt Jones

Danielle

Boddy

Charles Adams

ChristopheVaillant

DanielSadler

Me

The strontium Rydberg project – April 2012

Laser stabilization

The strontium Rydberg project – April 2012

5s2

5s5p

5sns(d)

λ1 = 461 nm

λ2 = 413 nm

R. P. Abel et al, Appl. Phys. Lett. 94, 071107 (2009)

Recommended