Factoring 15 using NMR - ETH Z · Pick a = 2,7,8,13 ⇒a4 mod 15 = 1 a2k mod 15 = 1 for k ≥2 Pick...

Preview:

Citation preview

Amadé Bortis, Samuel Gyger May 15, 2015 1

Factoring 15 using NMRAmadé Bortis, Samuel Gyger

Outline

• Shor algorithm– Basics– Example

• Requirements

• Quantum circuit

• Results

Amadé Bortis, Samuel Gyger May 15, 2015 2

Shor algorithm

f (x) = ax mod N

Choose a

Generate x

FindPeriod

InterpretResult

N = p ∗ q

15 = 5 · 3

a = 7

x =

1,2,3,4,5,...

f (x) =

7,4,13,1,7,...

4

Amadé Bortis, Samuel Gyger May 15, 2015 3

Qubit requirements

• Pick a = 2, 7, 8, 13⇒ a4 mod 15 = 1⇒ a2kmod 15 = 1 for

k ≥ 2

• Pick a = 4, 11, 14⇒ a2 mod 15 = 1⇒ a2kmod 15 = 1 for k ≥ 1

• f (x) simplifies to multiplications controlled by 2 bits (x0, x1)

• First register has to contain only 2 qubits

• 4 qubits needed to hold f (x) (24 = 16) (second register)

Amadé Bortis, Samuel Gyger May 15, 2015 4

f (x) = ax mod N

Choose a

Generate x

FindPeriod

InterpretResult

N4

Molecule

• Experiment T = 303 K (30 ◦C)

Amadé Bortis, Samuel Gyger May 15, 2015 5

Initialization

• Desired inital state: |ψ1〉 = |0000001〉• Use temporal averaging to create effective pure state |ψ1〉• ρpure =

∑i U†i ρUi

Amadé Bortis, Samuel Gyger May 15, 2015 6

Quantum gates with NMR

• Using RF pulses• Single Quantum Gates

– 90◦ Pulse for a Hadamard Gate

• Coupling between different Atomsallows 2 Quantum Gates.

– 90◦ Pulses and free EvolutionTime

– Refocusing undoes spin-spininteraction on target

Amadé Bortis, Samuel Gyger May 15, 2015 7

Run the Quantum circuit

• Factorize N = 15 by finding Period of f (x) = 7x mod 15

|0〉 H H • •

|0〉 H • • 90 H •

|0〉 H • • 45 90 H

|0〉

|0〉 •

|0〉 •

|1〉

I II IIIAmadé Bortis, Samuel Gyger May 15, 2015 8

Step 1: The Hadamard gate

|0〉 H|0〉+|1〉√

2

|0〉 H|0〉+|1〉√

2

|0〉 H|0〉+|1〉√

2

|0〉

|0〉

|0〉

|1〉

Amadé Bortis, Samuel Gyger May 15, 2015 9

f (x) = ax mod N

Choose a

Generate x

FindPeriod

InterpretResult

N4

Step 2: Evaluate the function

|0〉+|1〉√2

|0〉+|1〉√2

• •|0〉+|1〉√

2• •

|0〉

|0〉 •

|0〉 •

|1〉

Step 2 creates a superposition inregister 2, containing all possible valuesfor f (x) = axmodN

Amadé Bortis, Samuel Gyger May 15, 2015 10

f (x) = ax mod N

Choose a

Generate x

FindPeriod

InterpretResult

N4

Step 2: Evaluate the function

• •

• •

Amadé Bortis, Samuel Gyger May 15, 2015 11

Step 3: Quantum Fourier Transform (QFT)

H • • 0

90 H • 0, 1

45 90 H 0, 1

Read out

Amadé Bortis, Samuel Gyger May 15, 2015 12

f (x) = ax mod N

Choose a

Generate x

FindPeriod

InterpretResult

N4

Calculating the Prime Factors

• All possible permutations of the Spin States are |000〉 (0),|010〉 (2), |100〉 (4), |110〉 (6).

• The smallest periodicity leads to |2〉 and therefore togcd(74/2 ± 1, 15) = 3, 5.

Amadé Bortis, Samuel Gyger May 15, 2015 13

f (x) = ax mod N

Choose a

Generate x

FindPeriod

InterpretResult

N4

Outlook

• NMR not suited to factorize large numbers• Similar experiments have been conducted with

– Photonic Systems (Politi et al., 2009)– Superconducting Circuits (Lucero et al., 2012)

Amadé Bortis, Samuel Gyger May 15, 2015 14

Literature

Lucero, E., Barends, R., Chen, Y., Kelly, J., Mariantoni, M., Megrant,A., O’Malley, P., Sank, D., Vainsencher, A., Wenner, J., White, T.,Yin, Y., Cleland, A. N., and Martinis, J. M. (2012). Computingprime factors with a Josephson phase qubit quantum processor.Nature Physics, 8(10):719–723.

Politi, A., Matthews, J. C. F., and O’Brien, J. L. (2009). Shor’sQuantum Factoring Algorithm on a Photonic Chip. Science,325(5945):1221–1221.

Vandersypen, L. M. K., Steffen, M., Breyta, G., Yannoni, C. S.,Sherwood, M. H., and Chuang, I. L. (2001). Experimentalrealization of Shor’s quantum factoring algorithm using nuclearmagnetic resonance. Nature, 414(6866):883–887.

Amadé Bortis, Samuel Gyger May 15, 2015 15

Recommended