Fenómenos atmosféricos -...

Preview:

Citation preview

Fenómenos atmosféricos

Escalas horizontales y temporales de fenómenos atmosféricos

Fenómenos oceánicos

Dinámica de la atmósfera y los océanos

● Ecuaciones de movimiento● Ecuacion de conservacion de masa● Ecuacion de conservacion de energia y

salinidad (para el océano)

Ecuaciones de movimiento

● El movimiento esta gobernado por 3 ecuaciones que expresan como la velocidad cambia con el tiempo: ecuacion de Newton.

● Como oceano/atmósfera es un continuo se usa la masa/volumen=densidad

Densidad x (aceleracion + adveccion) = Fuerza Neta

Fuerza Neta= Fuerza gradiente de presion + gravedad + friccion

Sistema de coordenadas

● Aceleracion y adveccion en la direccion x

aceleracion=∂u∂ t

adveccion=u∂ u∂ x

v∂u∂ y

w∂ u∂ z

● Fuerza gradiente de presion en dir-x

● En la horizontal esta fuerza siempre genera un movimiento. En la vertical, esta fuerza tiende a balancearse con la fuerza de la gravedad: -ρg

−∂ p∂ x

Efectos de la rotacion

● La ley de Newton es valida en un sistema de coordenadas inercial. Entonces, si queremos estudiar el movimiento desde la Tierra, que esta rotando y es no inercial, es necesario incluir dos terminos: la aceleracion centrifuga y la de Coriolis.

La fuerza centrifuga deforma la Tierra convirtiendola en un geoide, con un radio 20 km mayor en el ecuador. De esta forma la fuerza centrifuga es balanceada por una g mayor en el Ecuador y no es necesaria incluirla explicitamente en las ecuaciones.

Se define g*= g + fuerza centrifuga

● Fuerza de Coriolis: Mientras una parcela de oceano se mueve en la direccion sur-norte la Tierra gira de oeste a este generando una desviacion aparente en la trayectoria de la parcela (desde un sistema de referencia que gira con la Tierra).

● Los movimientos horizontales oceanicos/atmosféricos son mucho mas importantes que los verticales por la estratificacion y por la extension horizontal vs vertical. Por lo tanto los terminos de Coriolis que importan son los que actuan sobre las velocidades horizontales:

(los signos son adecuados para insertarlos a la izq de la ec.)

ecuacion en x : −2 sin v=− f v

ecuacion en y : 2sinu= f u

Friccion/Disipacion● Viscocidad molecular: consideremos el flujo medio de un

fluido y el movimiento caotico de las moleculas debido a la energia termica. El movimiento molecular llevara informacion del flujo medio de un lado a otro a traves de las colisiones, creando esfuerzos viscosos que tienden a desacelerar al fluido

=viscosidad cinematica molecular≃10−6 m2/s

ecuacion x :∂

2 u

∂ x2∂

2 u

∂ y2∂

2 u

∂ z2

Analogo a un terminodifusivo, en este casode momento en la direccion x.

● Viscosidad turbulenta: La viscosidad molecular cambia el flujo muy despacio. Los océanos/atmósfera pierden energía mucho mas rápido debido a la turbulencia. Los movimientos turbulentos mezclan el fluido generando filamentos que luego son deformados por turbulencia de escala menor hasta llegar a escalas moleculares.

– Para parametrizar el efecto de la turbulencia de pequeña escala en el flujo medio se asume que esta turbulencia actúa en forma similar a la viscosidad molecular pero con coeficientes mucho mayores:

ecuacion x : AH ∂

2 u

∂ x2∂

2 u

∂ y2 AV

∂2 u

∂ z2

AH /AV : viscosidad turbulenta horizontal /vertical

● Debido a que el océano tiende a fluir a lo largo de superficies de densidad constante, en realidad A

H y A

V son las viscosidades a lo

largo de esas superficies y a traves de ellas (mezcla diapícnica).

– AV~ 1x10-4 m2/s (“promedio global”), pero en la

mayor parte de los océanos AV~1x10-5 m2/s.

La mayor parte de los procesos de mezcla diapícnicos ocurren en las fronteras: fondo, superficie y laterales.

– AH~ 1-104 m2/s (mucho mayor pues los

movimientos tienen escalas espaciales mayores)

● Las ecuaciones de

conservación de momento resultantes son:

∂u∂ t

u∂ u∂ x

v∂u∂ y

w∂ u∂ z

− f v=−1

∂ p∂ x

AH∂

2 u

∂ x2AH

∂2 u

∂ y2AV

∂2 u

∂ z2

∂ v∂ t

u∂ v∂ x

v∂ v∂ y

w∂ v∂ z

f u=−1

∂ p∂ y

AH∂

2 v∂ x2AH

∂2 v

∂ y2AV∂

2 v∂ z2

0=−∂ p∂ z

−g

Dirección x

Dirección y

Dirección z

Acelerlocal

Cambio poradvección

Coriolis

Fuerza gradientede presión

Viscosidad

Gravedad

Ecuacion de conservacion de masa

u,ρu+u,

xy

z

El oceano es casi incompresible por lo que =cte.

Entonces:

Flujo de masa que sale = Flujo de masa que entra

udz dy=uudz dy

u dz dy=0 ∂u∂ xdx dy dz=0

● En tres dimensiones

Y por lo tanto el termino entre parentesis debe ser nulo.

∂u∂ x

∂v∂ y

∂w∂ z

dx dy dz=0

Ecuaciones de conservación de energía y salinidad

● En forma análoga a la ecuación de momento las ecuaciones para la temperatura y salinidad son:

– (cambio de T) + (advección de T) = término de calentamiento/enfriamiento + difusión

– (cambio de S) + (advección de S) = evaporación/precipitación/hielos + difusión

● O sea:

Estas dos ecuaciones gobiernan la evolucion de la densidad (ecuacion de estado):

∂T∂ t

u∂T∂ x

v∂T∂ y

w∂T∂ z

=QH

c p

H

∂2 T∂ x 2 H

∂2 T

∂ y2 V

∂2 T

∂ z2

∂S∂ t

u∂ S∂ x

v∂ S∂ y

w∂ S∂ z

=QS ' H∂2 S∂ x2 'H

∂2 S∂ y2 'V

∂2 S∂ z2

=01−T T−T 0S S−S0

p= RT

Valores tipicos: ρ0=1028 kg/m3, T0=10C, S0=35.

Océano

Atmósfera

Circulación general de la atmósfera

z2−z1=∫p2

p1

RT /gd pp

=R Tg

lnp1/p2

El espesor de la capa entre p1 y p2 depende de la T media enla capa

Ecuación hipsométrica: ecuacion de estado + ecuación hidrostática.

Relaciona distribución de masa en altura con temperatura de la columnaatmosférica.

z1

z2z

Airecálido

Airefrío

p2

p1

Ecuador Polo

p

p1 p2

WindsDebido a la pendientede las superficies isobaras entre polo y ecuador se inducirá un viento en altura

El flujo de masa hacialos polos causará que baje la presión de superficie en lostrópicos y aumente enlos polos induciendoun flujo hacia el ecuadoren superficie.

Hadley (1700s)

p y

Coriol

is

?

Pressure

Corriente en chorroCirculación de Hadley

La circulacion de Hadley se limita a los trópicos

Corrientes en chorro

Velocidad vertical en 500 hPa

En la zona de ascenso de la circulación de Hadleyexiste convección profunda en forma de “hot towers”

Movimientosascendentes10 cm/s

Las “hot towers” ocupan un 2% de los trópicos en un instantede tiempo dado

Distribución media annual de precipitación.Las regiones en rojo son las regiones de gran actividad convectiva

Zona de Convergencia Intertropical

La circulación de Hadley transporta energía del ecuadorhacia los subtrópicos

Recommended