Functional Fiber Reinforced Plastic and …...carried out to discuss the results of ECT of UD‐LP...

Preview:

Citation preview

Functional Fiber Reinforced Plastic and Nondestructive Evaluation for 

Advanced Maintenance

Toshiyuki TakagiInstitute of Fluid Science, Tohoku UniversityELyTMaX UMI 3757 CNRS, Tohoku University

Hiroyuki Kosukegawa and Tetsuya UchimotoInstitute of Fluid Science, Tohoku University

October 4, 2017     Tsukuba, JAPAN

International Joint Symposium of 3rd Innovative Measurement and Analysis for Structural Materials and TIA‐Fraunhofer Workshop

MATEIS, LAMCOSINSA-Lyon

IZFP, IKTSFraunhofer Institute

LTDSEcole Centrale de Lyon

Karlsruhe Inst. of Technology

Xi’an Jiaotong University

SIMAP,LEGIGrenoble INP

International research core on smart layered materials and structures for energy saving

Optimization of material design Material evaluation

AdvancedMaterials

Industrial application of smart layered structure

Sensing & control embedded in layered structures

Advanced heat transfer Kinetic energy control Energy saving

Sensing & Control

Flow Dynamics

EnergySaving

Saarland University

KTH, Sweden Royal Institute of Technology

Institute of Fluid ScienceTohoku University

Tohoku Univ.School of

Engineering

Tohoku Univ.NICHe Tohoku Univ.

FRIS

Kobe Univ. Tokai Univ.NIMS

The Univ. ofTokyo

Chiba Univ.

2

Nanjing University of Aeronautics and

Astronautics

Outline

1.Background 2.ECT for CFRP with HF, TR, D‐type Probe3.Numerical Simulation of ECT for CFRP4.ECT Application for Scarf Adhesive Repair5.Functionalization of CFRP6.Summary

4

Outline

1.Background 1.Maintenance activities2.CFRP and NDT

2.ECT for CFRP with HF, TR, D‐type Probe3.Numerical Simulation of ECT for CFRP4.ECT Application for Scarf Adhesive Repair5.Functionalization of CFRP6.Summary

5

The lifetime of artifacts

DesignFabrication

Operation

Decommission

6

Artifacts are made by human beings and for human beings

Inspection

MaintenanceInspection and repair

Large Scale Complex System

Maintenance Activities

MachineSystem

Do

Plan

Maintenance Cycle PDCAD

Action

Maintenance Activities

Maintenance Implementation

System

Human System

Check

7

‐Framework of Maintenance‐

Takayuki Aoki, Tohoku University 

Design and Maintenance Supporting Safety Function

Maintenance

•Ins. Procedure•Inspector•Inspection

Equipment

•Accuracy (Detectability, Sizing)•Reliability (POD)

•Work Procedure•Worker•Special Tool etc.

Inspection Performance/Capability

Design

8

CorrectionInspection

Takayuki Aoki, Tohoku University 

Optimization by Three Major Technologies of Maintenance

OptimizationVisualization

MonitoringInspection

PredictionEvaluation

Coping with consequences

Repair

CFRP in Various Industries10

Aerospace Civil Engineering Automobile

Tokyo Rope Mfg. Co., Ltd.

Nippon Graphite Fiber Co. BMW NEDO

JFECBoeing

JAXA

Toyota Motor Co.

Establishment of NDT/NDE technique is needed for quality assurance and reliability of CFRP structures

Environmental Engineering

Conventional NDT techniques are sometimes not suited for CFRP

CFRP in Various Industries11

Tokyo Rope MFG. Co., Ltd.

High pressure hydrogen vessel

Long CFRP wire

• Fatigue crack in metallic liner

• Delamination• Void

JFE Container Co., Ltd.

• Uncured resin• Fiber rupture

Lifecycle of CFRP12

Quality assurance and in‐service inspection of CFRP should be done at proper stages in its lifecycle

Partly referred from  news release of NEDO (2013.9.3)

Defects in CFRP13

Delamination

http://www.appropedia.org/

Fiber rupture

NDT Techniques for CFRP14

P660(FLIR)

RIGAKU nano3DX X‐ray Microscope

EddyCus®, SURAGUS

Ultrasonic testing (UT) Thermographic Testing (TT)

Radiographic testing (RT) Eddy current testing (ET)

Applicability of NDT for CFRP

15

UT RT TT ECT

Delamination ◎ ○ ◎ ○

Other object ◎ ◎ ◎ ○

Void ◎ ◎ ○ ▲

Crack ◎ ◎ ○ ▲

Resin curing degree ▲ ▲ ○ ○

Water content △ ▲ ◎ ○

Fiber density ▲ ○ △ ○

Fiber orientation ▲ ○ ▲ ◎

Fiber rupture ▲ ○ ▲ ○

Misalignment ▲ ○ ▲ ◎

◎>○>△>▲

内田盛也 編, 先端複合材料の設計と加工(1988)より一部抜粋

Outline

1.Background2.ECT for CFRP with HF, TR, D‐type Probe3.Numerical Simulation of ECT for CFRP4.ECT Application for Scarf Adhesive Repair5.Functionalization of CFRP6.Summary

16

17Eddy Current Testing (ECT)Sensitive NDT method for conductive materialsInduction voltage of pickup coil

B: Magnetic flux density (Wb/m2)S: Area of pickup coil (m2)dS: Minute area of pickup coil (m2)

Eddy current skin depth

μ:Permeability (H/m)σ:Electric conductivity (S/m)

18

Electrical Conductivity of CFRPTransverse direction

Fiber direction

Thickness direction

Resin-rich Interlaminar

σL : 103 - 104 S/m

σT : 10 -102 S/m

σcp : 10-1 -10 S/m

Pratap, S.B., and Weldon, W.F., IEEE Transactions on Magnetics, 1996

Electrical conductivity of CFRP is 1/1000 to metalAn increase of EC signal is needed

19

How to Increase of EC signal

r''‐r': Vector from the point r' on eddy current region V' to the point r'' on pickup coil region

B: Magnetic flux density (T) A: Magnetic vector potential (H•A/m),  μ:Permeability (H/m) σ:Electrical conductivity (S/m),  S:Flat area on pickup coil vertical to B,  dS: Tiny fragment of S L: Closed circle of S dl: Tiny fragment of Lr'‐r: Vector from the point r on exciting coil to the point r' on eddy current region V'Je: Eddy current density on objective (A/m)

• Frequency• Permeability• Conductivity

20

ECT for CFRP

Foreign body (UT and TT can do)Delamination (UT and TT can do)Fiber orientationFiber misalignmentUncured resin

ECT with HF and TR type probe at higher frequencies (> 3 MHz), whereas differential type probe requires relatively lower frequencies (< 3 MHz)

HF absolute TR

ECT can detect the defects originated from fiber

Differential type (D‐type)

21

Fraunhofer Institute for Nondestructive Testing– IZFP

Description Value

Scan area

Max. scan speed 70mm/s

Sensor type Single sensor16 channel/line array

Frequency 10kHz ~ 100MHz

Min. resolution

Protocol RS-232/Ethernet

EddyCus CF map 4040 (SURAGAS)

Changeable sensor kit

Anisotropic typeLateral pitch– 3.5mmTurns– 20

Scaleable 16 sensor demonstrator line arrayLateral resolution‐‐ 875μmPlanar scan speed 0.5m2/min

Martin H.Schulze, Henning Heuer, Martin Ku¨ttner, Norbert Meyendorf “High‐resolution eddy current sensor system for quality assessment of carbon fiber materials” Microsyst Technol (2010)16: 791–797

ECT for CFRP with HF and TR Probe

22

(a) Optical image(b) ECT C‐scan image(c) 2D FFT spectrum

Martin H.Schulze, Henning Heuer, Martin Ku¨ttner, Norbert Meyendorf “High‐resolution eddy current sensor system for quality assessment of carbon fiber materials” Microsyst Technol (2010)16: 791–797

16 sensor in line arrayScan speed: 60 mm/sf = 2 MHz ~ 10MHz

(a) (b) (c)

Original After filtering with 2D‐FFT

Fiber orientationECT for CFRP with HF and TR Probe

23

Fiber Orientation by D‐type ProbeC‐scan image 2D FFT 

spectrum

45deg ‐45deg0deg 90deg

Scan range : 20×20 mm2

Separation of fiber orientation by the inverse FFT

M, N: arbitrary natural numbersu, v: frequency component of the spatial wave in x‐ and y‐direction

Urayama, R., Takagi, T., et al., Studies in Appl Electromag Mech, 41 (2016) 18‐25

2 MHz

Outline

1.Background 2.ECT for CFRP with HF, TR, D‐type Probe3.Numerical Simulation of ECT for CFRP4.ECT Application for Scarf Adhesive Repair5.Functionalization of CFRP6.Summary

24

25

Numerical Simulation of ECT for CFRP

By distinguishing the calculation regions into current source (exciting coil) and pickup coil and objectives (CFRP),edge elements are used

in Vt

in Vt + Vtr

in Str

Biot-Savart's law

Reduced Magnetic Vector Potential method (Ar method)

Governing equations

Boundary conditions

26

Numerical Simulation of ECT for CFRP

Cheng, H., Takagi, T., et al. NDT&E, vol.68 (2014) pp.1‐12

Eddy current density, Jx (A/m2)

UD-ply Cross-ply QI laminates

ECT signal analysis of fiber orientation by FEM250 kHz

27

Numerical Simulation of ECT for CFRP

X

Y

θ′

Coils

UD Cross

Normalized ECT signal according to the angle between fiber orientation and TR axis 

Cheng, H., Takagi, T.,  et al. NDT&E, vol.68 (2014) pp.1‐12

250 kHz

QI laminate

ECT signal analysis of fiber orientation by FEM

28

FEM for Fiber OrientationFinite element analysis of eddy current distribution was carried out to discuss the results of ECT of UD‐LP laminates.

PHOTO‐Series EDDY jω (Photon Co., Ltd.)Isoparametric elementsA‐method

XZ

Y CFRP

Full model dimension: 100 × 100 × 2.4 (mm)Mesh number of elements: 530,000

Direction σx σy σz

0 degree 14860 3.8 0.63

90 degree (LP) 3.8 14860 0.63

Electrical conductivity of CFRP[Cheng, J., Takagi T., Composite Mater, 2015]

Frequency 2 MHz

O.D. 4.5 mm

I.D. 4.0 mm

Current 1.85 A

Number of turn 185

Height 2.3 mm

0.24mm

90º

LP1 LP2

29

1st[90]/2nd[0]1st[90]

1600

0J (A/m

2 )

10 mm

2nd[0]/3rd[0]LP1

LP2 1600

0

J (A/m

2 )1st[0]/2nd[90]1st[0] 2nd[90]/3rd[0]

EC density shows large value at the interface of the layers with different orientation

EC signal from subsurface is larger than from the surface

FEM for Fiber Orientation

30

LP1 LP3LP2 LP5

Highest value at subsurface layer

Detectability of Fiber Orientation

Sample varianceDefinition of detectability

V : Sample variancen : Number of measured  points

X: Amplitude at the measured point  : Overall average of the amplitude

Outline

1.Background 2.ECT for CFRP with HF, TR, D‐type Probe3.Numerical Simulation of ECT for CFRP4.ECT Application for Scarf Adhesive Repair5.Functionalization of CFRP6.Summary

31

32

Siemens

Lightning

Dexmet Corporation, “Lightning Strike Protection for Carbon Fiber Aircraft” JAPAN AIRLINES資料

Bird strike

Cause of Failure

Repair of FRP Aircraft33

Scarf Adhesive RepairMethod of reconstructing structural function up to nearly 100%‐ Sanding the surface of FRP in scarfed shape by setting the defect at the center‐ Adhering adhesive film and prepreg patches according to peripheral lamination geometry

Boeing, http://www.compositesworld.com/articles/composites‐repair

The above procedures are performed by hand

Procedure of Scarf Repair① Detection of defect by NDT

② Grinding to the depth of the defect

③ Grinding in tapered shape (30:1 = radius : depth)

④ Shape extraction and cutting of prepreg patches

⑤ Patching adhesive film and prepreg patches

⑥ Curing → NDI by UT → (GOOD) → Polishing→ (BAD) → Return to ①

‐ Requirement of advanced technique‐ Depression of cost and service time‐ Inhibition of popularization of CFRP aircraft

35

Automation of scarf repair is needed for improvement the performance of FRP

Identification of Scarfed Laminates

• Fiber orientation• Geometry of each prepreg (boundary of adjacent layers)

Shape extraction of prepreg patches

36

Material ‐ Scarfed CFRP

[(452/02/‐452/902)3]S

Autoclave method Prepreg compression method[‐457/907/‐457]

‐ Fiber Orientation ‐ Boundary

[907/457/907][07/457/07] [07/‐457/07]

120 min, 130ºC, 0.5 MPa120 min, 130ºC, 0.5 MPa

P3252S‐25 (Toray, t = 0.24 mm)TR380G250S (Mitsubishi Rayon Co., Ltd.), t = 0.24 mm)

220 x 110 x 11 (mm3) 150 x 75 x 5 (mm3)

37

ECT Setup

Frequency: 10 MHz (fiber orientation), 2 MHz (boundary)Exciting voltage: 5.0 Vp‐p(fiber orientation), 3.0Vp‐p (boundary)Gain: 10~20dB

38

Identification of Scarfed Laminates

Scan pitch: 0.1 mmFrequency: 10 MHzVoltage: 5.0 Vp‐pGain: 10~20dB

39

FEM for EC on Scarfed Surface

Number of elements: 345,600Frequency: 10 MHzExciting current: 5.7 x 10‐2 A x 27 T (same as the experiment)

EC distribution on the scarfed surface and interface of [‐45/90]

σL (S/m) 14860

σT (S/m) 3.8

σcp (S/m) 0.63

40

FEM for EC on Scarfed Surface

EC signal from the interface of 1st and 2nd layers is strong

41

Necessary to extract the signal from the surface layer

Identification of Scarfed Laminates

Fiber orientation of surface layer

Boundary

Fiber orientation of second layer

42

EC signal contour

30  32  34  36  38  40  42  44

2D‐FFT Spectrum

k

30  32  34  36  38  40  42  44

By filtering with 2D‐FFT, fiber orientation on the scarfed surface can be extracted

Extraction of Fiber Orientation

l

43

Respective layer is identified with 2D‐FFT filtering

45º ‐45º90º 0º

0 15X (mm) X (mm) X (mm) X (mm)

0

15

15 30 30 45 45 600

15

0

15

0

15

y(m

m)

y(m

m)

y(m

m)

y(m

m)

Extraction of Fiber Orientation

44

Identification of Boundary

45º/90º boundary

True boundary ( = 15.4 mm) True boundary ( = 29.2 mm)Peak position ( = 17.7 mm) Peak position ( = 30.5 mm)

Difference:2.3 mm

The peaks are shifted from the true boundaries

90º/-45º boundary

Difference:1.3 mm

Outline

1.Background 2.ECT for CFRP with HF, TR, D‐type Probe3.Numerical Simulation of ECT for CFRP4.ECT Application for Scarf Adhesive Repair5.Functionalization of CFRP6.Summary

45

46

Nanoparticle Dispersed CFRPDispersion of nanoparticles in matrix increases mechanical properties of FRP

*T. Takayama, H. Kosukegawa, T. Takagi, Proceedings of AFI2016, (2016) 20‐21

Because Ep‐f becomes higher than Ep‐p, EcT increases by distributing nanoparticles in matrix

m, p, f mean matrix, particle and fiberE [Pa]: elastic modulus d [m]: diameter

V [-]: volume fraction of filler     Lf [m]: fiber lengthL [m] and a [m] : interfiller distance between particle and fiber

47

Manufacturing1. Dispersion of nanoparticles into 

epoxy resin is performed with a rotation‐revolution mixer

100ºC, 2h

VacuumingEpoxy/nanoparticle 

solution

Pressure 

Vacuum bagDispersing mediaFiber fabric

Aluminum tool

Epoxy/NPSolution

Revolution

RotationSchematic of dispersing

NP: nanoparticle

2. The solution is introduced into the fabric by vacuum‐assisted resin transfer molding (VaRTM) method

48

Nanoparticle Dispersed FRP

*T. Takayama, H. Kosukegawa, T. Takagi, Proceedings of AFI2016, (2016) 20‐21

T250 : D50 = 250 nm    T90 : D50 = 90 nm

Cross section of nanosizedTiO2 particles dispersed CFRP

Theory considering the effect of interparticle and interfiller distance can explain the improvement of mechanical properties

TiO2: 4wt% in resin

49

Nanoparticle Dispersed FRP

Frequency: 200 kHz

×20

UD‐ply CFRP

Acrylic plate

Ferromagnetic nanoparticles dispersed CFRP (Mag‐CFRP)

Magnetic characteristics of CFRP drastically increase of EC signal

50

Nanoparticle Dispersed FRP

K: Constant depending on exciting coilC, D: Constant i: Indicatorα: Integral variation r: Coil position

C. V. Dodd, W. E. Deeds, Journal of Applied Physics, 39‐6 (1968) pp. 2829‐2838

Amplification of EC signal of  is well expressed by the analytical solution

Ferromagnetic nanoparticles dispersed CFRP (Mag‐CFRP)Fe2O3: 5wt%

51

Nanoparticle Dispersed FRP

Rupture: L = 50 mm

Rupture at 2nd layer 0wt% 5wt%

Differential type probe   200 kHz

ECT can detect the fiber rupture of Mag‐CFRP even though no NDTs cannot detect.

Ferromagnetic nanoparticles dispersed CFRP (Mag‐CFRP)

Outline

1.Background 2.ECT for CFRP with HF, TR, D‐type Probe3.Numerical Simulation of ECT for CFRP4.ECT Application for Scarf Adhesive Repair5.Functionalization of CFRP6.Summary

52

53

Summary1. Electromagnetic NDT techniques of CFRP structures for 

quality assurance and in‐service inspections are now under development.

2. NDT methods for automatic repair techniques are necessary for advanced maintenance.

3. Functional CFRP with ferromagnetic nanoparticles drastically increases the detectability of defect (even fiber rupture)  by ECT.

4. NDT planning and inspection based on numerical modeling combined  with IoT and big data will be beneficial for better maintenance activities.

AcknowledgmentsThis study was supported by  a JSPS Core‐to‐Core Program, A.  Advanced Research Networks, “International research core on smart layered materials and structures for energy saving”. 

Thank you very much for your kind attention !

Recommended