Gas transport modelling of pear - KU Leuven › LCMC › archive › activities › ... · Light...

Preview:

Citation preview

BIO

SY

ST-

MeB

ioS

Applied research

Application of fundamental research to problems in agro-food sector

Application areasEgg quality and incubation (Josse De Baerdemaeker)

Food quality (Jeroen Lammertyn)

Predictive microbiology and risk analysis (Annemie

Geeraerd)

Agrofood process design (Josse De Baerdemaeker)

Postharvest technology (Bart Nicolaï)

Precision mechanics (Herman Ramon)

BIO

SY

ST-

MeB

ioS

BIO

SY

ST-

MeB

ioS

BIO

SY

ST-

MeB

ioS

BIO

SY

ST-

MeB

ioS

0.00E+00

1.00E-08

2.00E-08

3.00E-08

4.00E-08

5.00E-08

6.00E-08

0.15 0.17 0.19 0.21 0.23

DO

2(m

2/s)

VmO2 (mmol/m3.s)

Jonagold

Conference

Cameo

Kanzi

Biophysics

Biology

BIO

SY

ST-

MeB

ioS

TemperatureO2

CO2

Full factorial screening design23+1=9 combinations

BIO

SY

ST-

MeB

ioS

Full factorial response surface design33=27 combinations

TemperatureO2

CO2

BIO

SY

ST-

MeB

ioS

BIOSYST-MeBioS www.biw.kuleuven.be

Multiscale modelling of gas transport in plant tissue

Bart M. Nicolaï

BIO

SY

ST-

MeB

ioS

Continuum model

States: O2, CO2 and N2

Enzyme kinetics: Michaëlis-MentenInhibition by CO2

Vmax dependent on temperature according to Arrhenius

Transport: diffusion + permeation

BIO

SY

ST-

MeB

ioS

2

2 2

2

OO O

O

C Lflux D D fluxL C

Δ= ⇒ =

Δ

L

5% O2

15% O2

Brown, 1827; Fick,1855; Einstein,1905.Ho et al. Postharvest Biol Technol, 41:113-120.

BIO

SY

ST-

MeB

ioS

2

2 2

2

OO O

O

C Lflux D D fluxL C

Δ= ⇒ =

Δ

L

5% O2

15% O2

Brown, 1827; Fick,1855; Einstein,1905.Ho et al. Postharvest Biol Technol, 41:113-120.

BIO

SY

ST-

MeB

ioS

Lammertyn et al. 2003. Postharvest Biol Technol 30: 29-42Ho et al. 2006. J. Exp. Bot. 57, 4215-4224.Ho et al. 2008. PLoS Computational Biology 4(3): e1000023 doi:10.1371/journal.pcbi.1000023

BIO

SY

ST-

MeB

ioS

Validation: gas partial pressure in jar with pear

BIO

SY

ST-

MeB

ioS

ProblemsFit reasonable but not perfectApparent model parametersSimulations do not provide direct information about gas related disorders

BIO

SY

ST-

MeB

ioS

ProblemsFit reasonable but not perfectApparent model parametersSimulations do not provide direct information about gas related disorders

Multiscale model

BIO

SY

ST-

MeB

ioS

Multiscale modelling

1 cm 100 μm 10 μm 100 nm

Fruit Cell Membrane Plasmodesmaton

BIO

SY

ST-

MeB

ioS

2

2 2

2

OO O

O

C Lflux D D fluxL C

Δ= ⇒ =

Δ

L

5% O2

15% O2

L

5% O2

15% O2

2-D Microscale model

BIO

SY

ST-

MeB

ioS

Light microscopy image and ellipse tesselation of apple cortex tissueMebatsion et al. (2008) Computational Modeling in Engineering and Sciences 14, 1-14; Trends in Food Science & Technology 19(2), 59-66

BIO

SY

ST-

MeB

ioS

Microscale O2 transport in apple cortex tissueHo et al. (2008) New Phytologist, 182: 163–174

BIO

SY

ST-

MeB

ioS

Diffusivity (m2 s-1):

Cell 2.01×10-9

Air 1.6×10-5

Cell wall 4.25×10-9

⇒ Cell wall porous ?

BIO

SY

ST-

MeB

ioS

Diffusivity (m2 s-1):

Cell 2.01×10-9

Air 1.6×10-5

Cell wall 4.25×10-9

⇒ Cell wall porous ?

Plant Cell wall Albert et al., 1994)

BIO

SY

ST-

MeB

ioS

Flatland (1884)E. A. Abbot

BIO

SY

ST-

MeB

ioS

BIO

SY

ST-

MeB

ioS

BIO

SY

ST-

MeB

ioS

BIO

SY

ST-

MeB

ioS

BIO

SY

ST-

MeB

ioS

BIO

SY

ST-

MeB

ioS

BIO

SY

ST-

MeB

ioS

X-Ray micro computed tomography (MTM K.U.Leuven)

BIO

SY

ST-

MeB

ioS

Micro CT image of apple parenchyma tissue Mendoza et al., Planta 226, 559-570

BIO

SY

ST-

MeB

ioS

European Synchrotron Radiation Facility (ESRF)

BIO

SY

ST-

MeB

ioS

BIO

SY

ST-

MeB

ioS

3-D rendering of the void network of apple (A) and pear (B) fruit cortexVerboven et al. Plant Physiol. 2008;147:518-527

BIO

SY

ST-

MeB

ioS

BIO

SY

ST-

MeB

ioS

3-D microscale modelModel:

Pore, cell: Fick’s second law of diffusionIntracellular respiration: Michaelis Menten Kinetics Interface between gas and liquid phase: Henry’ s law

Finite volume discretisation~ 2 106 or 4 106 control volumesAlgebraic multigrid solver

Solution on cluster computerAMD Opteron cluster16 Gb RAM

BIO

SY

ST-

MeB

ioS

Epidermis and sub-epidermis

E1 E2

mol m-3

BIO

SY

ST-

MeB

ioS

Parenchyma tissue

mol m-3

BIO

SY

ST-

MeB

ioS

Vascular bundles regionmol m-3

BIO

SY

ST-

MeB

ioS

Simulation Experiment Reference

Epidermis /  8.5×10‐10―1.9×10‐10 1.9×10‐10―3.3×10‐10  Ho et al. (2006)

hypodermis Schotsmans et al. (2003)

Cortex parenchyma 3.6×10‐10―2.7×10‐8  2.8×10‐10 ―5.6 ×10‐10 Ho et al. (2006)

Schotsmans et al. (2003)

Brachysklereids 1.48×10‐10

Vascular tissue 3.45×10‐8

BIO

SY

ST-

MeB

ioS

Conclusions

O2 transport is mainly through the intercellular space3D modelling necessaryMacroscopic diffusivity depends to a large extent on microstructureMeasured and predicted diffusion coefficients are in the same range

BIO

SY

ST-

MeB

ioS

Outlook

Smaller scales ?Coupling with metabolic pathway modelsTransport of other species (water, ethanol, ethylene)ValidationVirtual plant

BIO

SY

ST-

MeB

ioS

AcknowledgementsWendy SchotsmansJeroen LammertynFernando MendozaQuang Tri HoPieter VerbovenHibru MebatsionBert VerlindenGreet KerckhofsTuan PhamNguyen Trung AnhNico ScheerlinckJustyna CybulskaStijn Verlaak