Gilbert Collins- University Use of NIF Science

Preview:

Citation preview

5/13/2018 Gilbert Collins- University Use of NIF Science - slidepdf.com

http://slidepdf.com/reader/full/gilbert-collins-university-use-of-nif-science 1/44

Gilbert CollinsIFSA University Use of NIFLLNL-PRES-416675

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

University Use of NIF Science

5/13/2018 Gilbert Collins- University Use of NIF Science - slidepdf.com

http://slidepdf.com/reader/full/gilbert-collins-university-use-of-nif-science 2/44

MBar compressionP∆V ~ eV, Bonds change

GBar compressionP∆V ~ KeV, Atomschange

dynamic compression

2

5/13/2018 Gilbert Collins- University Use of NIF Science - slidepdf.com

http://slidepdf.com/reader/full/gilbert-collins-university-use-of-nif-science 3/44

NIF generates pressures found at thecenter of Jupiter

NIF will create ≥1033 neutrons per cm2 persecond, equivalent to a supernova

NIF will access unprecedented energy densities

NIF will produce enough x-ray flux tosimulate conditions in an accretion disk

NIF will create thermal plasmas at theconditions of stellar interiors

5/13/2018 Gilbert Collins- University Use of NIF Science - slidepdf.com

http://slidepdf.com/reader/full/gilbert-collins-university-use-of-nif-science 4/44

Hydrogen Phase space forhigh energy density science

4

   L  o  g   T  e  m  p  e  r

  a   t  u  r  e   (   K   )

Log density (g•cm-3)

5/13/2018 Gilbert Collins- University Use of NIF Science - slidepdf.com

http://slidepdf.com/reader/full/gilbert-collins-university-use-of-nif-science 5/44

Hydrogen Phase space forhigh energy density science

5

   L  o  g   T  e  m  p  e  r

  a   t  u  r  e   (   K   )

Log density (g•cm-3)

5/13/2018 Gilbert Collins- University Use of NIF Science - slidepdf.com

http://slidepdf.com/reader/full/gilbert-collins-university-use-of-nif-science 6/44

Hydrogen Phase space forhigh energy density science

6

   L  o  g   T  e  m  p  e  r

  a   t  u  r  e   (   K   )

Log density (g•cm-3)

5/13/2018 Gilbert Collins- University Use of NIF Science - slidepdf.com

http://slidepdf.com/reader/full/gilbert-collins-university-use-of-nif-science 7/44

Hydrogen Phase space forhigh energy density science

7

Hot spot108 K

Cold fuel1 Kg/cc

   L  o  g   T  e  m  p  e  r  a   t  u  r  e   (   K   )

Log density (g•cm-3)

5/13/2018 Gilbert Collins- University Use of NIF Science - slidepdf.com

http://slidepdf.com/reader/full/gilbert-collins-university-use-of-nif-science 8/44

Hydrogen Phase space forhigh energy density science

8

   L  o  g   T  e  m  p  e  r  a   t  u  r  e   (   K   )

Log density (g•cm-3)

Previousexperiments

5/13/2018 Gilbert Collins- University Use of NIF Science - slidepdf.com

http://slidepdf.com/reader/full/gilbert-collins-university-use-of-nif-science 9/44

Hydrogen Phase space forhigh energy density science

9

High energydensity regime toexplore with NIF

With Burning plasmas

   L  o  g   T  e  m  p  e  r  a   t  u  r  e   (   K   )

Log density (g•cm-3)

5/13/2018 Gilbert Collins- University Use of NIF Science - slidepdf.com

http://slidepdf.com/reader/full/gilbert-collins-university-use-of-nif-science 10/44

Time (ns)

   T  o   t  a   l  p  o  w

  e  r   (   T   W   )

150

0 10 20

75

0

Withprecompressed

D-> ~5g/cc

Pulse shape ultra-high pressureplasma and solid-state experiments

Stixrude, 2008

4

2

104

8

4

2

103

8

4

0.1 1 10 100 1000

Pressure (Mbar)

   T  e  m  p  e  r  a

   t  u  r  e   (   K   )

NIF can produce P > 1 Gbar shocks, P>10’s Mbar for Ramp compression

Fluid

Iron

Ramp

NIF’s Pulseshaping and Burn will enable extremesolid state to fusion experiments

10

Shock

Ramp

5/13/2018 Gilbert Collins- University Use of NIF Science - slidepdf.com

http://slidepdf.com/reader/full/gilbert-collins-university-use-of-nif-science 11/44

Time (ns)

   T  o   t  a   l  p  o  w

  e  r   (   T   W   )

150

0 10 20

75

0

WithprecompressedD-> ~5g/cc

Pulse shape ultra-high pressureplasma and solid-state experiments

Stixrude, 2008

4

2

104

8

4

2

103

8

4

0.1 1 10 100 1000

Pressure (Mbar)

   T  e  m  p  e  r  a   t  u  r  e   (   K   )

NIF can produce P > 1 Gbar shocks, P>10’s Mbar for Ramp compression

Fluid

Iron

Ramp

NIF’s Pulseshaping and Burn will enable extremesolid state to fusion experiments

11

Shock

Ramp

5/13/2018 Gilbert Collins- University Use of NIF Science - slidepdf.com

http://slidepdf.com/reader/full/gilbert-collins-university-use-of-nif-science 12/44

NIF’s high energy and pulseshaping will enableextreme solid state to fusion experiments

12

Time (ns)

   T  o   t  a   l  p  o  w

  e  r   (   T   W   )

60

0 10 20

30

0

WithprecompressedD-> ~5g/cc

Pulse shape for ignition

Ignition,1019

neutronsTr ~ 5 KeV

5/13/2018 Gilbert Collins- University Use of NIF Science - slidepdf.com

http://slidepdf.com/reader/full/gilbert-collins-university-use-of-nif-science 13/44

VanHorn

We are just now trying to determine regimes accessiblewith ignition, this example is again for Fe

With ignition, the regimes we will be able toaccess are still more extreme

Hugoniot

5/13/2018 Gilbert Collins- University Use of NIF Science - slidepdf.com

http://slidepdf.com/reader/full/gilbert-collins-university-use-of-nif-science 14/44

We are just starting to develop science “platforms”to explore this new frontier of science

14

R. Jeanloz, T. Duffy, R. Hemley, Y.Gupta, P. Loubeyre, L. Stixrude, S.Rose, J. Wark, G. Collins

S. Rose, R. Betti, J. Meyer-Ter-Vehn, S. Atzeni, G. Collins

P. Drake, D. Arnett, A. Frank, T.Plewa, T. Ditmire, A. Takabe,B. Remington

Astro/Rad-transport& Hydrodynamics

G. Fuller, U. Greife, Z. Shayer,C. Brune, R. Boyd, L.Bernstein

N. Fisch, C. Niemann, C. Joshi W.Mori, B. Afeyan, D. Montgomery, A.Schmitt, B. Kirkwood

5/13/2018 Gilbert Collins- University Use of NIF Science - slidepdf.com

http://slidepdf.com/reader/full/gilbert-collins-university-use-of-nif-science 15/44

Omega experiments canaccess the few Mbar regime,~0.8 * RJupiter

NIF experiments can accessthe most extreme conditions inany planet

2 Mbar

5300 K

77 Mbar

16000 K

C. J. Hamilton

Some Key Issues:

• What is a solid at >10 Mbars• How does H behave at 5,10,…g/cc

• What chemistry occurs atMbar-Gbar conditions

NIF will be able to recreate the most extremeconditions of any planet

15

5/13/2018 Gilbert Collins- University Use of NIF Science - slidepdf.com

http://slidepdf.com/reader/full/gilbert-collins-university-use-of-nif-science 16/44

Russ HemleyCarnegie InstituteKev Chemistry

RaymondJeanlozU.C.Berkeley

Yogi GuptaWashington State

Solids atP>20Mbar

LLLNIF, DNT, PLS, Eng

D. StevensonCalTech

Planet Models

Lars StixrudeUniv. of MichiganExtreme Chemistry

BurkhardMilitzerEarth and

Planetary

ScienceRichard MartinU. IllinoisSolid State Theory

Justin WarkOxfordUniversity

Tom DuffyPrincetonElastic consts& rigidity

W. HubbardU. ArizonaPlanet theory

Paul LoubeyreCEAH & H/He atP>10 Mbar

Steven RoseImperial College,LondonPlasma Physics

Group

The team of leading scientists in the field ofultra-dense matter continues to grow

W. Mao (Stanford), K. Lee (Yale), R.Wentzcovitch, C. Bolme (LANL), T.Guillot, (Obs. Nice)

16

5/13/2018 Gilbert Collins- University Use of NIF Science - slidepdf.com

http://slidepdf.com/reader/full/gilbert-collins-university-use-of-nif-science 17/44

Many of the techniques have been benchmarked on theOmega, Jupiter, and Vulcan laser facilities

5/13/2018 Gilbert Collins- University Use of NIF Science - slidepdf.com

http://slidepdf.com/reader/full/gilbert-collins-university-use-of-nif-science 18/44

30 Mbar NIF design is scaled from8 Mbar Omega experiments

   S   t  r  e  s  s

   (   M   b  a  r   )

0

15

30

Density (g/cc)1062

Time (ns)

   T  o   t  a   l  p  o  w  e  r   (   T   W   )100

50

00 10 20

We will discover if carbon stays solidand strong at 10’s of Mbar

Next year we will extend solid statephysics to 30 Mbars on NIF

18

Eggert, Hicks

Eggert, Braun

Metallic polymeric

fluid phase

5/13/2018 Gilbert Collins- University Use of NIF Science - slidepdf.com

http://slidepdf.com/reader/full/gilbert-collins-university-use-of-nif-science 19/44

Materials science/planetary interiors platform- rampcondition of Fe to super-earth conditions (~ 20 Mbar)

Target: ignition hohlraum, phaseplates; specialized drive, package Diagnostics

VISAR/SOP(90,45)

TARPOS

TAS

OPAS/

NOPAS

DANTEX-ray drive

VISAR/SOP(90,315)

   D   i  a  m  o  n   d   F  e

VISAR/SOP

In addition to being able make solids at 10’s of Mbar, we can now study these solidswith diffraction, EXAFS, velocimetry, and broad band reflectance

Time (ns)

   P  o  w  e  r   (   T   W   )

100

50

0 20 40

150

0

NIF laserpulse

Advanced diagnostics are being developed to

5/13/2018 Gilbert Collins- University Use of NIF Science - slidepdf.com

http://slidepdf.com/reader/full/gilbert-collins-university-use-of-nif-science 20/44

Imaging 17.5 KeV image ofshocks (Hicks, Park, et al)

500 μm Qz

Omega

Shock

Diffraction for structure & strength=>Fe is HCP to 5 Mbar (Wark, Duffy,Gupta, Eggert, Harweliak, Rygg et al)

X-ray Scattering/absorption => localstructure in Fe to 3 Mbar (Hemely, Hicks)

Advanced diagnostics are being developed toexplore the microscopic physics in this densematter regime

20

Optical spectroscopy todetermine bonding (Bolme,Hemely, )

Hi-res interferometry for shock

structure (Celliers, Smith, Brygoo)

Simultaneous diffraction and velocity

5/13/2018 Gilbert Collins- University Use of NIF Science - slidepdf.com

http://slidepdf.com/reader/full/gilbert-collins-university-use-of-nif-science 21/44

Simultaneous diffraction and velocity

measurements give compressibility andphase to 5 Mbar

21

   S   t  r

  e  s  s   (   M   b  a  r   )

0

1.5

3.0

Time (ns)

1050

V  el   o ci   t   y (  k  m /   s )  

10

1.85 Mbar

3.24 Mbar

Eggert, Rygg

This is by far the highest P diffraction ever collectedand sets the stage for NIF experiments

Powder diffraction on rampcompressed samples

10 μm Fe

5/13/2018 Gilbert Collins- University Use of NIF Science - slidepdf.com

http://slidepdf.com/reader/full/gilbert-collins-university-use-of-nif-science 22/44

X-ray Scattering/absorption shows localstructure in Fe to 3 Mbar (Hicks)

Yacoi, Remington

Data at P = 3 Mbar

We also developed EXAFS for Ultra-hi-P solids

Determines Fe structure + coordination+T

Preliminaryanalysis suggestsHCP with c/a ~1.73

We expect thecombination of

Diff. + EXAFS willgive T

χ

Electron wavenumber (A-1)Hicks,Ping

Yakoby, Remington et al

22

Coupling diamond cells to laser shocks

5/13/2018 Gilbert Collins- University Use of NIF Science - slidepdf.com

http://slidepdf.com/reader/full/gilbert-collins-university-use-of-nif-science 23/44

Loubeyre 06

The technique has been demonstrated on Omega to 200 GPa, and is expected toscale to 10+ TPa on NIF (Eggert PRL 08, Jeanloz PNAS 07, Lee JCP 06, Loubeyre JHP 06)

Coupling diamond cells to laser shocksenables access to ultra-high density statesfor He, H2, He+H2

23

10 kbar

50 kbar.6 Mbar

H2

Precompressed shocks

100

1000

10000

   T   (   K   )

Conducting fluid

Jupiter

P+e

Metal HSolid H2

Fluid H2 ~isentrope

.01 0.1 1 10 100

P(Mbar)

He

Visar

Laser

Diamond cell

Coupling diamond cells to laser shocks

5/13/2018 Gilbert Collins- University Use of NIF Science - slidepdf.com

http://slidepdf.com/reader/full/gilbert-collins-university-use-of-nif-science 24/44

Loubeyre 06

The technique has been demonstrated on Omega to 200 GPa, and is expected toscale to 10+ TPa on NIF (Eggert PRL 08, Jeanloz PNAS 07, Lee JCP 06, Loubeyre JHP 06)

Coupling diamond cells to laser shocksenables access to ultra-high density statesfor He, H2, He+H2

24

10 kbar

50 kbar.6 Mbar

H2

Precompressed shocks

100

1000

10000

   T   (   K   )

Conducting fluid

Jupiter

1st NIF H2experiment

Metal HSolid H2

Fluid H2 ~isentrope

.01 0.1 1 10 100

P(Mbar)

He

Visar

Laser

Diamond cell

5/13/2018 Gilbert Collins- University Use of NIF Science - slidepdf.com

http://slidepdf.com/reader/full/gilbert-collins-university-use-of-nif-science 25/44

HED facilities deliver:E/V ≥ 1011 J/m3 or P ≥ 1 Mbarover spatial scales L ≥ 1 mm

Currnet ultra-dense matter plans for NIF include10’s Mbar solids & 10’s of Gbar dense plasmas

FY12FY11FY10

New regime ofSolid-state – 10

to 100’s of Mbar

Ultra-denseHydrogen

Kilovoltchem/Gigabar

press.

30 MbarCarbon6 shots

Fe-ramp to 20Mbar, 4 shots

Diffractionstructure & T4 shots

EXAFS forlocal order 4shots

50 MbarHe/H24 shots

D2 to 6 g/cc4 shots

Shock Fe to

1 Gbar4 shots Fe @ 10’s Gbar4 shots

EXAFS/diffraction at >100Mbar

4 shots

H @manyGbar

H-D 100

Mbar(Pycnonuclear)

t

Convergent experimentsAtomic scale data & H innew regime

1-D compressionIgnition hohlraumsVISAR/SOP

5/13/2018 Gilbert Collins- University Use of NIF Science - slidepdf.com

http://slidepdf.com/reader/full/gilbert-collins-university-use-of-nif-science 26/44

Burning Plasmas

• What physics limits optimizing burn?

• How does matter behave in DT burning environment,ie. Radiation and relativistic regimes?

• What are the next advanced ignition concepts?

26

5/13/2018 Gilbert Collins- University Use of NIF Science - slidepdf.com

http://slidepdf.com/reader/full/gilbert-collins-university-use-of-nif-science 27/44

NIF will open a new field of Burning Plasmaphysics, what are the key questions

• Understand/optimize the burning plasma

 — e-ion equilibration

 — Alpha deposition

 — EOS/opacities and non-equilibrium

 — Effects of extreme fields

 — Plasma effects on nuclear reactions

• New burning plasma physics?

 — Extreme neutron and photon flux

 — e+e- pairs

 — Photonuclear processes

27

Does a deep understanding of burning

plasmas enable new ignition concepts?

Density-temperature at peak rho-R

Faster Ignition

300keV

DT ions

Djaoui, JQSRT (1995), Rose

2000

1500

1000

500

00 20 40 60

10

30

50

70

T  e

 ,T i   (  k  eV  )  

⟩   (  g  c  m  -   3   )

Radius (µm)

Ti

Te

5/13/2018 Gilbert Collins- University Use of NIF Science - slidepdf.com

http://slidepdf.com/reader/full/gilbert-collins-university-use-of-nif-science 28/44

Previous Photoionised plasmas achievedξ=20ergcms-1, NIF will achieve >1000ergcms-1

28

Low mass X-ray binaryξ=30 ergcms-1

Seyfert galaxyξ=300 ergcms-1

NIF with burning capsule

FFe

CH

5/13/2018 Gilbert Collins- University Use of NIF Science - slidepdf.com

http://slidepdf.com/reader/full/gilbert-collins-university-use-of-nif-science 29/44

Laboratory Astro/Nuclear Physics

29

• Measure opacities relevant to stellarevolution

- Can measure LTE and non-LTE conditionsat high T and high or low rho

• Test codes modeling turbulence on NIF

- Supernovea simulations suggest

significant mix: NIF can benchmark thesesimulations

- How were heavy elements dispersed in theUniverse

• Test nuclear physics models

- Benchmark excited state nuclear physics

- Dense plasma effects on reaction rates

- Test models for big bang nucleosynthesis

- Helps to determine temperatures of stars

Saturn Z pinch1990s

Z, ZR, Omega2000-2009

NIF 2010-2015?

Kifonidis,Ap. J. Lett 531,L123 (2000)

5 x 1011cm

HFe

NIF will reach near core conditions of the sun

5/13/2018 Gilbert Collins- University Use of NIF Science - slidepdf.com

http://slidepdf.com/reader/full/gilbert-collins-university-use-of-nif-science 30/44

eac ea co e co d t o s o t e suand measure κRosseland to ~10%

Ti n=2 ton=1

Ti n=3to n=1

Ti data at Omega.05 g/cc, 125 eV,

Solar Radiative Region: 200-1350 eV (Bahcall, Rev. Mod. Phys. 67, 781, 1995)

NIF 750 TW estimate from semi-emperical scaling: >700 eV (Dewald PRL 95, 215004(2005).) 

CapsuleBacklighter

collimator

Hohlraum

X-ray flash

Hohlraumtemperature

Samplevolume with

radiography

Gated x-ray

spectrometer

Hohlraumtemperature

5/13/2018 Gilbert Collins- University Use of NIF Science - slidepdf.com

http://slidepdf.com/reader/full/gilbert-collins-university-use-of-nif-science 31/44

Supernovae come in two general categories

• Involve M~Msun stars• Optically brighter

• Standardized candles

• Serve as distance indicators

31

Type II: Core CollapseType 1A: Thermonuclear

Accreting white dwarf

H He

C,OSiFe

Mantle

Envelope

Core

• Involve M >> Msun stars• More energetic

• More frequent

• Leaves a neutron star behind

Fe core in massive star collapses

White dwarfCompanion star

5/13/2018 Gilbert Collins- University Use of NIF Science - slidepdf.com

http://slidepdf.com/reader/full/gilbert-collins-university-use-of-nif-science 32/44

Supernovae come in two general categories

• Source of the elements up to Z ~ 26• Data behind the accelerating universe

and dark energy

32

Type II: Core CollapseType 1A: Thermonuclear

Accreting white dwarf

H He

C,OSiFe

Mantle

Envelope

Core

• Source of the heavy elements, Z > 26• Questions:

− How are these elements made?

− How are they ejected?

Fe core in massive star collapses

White dwarfCompanion star

T II l f h d h f

5/13/2018 Gilbert Collins- University Use of NIF Science - slidepdf.com

http://slidepdf.com/reader/full/gilbert-collins-university-use-of-nif-science 33/44

Type II supernovae result from the death of amassive star

33

[Hillebrandt, Sci. Am., 43 (Oct. 2006)]

Near-death, the massive star, M > 8Msun ,takes on an onion-layer structure

4 x 106 km

T II lt f th d th f

5/13/2018 Gilbert Collins- University Use of NIF Science - slidepdf.com

http://slidepdf.com/reader/full/gilbert-collins-university-use-of-nif-science 34/44

Type II supernovae result from the death of amassive star

34

[Hillebrandt, Sci. Am., 43 (Oct. 2006)]

Iron core collapses in ~0.1 s,at a free-fall velocity of ~c/4

T II lt f th d th f

5/13/2018 Gilbert Collins- University Use of NIF Science - slidepdf.com

http://slidepdf.com/reader/full/gilbert-collins-university-use-of-nif-science 35/44

Type II supernovae result from the death of amassive star

35

[Hillebrandt, Sci. Am., 43 (Oct. 2006)]

Shock

Rebound occurs whencore reaches nucleardensity, launching astrong shock

At nuclear density,ρnuclear~ 2 x 1014 g/cm3,the Earth would have aradius of only ~192 m

A “nuclear shock” is strong :

Pshock ~ 1 MeV / fm

3

~ 10

21

Mbar

200 km

ProtoneutronStar

Type II supernovae result from the death of a

5/13/2018 Gilbert Collins- University Use of NIF Science - slidepdf.com

http://slidepdf.com/reader/full/gilbert-collins-university-use-of-nif-science 36/44

Type II supernovae result from the death of amassive star

36

[Hillebrandt, Sci. Am., 43 (Oct. 2006)]

The shock stalls, due to the in-flowing matter, then gets revived in ~1 s byneutrino heating and the Standing Accretion Shock Instability (SASI)

Shock

ProtoneutronStar

Type II supernovae result from the death of a

5/13/2018 Gilbert Collins- University Use of NIF Science - slidepdf.com

http://slidepdf.com/reader/full/gilbert-collins-university-use-of-nif-science 37/44

Type II supernovae result from the death of amassive star

[Hillebrandt, Sci. Am., 43 (Oct. 2006)]

37

The shock breaks outfrom the surface of thestar in 1-2 hr, and thestar blows up as a SN

Stalled shock restarts, thenr-process nucleosynthesisoccurs for the next ~10 s

ProtoneutronStar

Type II supernovae result from the death of a

5/13/2018 Gilbert Collins- University Use of NIF Science - slidepdf.com

http://slidepdf.com/reader/full/gilbert-collins-university-use-of-nif-science 38/44

Type II supernovae result from the death of amassive star

38

[Hillebrandt, Sci. Am., 43 (Oct. 2006)]

107 km

Turbulence mixes core (blue) into the overlying He mantle(green) and H envelope (red). Some fraction of the core,

carrying the synthesized heavy elements, gets ejected.

t = 5 hr

P Drake et al are developing designs to recreate

5/13/2018 Gilbert Collins- University Use of NIF Science - slidepdf.com

http://slidepdf.com/reader/full/gilbert-collins-university-use-of-nif-science 39/44

P. Drake et al. are developing designs to recreatea scaled supernova explosion on NIF

39

Scaled SN1987A on NIF

Z-axis (mm)

   R  a   d   i  u  s   (  m  m   )

Ti core

0.5 g/ccCRF

0.05 g/ccCRF

0 7

7

Z-axis (mm)

5

0

t = 200 ns(1500 s in SN)

0.4 0.08 0.02

0

   R  a   d

   i  u  s   (  m  m   )

6

Density (g/cm3)

• Simulations show deep nonlinear mixing relevant to SN1987A• Rho-t scaling described in Ryutov et al ., Ap.J. 518, 821 (1999); Ap.J. Suppl.

127, 465 (2000); Phys. Plasmas 8, 1804 (2001)]• fully developed turbulence will be experimentally studied at NIF

Simulation of Proposed Experiment

Drivebeams

ConcentricHemispherical

Shells

Tworippled

interfaces

HED Plasma induced excited state population is

5/13/2018 Gilbert Collins- University Use of NIF Science - slidepdf.com

http://slidepdf.com/reader/full/gilbert-collins-university-use-of-nif-science 40/44

HED Plasma induced excited state population isbelieved to play a role in s-process nucleosynthesis

Z

N

S-process conditions k B T ≈ 8, 30 keV ρ≈50-100 g/cm3

s-process path near Tm

169Tm 170Tm 172Tm

171Yb 172Yb 173Yb170Yb

171Tm

5.025 keV

4.8 ns3/2+

1/2+

171Tm

Dope ICF capsule with Tm, capture products from debris, measure ratioof 172/170 to determine s-process cross section enhancement factors

5/13/2018 Gilbert Collins- University Use of NIF Science - slidepdf.com

http://slidepdf.com/reader/full/gilbert-collins-university-use-of-nif-science 41/44

Plasma pulseamplification andcompression at NIF canproduce unprecedentedintensities on target

41

• What happens at 1025 W/cm2 ?=>photon pressure ~ 1010 Mbars

• Can we learn how cosmic

accelerators work?• Nature of laser-matterinteraction at high energy &intensity

Extreme laser intensities

J. Ren, Nature Physics, 2007

R. Kirkwood, Physics Rev. Lett., 1996

Y. Ping Submitted PRL

R. Kirkwood, Physics of Plasmas 2007

5/13/2018 Gilbert Collins- University Use of NIF Science - slidepdf.com

http://slidepdf.com/reader/full/gilbert-collins-university-use-of-nif-science 42/44

Plasma pulse amplification andcompression concept for NIF

42

• What happens at 1025 W/cm2 ?=>photon pressure ~ 1010 Mbars

• Can we learn how cosmic

accelerators work?• Nature of laser-matterinteraction at high energy &intensity

Extreme laser intensities

We are just starting to develop science “platforms”

5/13/2018 Gilbert Collins- University Use of NIF Science - slidepdf.com

http://slidepdf.com/reader/full/gilbert-collins-university-use-of-nif-science 43/44

We are just starting to develop science platformsto explore this new frontier of science

43

R. Jeanloz, T. Duffy, R. Hemley, Y.Gupta, P. Loubeyre, L. Stixrude, S.

Rose, J. Wark, G. Collins

S. Rose, R. Betti, J. Meyer-Ter-

Vehn, S. Atzeni, G. Collins

P. Drake, D. Arnett, A. Frank, T.Plewa, T. Ditmire, A. Takabe,

B. Remington

Astro/Rad-transport& Hydrodynamics

G. Fuller, U. Greife, Z. Shayer,C. Brune, R. Boyd, L.Bernstein

N. Fisch, C. Niemann, C. Joshi W.Mori, B. Afeyan, D. Montgomery, A.Schmitt, B. Kirkwood

5/13/2018 Gilbert Collins- University Use of NIF Science - slidepdf.com

http://slidepdf.com/reader/full/gilbert-collins-university-use-of-nif-science 44/44

44

Recommended