Impact of High Distributed Energy Resources

Preview:

Citation preview

November 17, 2021

Jon Jensen and Nick Hatton

- WECC Staff

Impact of High Distributed

Energy Resources

Impact of High Distributed Energy

Resources

Jon Jensen, Nick Hatton

2

Impact of High Distributed Energy Resources

3

• Identify potential risks of a high penetration of DER in the interconnection.

Purpose

• Impacts of DER?

•What amount of DER causes concern?

Reliability Questions

Study Methodology

▪ PCM cases DER capacity

• 9% DER

• 20% DER

• 35% DER

• 35% DER CA Distributed

• 35% DER CA Distributed with battery

▪ PF case DER capacity

• 20% DER

4

DER capacity by case

5

-

20,000.00

40,000.00

60,000.00

80,000.00

100,000.00

120,000.00

MW

Case

DER Capacity

ADS V2.2.1 9% DER 20% DER 35% DER 35% CA Dist DER

DER Capacity by State

6

Batteries

▪ Battery case

• 400MWx4hr per area

▪ We experimented with

other battery

configurations

• 200MWx4hr per area

• 200MWx8hr per area

7

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

AB AZ BC CA CO ID MT MX NE NM NV OR SD TX UT WA WY

Battery Capacity by State

ADS V2.2.1 35% DER CA Dist 400MWx4hr

-

50,000,000

100,000,000

150,000,000

200,000,000

250,000,000

300,000,000

MW

h

Category

Annual Energy (MWh)

2030 ADS V2.2.1 20% DER 35% DER 35% DER CA Dist 35% DER CA Dist 400MWx4hr 8

Annual Energy Biggest Changes

9

(100,000,000) (50,000,000) - 50,000,000 100,000,000 150,000,000 200,000,000

Energy Storage

Steam - Coal

Combined Cycle

Combustion Turbine

DER

Solar

Wind

Spillage/Dump Energy (MWh)

Annual Energy Differences

20% DER 35% DER 35% DER CA Dist 35% DER CA Dist 400MWx4hr

Spillage

10

-

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000

60,000,000

2030 ADS V2.2.1 20% DER 35% DER 35% DER CA Dist 35% DER CA Dist

400MWx4hr

MW

h

Case

Spillage

Solar Wind

2030 ADS V2.2.1

11

-20

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

8/18/2030

Other

Energy Storage

Wind

Solar

DER

Gas

35% DER CA Dist

12

-20

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

8/18/2030

Other

Energy Storage

Wind

Solar

DER

Gas

35% DER CA Dist with Battery

13

-40

-20

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

8/18/2030

Other

Energy Storage

Wind

Solar

DER

Gas

-20000

0

20000

40000

60000

80000

100000

120000

140000

2030 ADS V2.2.1 9% DER 20% DER 35% DER 35% DER CA Dist 35% DER CA Dist

400MWx4hr bat

MW

Case

Hourly Generation 8-18-2030 Hr 13

Wind

Solar

Other Thermal

Nuclear

Hydro

Geothermal

Gas-Steam

Gas-ICE

Gas-CT

Gas-Cogen

Gas-CC

Energy Storage

DER

Coal

Bio

14

-20000

0

20000

40000

60000

80000

100000

120000

140000

2030 ADS V2.2.1 9% DER 20% DER 35% DER 35% DER CA Dist 35% DER CA Dist

400MWx4hr bat

MW

Case

Hourly Generation 8-18-2030 Hr 20

Wind

Solar

Other Thermal

Nuclear

Hydro

Geothermal

Gas-Steam

Gas-ICE

Gas-CT

Gas-Cogen

Gas-CC

Energy Storage

DER

Coal

Bio

15

Gas Units Ramping

16

Coal Units

17

Average LMP

18

-4500

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

500

Alberta British Columbia Basin California Northwest Rocky Mountain Southwest

Average LMP for Generators ($/MWh)

ADS V2.2.1 9% DER 20% DER 35% DER CA Dist 35% DER CA Dist 35% DER 400MWx4Hr bat

19

Transmission

-10000

-5000

0

5000

10000

1

226

451

676

901

112

6

135

1

157

6

180

1

202

6

225

1

247

6

270

1

292

6

315

1

337

6

360

1

382

6

405

1

427

6

450

1

472

6

495

1

517

6

540

1

562

6

585

1

607

6

630

1

652

6

675

1

697

6

720

1

742

6

765

1

787

6

810

1

832

6

855

1

35% DER P66 COI

Reliability Risks

▪ Resource adequacy and performance

▪ Changing resource mix

▪ Distribution system and customer load impacts on the

transmission system

20

Findings/Next steps

▪ Optimize use of BTM resources for Bulk Electric System

21

Power Flow details

▪ 2 cases were used

• Original 2030 HS1 – baseline

• 2030 HS1 updated with 40 GW DER – similar to 20% DER PCM case

▪ Inverter representations (dynamics)

• 3 different data sets

22

43

43.5

44

44.5

45

45.5

46

46.5

15 17 19 21 23 25 27 29 31 33 35

DG Power at bus 30941 on the Diablo Midway Outage

0

50

100

150

200

250

300

500 kV 230 kV 100 kV 55-69 kV 34.5 kV and below

Buses with a greater than 5% change in voltage

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Ringdown Double Palo Diablo Midway Daniel Park Comanche Colorado River Redbluff Brownlee-Hells Canyon North Gila - Imperial Valley

Load lost due to voltage in the composite load model

30HS1 Update Fast Return Voltage Controls

PF Voltage

26

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.95 1.15 1.35 1.55 1.75 1.95

Vo

ltag

e (P

.U.)

Time (s)

Bus 30941 Load Voltage during Diablo-Midway Outage

Original Update Fast Return Voltage Controls

PF Voltage

27

0

0.2

0.4

0.6

0.8

1

1.2

0.99 1.04 1.09 1.14 1.19 1.24 1.29

Vo

ltag

e (P

.U.)

Time (s)

Bus 24229 voltage during Colorado River - Redbluff Outage

Original Update Fast Return Voltage controls

PF Frequency

28

59.82

59.84

59.86

59.88

59.9

59.92

59.94

59.96

59.98

60

0 5 10 15 20 25 30 35

Fre

qu

ency

(H

z)

Time (s)

Malin 500 Frequency during Double Palo Verde Outage

Original Update Fast Return Voltage Controls

Reliability Risks

▪ Resource adequacy and performance

▪ Changing resource mix

▪ Distribution system and customer load impacts on the

transmission system

29

Findings/Next steps

▪ Additional Study

▪ Increase availability of DER data

30

Discussion

31

AcknowledgementsDistributed Energy Resources Advisory Group

QuestionsJon Jensen

jjensen@wecc.org

Nick Hatton

nhatton@wecc.org

Recommended