Implications of advances in molecular genetic...

Preview:

Citation preview

Implications of advances in molecular

genetic technology for food security and

ownership

Robert J Henry

Queensland Alliance for Agriculture and Food Innovation

Working together with the

Queensland Government

Genetic Resources for Food

Security

World population growth

Population growth

Food consumption per person

3500

3000

2500

2000

1500

500

1000

1965 1975 1985 1998 2015 2030

Year

(kc

al p

er

ca

pit

a p

er

da

y)

0

One billion starving

Two billion obese

Food

50% more population may

require twice the food from the

same area of land

Sustainability Challenges

• Food Production

• Energy Production

• Biodiversity conservation

FOR FOOD FUEL AND

CONSERVATION

Innovation Options

• What biological resources do we have to meet these

challenges?

• What tools do we have to better utilise these resources?

Genome science for food

Advances in Plant

Molecular Marker Technology

Analysis of rice

New Tools

C C G

A C

T

C A

T

G

C

C G

A C

T

C

A T

G

Oryza sativa japonica, rice genome

DNA base pairs

%

chloroplast 134,551

0.04

mitochondrial 490,669

0.13

nuclear 382,151,945

99.84

Total 100 382,776,165

Sources of total plant DNA

DNA sequencing

Nock C, Waters DLE, Edwards MA, Bowen S, Rice N, Cordeiro GM, Henry RJ (2011)

Chloroplast genome sequence from total DNA for plant identification. Plant

Biotechnology Journal. 9: 328-333.

Example of IP: A small protein to feed a billion people

Product:

High yielding and good bread making wheat

Bread without wheat

Gluten free bread

Solution: A protein for bread quality

Improved bread making

Problem: Wheat to feed the world

Bread making quality prevents advances

Variation within genotypes

Pattemore JA, Rice N, Marshall DF,

Waugh R, Henry RJ (2010) Cereal

Variety Identification using MALDI-TOF

mass spectrometry SNP Genotyping.

Journal of Cereal Science 52: 356-361.

Food security

Australian genetic resources for major crops

Rice wild relatives

Kasem S, Waters DLE, Rice N,

Shapter FM, Henry RJ (2010)

Whole grain morphology of

Australian rice species. Plant

Genetic Resources:

Characterization and Utilization

8:74-81.

Australian Wild

Rice Distribution of Oryza species in

Australia as indicated by Australian

Herbarium records

Henry RJ, Rice N, Waters DLE, Kasem S, Ishikawa R, Dillon SL, Crayn D, Wing R,

Vaughan D (2010) Australian Oryza: Utility and conservation. Rice. 3: 235-241.

Australian wild rice

Areas of low diversity in plant genomes

Domestication genes in wild rice

Chromosome 5

Gopala Krishnan S.

New and improved crops

Australia may be

source of new

globally

important crops

and diversity for

existing crops

Wild relatives of rice

New rice species?

Ishikawa et al 2012

Wild coffee species

Fertile Crescent

Sites of domestication

Domestication of New Crops

Microlaena domestication

Shapter et al., 2012 in preparation

Fragrance in Plants and Foods

2-acetyl-1-pyrroline

Popcorn

Tortillas

Baguettes

Ham

Cheese

Mung bean

Green tea

Wine

Lobster

Pearl millet

Potatoes

Bradbury LMT, Fitzgerald TL, Henry RJ, Jin Q, Waters DLE (2005) The Gene for

Fragrance in Rice. Plant Biotechnology Journal 3: 363-370.

Fragrance Gene

Rice_BAD2 MA--TAIPQRQLFVAGEWRAPALGRRLPVVNPATESPIGEIPAGTAEDVDAAVAAAREAL 58

Fragrant_Rice_BAD2 MA--TAIPQRQLFVAGEWRAPALGRRLPVVNPATESPIGEIPAGTAEDVDAAVAAAREAL 58

Rice_BAD1 MAAPSAIPRRGLFIGGGWREPSLGRRLPVVNPATEATIGDIPAATAEDVELAVSAARDAF 60 ** :***:* **:.* ** *:*************:.**:***.*****: **:***:*:

Rice_BAD2 KRNRGRDWARAPGAVRAKYLRAIAAKIIERKSELARLETLDCGKPLDEAAWDMDDVAGCF 118

Fragrant_Rice_BAD2 KRNRGRDWARAPGAVRAKYLRAIAAKIIERKSELARLETLDCGKPLDEAAWDMDDVAGCF 118

Rice_BAD1 GRDGGRHWSRAPGAVRAKYLKAIAAKIKDKKSYLALLETLDSGKPLDEAAGDMEDVAACF 120 *: **.*:***********:****** ::** ** *****.******** **:***.**

Rice_BAD2 EYFADLAESLDKRQNAPVSLPMENFKCYLRKEPIGVVGLITPWNYPLLMATWKVAPALAA 178

Fragrant_Rice_BAD2 EYFADLAESLDKRQNAPVSLPMENFKCYLRKEPIGVVGLITPWNYPLLMATWKVAPALAA 178

Rice_BAD1 EYYADLAEALDGKQRAPISLPMENFESYVLKEPIGVVGLITPWNYPLLMATWKVAPALAA 180 **:*****:** :*.**:*******:.*: ******************************

Rice_BAD2 GCTAVLKPSELASVTCLELADVCKEVGLPSGVLNIVTGLGSEAGAPLSSHPGVDKVAFTG 238

Fragrant_Rice_BAD2 GCTAVLKPSELASVTCLELADVCKEVGLPSGVLNIVTGLGSEAGAPLSSHPGVDKVAFTG 238

Rice_BAD1 GCTAVLKPSELASLTCLELGGICAEIGLPPGVLNIITGLGTEAGAPLASHPHVDKIAFTG 240 *************:*****..:* *:***.*****:****:******:*** ***:****

Rice_BAD2 SYETGKKIMASAAPMVKPVSLELGGKSPIVVFDDVDVEKAVEWTLFGCFWTNGQICSATS 298

Fragrant_Rice_BAD2 SYETGIYFSCSYG----------------------------------------------- 251

Rice_BAD1 STETGKRIMITASQMVKPVSLELGGKSPLIVFDDVDIDKAVEWAMFGCFANAGQVCSATS 300 * *** : : .

Rice_BAD2 RLILHKKIAKEFQERMVAWAKNIKVSDPLEEGCRLGPVVSEGQYEKIKQFVSTAKSQGAT 358

Fragrant_Rice_BAD2 ------------------------------------------------------------

Rice_BAD1 RLLLHEKIAKRFLDRLVAWAKSIKISDPLEEGCRLGSVVSEGQYQKIMKFISTARCEGAT 360

Rice_BAD2 ILTGGVRPKHLEKGFYIEPTIITDVDTSMQIWREEVFGPVLCVKEFSTEEEAIELANDTH 418

Fragrant_Rice_BAD2 ------------------------------------------------------------

Rice_BAD1 ILYGGARPQHLKRGFFIEPTIITNVSTSMQIWREEVFGPVICVKEFRTEREAVELANDTH 420

Rice_BAD2 YGLAGAVLSGDRERCQRLTEEIDAGIIWVNCSQPCFCQAPWGGNKRSGFGRELGEGGIDN 478

Fragrant_Rice_BAD2 ------------------------------------------------------------

Rice_BAD1 YGLAGAVISNDLERCERISKAIQSGIVWINCSQPCFVQAPWGGNKRSGFGRELGQWGLDN 480

Rice_BAD2 YLSVKQVTEYASDEPWGWYKSPSKL 503

Fragrant_Rice_BAD2 -------------------------

Rice_BAD1 YLSVKQVTKYCSDEPYGWYRPPSKL 505

Conflict between human and

natural selection Fragrance

Bradbury LME, Gillies SA, Brushett D, Waters DLE, Henry RJ (2008) Inactivation of an

aminoaldehyde dehydrogenase is responsible for fragrance in rice. Plant Molecular

Biology 68: 439-449.

Bioenergy

Economics

Climate change

Security of energy supply

Global CO2 concentrations

310

320

330

340

350

360

370

380

390

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

Y ear

pp

m

Global carbon dioxide concentrations

Global temperatures

-0.80

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

1860 1880 1900 1920 1940 1960 1980 2000 2020

Yea r

Te

mp

era

ture

0C

Global temperature

Declining Australian oil production

Australian production

Imported

Oil

co

nsu

mp

tio

n

2010 2020

Source: ABARE

$30 Billion

by 2030

Biofuel from non food plants

Biomass

(cellulose) Sugars

Pre-

treatment Enzyme

Ethanol Aviation Fuel Biodiesel

Sugarcane

Souza GM, Berges H, Bocs S, Casu R, D’Hont A, Ferreira JE, Henry R, Ming R Potier B,

Van Sluys MA, Vincentz M and Paterson AH (2011) The sugarcane genome challenges:

Strategies for sequencing a highly complex genome. Tropical Plant Biology 4: 145-156.

Grasses related to sorghum and

sugarcane Anzoua KG, Yamada T and Henry RJ (2011)

Miscanthus In: Kole C ed., Wild Crop

Relatives: Genomic and Breeding

Resources Industrial Crops, Springer,

Heidelberg, 157-164.

Bhattacharya A, Rice N, Shapter FM, Norton

SL, Henry RJ (2011) Sorghum and its Wild

Crop Relatives. In: Kole C ed. , Wild Crop

Relatives: Genomic and Breeding

Resources Cereals, Springer, Heidelberg

397-406.

Bonnett G, Henry RJ (2011) Saccharum. In:

Kole C ed., Wild Crop Relatives:Genomic

and Breeding Resources Industrial Crops,

Springer, Heidelberg, 165-178.

Jackson P, Henry RJ (2011) Erianthus. In:

Kole C ed.,Wild Crop Relatives: Genomic

and Breeding Resources Industrial Crops,

Springer, Heidelberg, 97-108.

Shepherd M, Bartle, J, Lee DJ,

Brawner J, Bush D, Turnbull P,

Macdonell P, Brown TR, Simmons B

and Henry R (2011) Eucalypts as a

biofuel feedstock. Biofuels 2: 639-

657.

International collaboration

Essential to success in

innovation

International Climate-Resilient

Crop Genomics Consortium

(ICRCGC)

Robert Henry, Roberto Tuberosa,

Chittaranjan Kole

Impact of climate change on

biodiversity

Cronin, JK, Bundock, PC, Henry, RJ and Nevo, E (2007) Adaptive Climatic

Molecular Evolution in Wild Barley at the Isa Defense Locus. Proceedings of

the National Academy of Science USA, 104: 2773-2778.

Climate and biodiversity: Collection sites from sea level to mountain tops

Fitzgerald TL, Shapter FM, McDonald S, Waters DLE, Chivers IH, Drenth A, Nevo E

and Henry RJ (2011) Genome diversity in wild grasses under environmental stress.

Proceeding of the National Academy of Science USA 108, 21139-21144.

XIX PAG 2011

Coffee Consortium

Nestlé R&D: Dominique Crouzillat

Michel Rigoreau

UMR DIADE:

Alexandre de Kochko

Romain Guyot

Christine Tranchant

Valérie Poncet

Perla Hamon

Serge Hamon

Claudine Campa

Stéphane Dussert

Thierry Joët

UMR RPB: Philippe Lashermes

Benoît Bertrand

Marie-Christine Combes

François Anthony

UMR AGAP: Xavier Argout

Thierry Leroy

GENOSCOPE: Patrick Wincker

Università di Trieste: Giorgio Graziosi

Alberto Pallavicini

ENEA:

Giovanni Giuliano

Gaetano Perrotta

EMBRAPA:

Alan C. Andrade

University at Buffalo:

Victor Albert

University of Illinois at Urbana Champaign:

Ray Ming

Hawaii Agriculture Research Center:

Chifumi Nagai

Ming-Li Wang

University of Arizona: Steve Rounsley

University of Queensland: Robert Henry

University of Ottawa: David SANKOFF

ICCRI: Priyono

QuickTime™ et undécompresseur

sont requis pour visionner cette image.

QuickTime™ et undécompresseur

sont requis pour visionner cette image. Coffee Bord of India: Jayarama

Genomes to Genes: Comparative genomic analysis in Prunoideae

Amit Dhingra

Horticulture Genomics and Biotechnology

Washington State University

Legal frameworks

Biodiversity convention

Biodiversity acts

FAO Treaty

CITES

Nagoya Biodiversity Agreement

IP laws: patents, trade marks, PBR, copyright, MTAs

Technology advances

DNA analysis (sequencing) (DNA to data)

DNA synthesis (data to DNA)

DNA transfer (DNA to new organism)

I P in Relation to Genetic Resources

Who owns the

-Plant

-Seed

-DNA

-DNA sequence data

Novel wheat gene expression in maize

Australian Plant DNA Bank

Exchange of data and materials

Depends on individual decisions

Data more easily exchanged

Little policing of IP rights

Recommended