L35B-SHRP2 TCC for Reliability Workshop 10302013-consolidated … › uploaded_files ›...

Preview:

Citation preview

L35‐B Local Methods for Modeling, Economic Evaluation, 

Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making

Sponsor:Transportation Research Board of the National Academies

Strategic Highway Research Program (SHRP II) 

Contractors:University of Maryland

Center for Advanced Transportation Technology (CATT)National Center for Smart Growth (NCSG)

Sub‐Contractors:Cambridge Systematics, Inc.

Dunbar Transportation Consulting

Supporting/ Implementing Agency:Maryland State Highway Administration

SHRP 2 TCC for Reliability Workshop:Wednesday, October 30, 2013

Presentation Outline

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

2

• Introduction– Review of L35B Research goals– Overview of Research Approach & Tasks

• Early Findings & Lessons Learned– Overview of Maryland SHA’s Existing Project Prioritization Process– Summary of Methodologies to Estimate VOTTR (from the literature)– Approach to Travel Time Reliability Valuation – Binary Trees

• Identify Measure of Reliability• Determine Value of Travel Time• Present Random Walk Metaphor for Valuation Process• Present Computation of VOR by Application of Random Walk Metaphor

• Review of Project Schedule & Deliverables

• Question & Answer Session

Research Goals

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

3

• Select and defend a value or range of values for travel time reliability for the Maryland State Highway network

• Use the VTTR in the Maryland SHA project development process to prioritize operational and capital improvements and determine if (and how) the ranking of projects changes due to the addition of VTTR

• Report for the benefit of others the step‐by‐step process used to develop, justify, apply, and assess the use of VTTR in the Maryland SHA project evaluation and decision process

Overview of Research Tasks

1. Describe how your established processes to prioritize operational and capital improvements (baseline approach) meet the special evaluation criteria for this project. This includes analytical methods used to obtain performance metrics and a prioritization/evaluation process.

2. Develop and apply a methodology to select a travel time reliability performance measure and a value or range of values for travel time reliability.

3. Incorporate this performance and the value of travel time reliability into your project evaluation process and use that information to inform policy decisions about transportation alternatives.

4. Analyze and compare alternatives using the baseline approach and the revised method that includes VTTR.

5. Explore the sensitivity of priorities to changes/ranges of the VTTR.

6. Brief management and/or policy board on the results of Task 4 and 5 and assess the reaction of members.

7. Prepare a Draft Final Report including lessons learned from tasks 1‐6

8. Prepare Final Report.

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

4

Task 1• Describe how your established process to prioritize operational and capital improvements (baseline approach) meet the special evaluation criteria for this project. This includes analytical methods used to obtain performance metrics and a prioritization/evaluation process.

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

5

Overview of Existing Process(es)

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

6

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

7

Overview of Existing Process(es)

Graphic from SHRP2 LO5 Presentation by Anita Vandervalk, September 17, 2013

SHA Congestion Relief Project Decision Making Process

Congestion Relief Project DM

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

8

In addition to safety and congestion, transportation system reliability is another key factor to providing our customers with a good travel experience.

From Forward 2013 SHA Mobility Report

Melinda B. Peters, SHA Administrator

Congestion Relief Project DM• Step 1 ‐Diagnosis

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

9

Congestion Relief Project DM• Step 2 – Analysis

– Review– Simulate– B/C 

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

10

Congestion Relief Project DM• Some Step 2 Analysis Details

– VISSIM Model Calibration• Traffic volumes must be within 10% of the input volume;

• Auto speeds must be +/‐ 5MPH of the vehicle probe data speed; and

• Auto travel times must be within 10% of the vehicle probe data travel time

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

11

Congestion Relief Project DM

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

12

• Some Step 2 Analysis Details– Benefits: VOT and VTTR

Saving Type Parameter Unit Categories SHA Value*

Travel time VOT $/hrPassenger 29.82Truck driver 20.21Cargo 45.40

Travel time reliability VTTR $/hrPassenger 22.36Truck driver 15.16Cargo 34.05

Fuel cost $/galGasoline 3.69Diesel 3.97

Value of Time (VOT)• Passenger: U.S. Census Bureau data• Truck driver: Bureau of Labor Statistics, US DOT, 

and FHWA’s HERS • Cargo: TTI, and other studies

Value of Travel Time Reliability (VTTR)• Reliability Ratio (RR=0.75)• Based on literature review and current practice in 

other parts of the world

*Parameters used by SHA in project benefit estimation (2012 values)

Congestion Relief Project DM• Step 3 ‐

Selection

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

13

Location Project DescriptionTotal Savings

Construction Cost

O&M Cost

Total Cost B/C

All Values in (1000’s)I‐695 Outer Loop: MD 144 on ramp continuing to MD 372

Provide additional through lane from on ramp at MD 144 to end of acceleration lane from MD 372.  Includes widening and restriping and removal and replacement of retaining wall.  Total project length is 2,500ft.

$27,165 $16,500 $1,650 $18,150 150%

I‐695 Inner Loop: US 40 Interchange

Extend inner loop aux lane prior to interchange to connect deceleration lane to WB US40.  Widen I‐695 inner loop to provide exclusive decel lane for EB US40.  Includes retaining wall construction. Total length is 2,200ft.

$14,558 $10,900 $1,090 $11,990 121%

I‐695 Outer Loop: US 40 Interchange

Extend outer loop aux lane prior to interchange to connect decel lane to eastbound US 40. Widen I‐695 outer loop to provide exclusive decel lane for WB US 40. Total length is 2,200ft.

$32,894 $5,000 $500 $5,500 598%

I‐695 Outer Loop: I‐70/MD 122 to Windsor Mill Rd

Extend I‐70 WB to I‐695 NB acceleration lane by 500 ft. Extend MD 122 to I‐695 NB accel lane by 1,250ft. Requires restriping of I‐695, widening to accommodate accel lane and construction of retaining wall.

$26,665 $13,300 $1,330 $14,630 182%

Congestion Relief Project DM

• Step 4 –Assessment

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

14

Prioritization ProcessInitial Lessons Learned

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

15

Graphic from SHRP2 LO5 Presentation by Anita Vandervalk, September 17, 2013

• Many Project DM Processes Involved

• Travel Time Reliability Becoming Increasingly Popular Performance Measure

• TTR Used in One Current Project Prioritization Process

Task 2• Task 2: Develop and apply a methodology to select a travel time reliability performance measure and a value or range of values for travel time reliability

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

16

Objective of Project L35B• Provide a means for valuing travel time reliability to enhance standard procedures for evaluating the benefits and costs of operations and other highway expenditures

• Provide the ability to develop local, defensible values of reliability that decision makers embrace when considering choices and tradeoffs in reaching expenditure decisions 

17L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

Valuation– General Approach Identify the measure of reliabilityDetermine the value of travel timeObtain data on how travel time varies over time and determine the type of process describing the variation

Create a metaphor for the valuation process that has exact counterparts in the physical world

Compute the economic value of reliability by applying the metaphor and calculate the value of reliability relative to the value of time

18L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

Potential Use for MD‐SHA• Value of Reliability

– Validate the currently adopted RR (0.75)– Specify a value/range of values for RR for different

• Highway modes (auto, truck)• Corridors/regions• Time of day (AM/PM peak)

• Tool to analyze travel time data and to evaluate customized RR– Input raw travel time data– Estimate travel time process parameters– Characterize travel time distribution and relevant metrics from its histogram– Perform hypothesis testing– Evaluate travel time insurance value and reliability ratios

• Annual Mobility Report– Reliability profile along significant corridors– Include unreliability cost estimates

• Maryland Statewide Transportation Model (MSTM)– Update volume‐delay functions considering certainty‐equivalent extra travel times– Potentially improve mode/route choice sub‐models’ performance

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

19

0 20 40 60 80 100 1200

0.2

0.4

0.6

0.8

1

TIME (MINUTES)

RE

LIA

BIL

ITY

RA

TIO

(UN

ITLE

SS

)

AM PEAK PERIOD

0 20 40 60 80 100 1200

0.2

0.4

0.6

0.8

1

TIME (MINUTES)

RE

LIA

BIL

ITY

RA

TIO

(UN

ITLE

SS

)

PM PEAK PERIOD

0 2 4 6 8 10 12 14 160

0.2

0.4

0.6

0.8

1

LENGTH (MILES)

RE

LIA

BIL

ITY

RA

TIO

(UN

ITLE

SS

)

0 2 4 6 8 10 12 14 160

0.2

0.4

0.6

0.8

1

LENGTH (MILES)

RE

LIA

BIL

ITY

RA

TIO

(UN

ITLE

SS

)

RELIABILITY RATIOS (RR)PATH LEVEL & INTERDAY (ACROSS DAYS)

CORRIDOR NAME: I495 CW

RR=0.75?

Outline• Travel time reliability performance measure• Travel time reliability value• Overview and criticism of L11• Some background• Proposed valuation approach• How proposed approach is different from L11?• Some numerical results and simplifying relationships• Ideas for implementation/application (Task 3)• Summary• Q&A

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

20

Travel Time ReliabilityPerformance Measure

• Currently used by MD‐SHA– Planning Time Index (PTI)

• Reliable (PTI<1.5)• Moderately Reliable (1.5<PTI<2.5)• Highly Unreliable (PTI>2.5)

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

21

Methodology to Select a Value forTravel Time Reliability

• Survey based methods– Expensive and time consuming– Difficult to update/generalize/localize

• Literature review– Survey type/method/year– Choice mode/route/joint– Trip purpose/length/time

• Real options method– Based on statistical/financial concepts– Advantages

• Data driven• Easy to update/generalize/localize• Well‐known in transportation project management

– Disadvantages• Unfamiliar terminology • Only one application so far! (PSRC, L11, L17)

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

22

Source: Carrion & Levinson (2012)

Source: KiM Netherlands Report (2013)

Overview of L11• Input:

– Speed data– Volume data

• Caution: applicable to data where the variation in speed can be characterized by a log‐normal distribution

• Steps:1) Characterize the recurring congestion problem2) Calculate the certainty‐equivalent value of unreliability (closed form 

Black‐Scholes equation)3) Evaluate the treatment that reduces unreliability4) Calculate the value of the reliability improvement to the road user5) Calculate the reliability measures and the benefit‐cost ratio6) Compare the results with other similar treatments

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

23

Overview of L11• Let’s take another look at the options theoreticapproach for travel time reliability valuation

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

24

L11 Criticisms

Analogy: Premium set for an insurance policy on guaranteed speed levels

Speed is not directly related to travel cost; therefore speed can not be discounted!

Requirement: Speed is log‐normally distributed

What if speed/travel time is not log‐normallydistributed?

Solution: Closed form Black‐Scholes

Black box approach:• What is the riskless interest rate and how it should be set?• Why slowest speed used to specify the length of option?

Some Background• Travel Utility, Reliability Ratio, and Real Options• Travel Cost and Travel Time• Penalty/Reward associated with Unreliability• Geometric Brownian Motion (GBM) w/ Drift• Random Walk and Binary Tree Representation• Binomial Distribution & Normal Distribution• GBM and Binary Tree Representation• Certainty‐Equivalent Conditions

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

25

Utility Based Estimates

General case:

, ,⁄⁄⁄⁄

⁄⁄

Special case: additive‐linear utility function

⁄(Carrion & Levinson, 2012)

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making  26

Why Real Options?Special case: additive‐linear utility function

⁄Challenge: Estimate parameters!

Certainty‐equivalent additional average travel time

Challenge: Estimate  !

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making  27

Some Background• Travel Utility, Reliability Ratio, and Real Options• Travel Cost and Travel Time• Penalty/Reward associated with Unreliability• Geometric Brownian Motion (GBM) w/ Drift• Random Walk and Binary Tree Representation• Binomial Distribution & Normal Distribution• GBM and Binary Tree Representation• Certainty‐Equivalent Conditions

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

28

Travel Cost• Travel time and travel cost are closely related• In most practical applications, it is commonly assumed they 

are linearly related with a constant factor representing Value Of Time (VOT)

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

29

$

1

Some Background• Travel Utility, Reliability Ratio, and Real Options• Travel Cost and Travel Time• Penalty/Reward associated with Unreliability• Geometric Brownian Motion (GBM) w/ Drift• Random Walk and Binary Tree Representation• Binomial Distribution & Normal Distribution• GBM and Binary Tree Representation• Certainty‐Equivalent Conditions

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

30

Reliability Measure:Deviation from Estimated Time of Arrival (ETA)

• Cost=max[VOT*(Travel Time – ETA),0]• Value of Reliability depends on the pattern of deviations of 

travel time from the mean, the probability of each deviation, and a penalty/reward function for being late and possibly early

• Any other functioncan be adopted!

– Socio‐economicattributes

– Trip purpose– Time of day

31

Penalty/Reward Function

1

0

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

Some Background• Travel Utility, Reliability Ratio, and Real Options• Travel Cost and Travel Time• Penalty/Reward associated with Unreliability• Geometric Brownian Motion (GBM) w/ Drift• Random Walk and Binary Tree Representation• Binomial Distribution & Normal Distribution• GBM and Binary Tree Representation• Certainty‐Equivalent Conditions

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

32

The Random Process• Geometric Brownian Motion (GBM) w/ Drift

; ~ ≡

∆ ~ 2 ∆ , ∆

2 ∆ ∆ ,

• Parameters:– : long‐term trend– : standard deviation

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

33

0 2 4 6 8 10 12 14 16 18 200

10

20

30

40

50

60

70

80

ALPHA=0.05SIGMA=0.1

Time (Minute)

Trav

el T

ime

(Min

ute)

Geometric Brownian Motion (GBM) Process

Travel TimeTrendLower 95% CIUpper 95% CI

(Dixit & Pindyck, 1993)

Some Background• Travel Utility, Reliability Ratio, and Real Options• Travel Cost and Travel Time• Penalty/Reward associated with Unreliability• Geometric Brownian Motion (GBM) w/ Drift• Random Walk and Binary Tree Representation• Binomial Distribution & Normal Distribution• GBM and Binary Tree Representation• Certainty‐Equivalent Conditions

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

34

Random Walk and Binary Tree Representation

• A gentle metaphor

– A person goes up and down a ladder– At the end of each time interval he can either take one step up (probability p) or one 

step down (probability 1‐p)– His position on the ladder over time can be depicted using a grid like network where 

street corners represent times at which he flips a (generally biased) coin to take either one step up or one step down along the ladder

– In this grid network• The horizontal distance from his initial position represents the time passed• The vertical distance from his initial position represents his relative distance from where he 

started

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

35

Random WalkPossible Waypoints and Their Probabilities

36L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

Some Background• Travel Utility, Reliability Ratio, and Real Options• Travel Cost and Travel Time• Penalty/Reward associated with Unreliability• Geometric Brownian Motion (GBM) w/ Drift• Random Walk and Binary Tree Representation• Binomial Distribution & Normal Distribution• GBM and Binary Tree Representation• Certainty‐Equivalent Conditions

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

37

• Start with Binary Trees that make up the Random Walk

• Binary Trees converge to a Binomial distribution. Each trial has probabilities of p and 1‐p.

• A Binomial distribution with enough time steps converges to a normal probability density function (PDF)

• The normal distributions derived in this manner are directly useful in valuation problems..

Random Walk Approaches Normal Distribution

38L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

Some Background• Travel Utility, Reliability Ratio, and Real Options• Travel Cost and Travel Time• Penalty/Reward associated with Unreliability• Geometric Brownian Motion (GBM) w/ Drift• Random Walk and Binary Tree Representation• Binomial Distribution & Normal Distribution• GBM and Binary Tree Representation• Certainty‐Equivalent Conditions

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

39

GBM and Binary Tree Representation• GBM w/ drift

– Log‐normal distribution– Source of random behavior ( ) represented by a random walk

• Modified Binary Tree Representation– Recall that GBM process implies a log‐normal distribution

• In that case up and down moves become multiplication operations instead of summations

– Useful properties of a binary tree representation of random walk will remain intact

– Increasing the number of time steps (reducing size of time intervals), Binomial distribution converges to a Normal distribution

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

40

Some Background• Travel Utility, Reliability Ratio, and Real Options• Travel Cost and Travel Time• Penalty/Reward associated with Unreliability• Geometric Brownian Motion (GBM) w/ Drift• Random Walk and Binary Tree Representation• Binomial Distribution & Normal Distribution• GBM and Binary Tree Representation• Certainty‐Equivalent Conditions

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

41

Certainty‐Equivalent Conditions• What does certainty mean?

– Over a given time period  , expected travel times do not increase at a rate higher than a certain tolerable threshold 

• How certainty‐equivalent conditions are determined?

| 1| 1 ∆

∴1 ∆

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

42

p

1‐p

Proposed Valuation Approach• Obtain necessary data over a substantial time period (at least 6 months)

– Travel time data• Probe based• Converted from spot speed detectors

– Volume data• Characterize the travel time data

– Mean & Standard Deviation– Find out which random process model best describes the observed variability in data (GBM, 

etc.)– Determine the longest trip time observed in data (95 percentile travel time)

• Use binary tree to represent travel time variability over time• Evaluate penalty/rewards of arriving earlier/later than expected at the end of 

longest trip time• Calculate certainty‐equivalent probabilities and use them to discount future 

penalty/reward values to determine insurance premiums at any intermediate point in time as well as at initial time

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

43

Forward TimeBinary Tree Construction

• q:  probability  based on “real‐world” observations 

44L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

Backward Time (Recursive)Reliability Valuation

p:probabilityreplicating“artificial”riskless/reliable/certainconditions

45L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

How is the proposed approach different from L11? 

Proposed Approach L11

Analogy used? Insurance premium Insurance premium

What is being insured? Travel Time Travel Speed

What is being discounted? Travel Cost Travel Speed

Length of insurance policy? 95 percentile trip time 95 percentile trip time

What statistical process is used to describe travel time variations/unreliability?

Relaxed GBM (log‐normal dist.)

How forward/backward projections are described?

Binary Tree Closed form cumulative normal distribution

Penalty/reward evaluations? Relaxed Bilinear function

Certainty‐equivalent discounting of future policy value?

Fully described using “tolerance level” concept

Applicability? General (Monte CarloSimulation)

Special case (Black‐Scholes)

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

46

Binary Tree vs. Black‐Scholes

47L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

Some Numerical Results• Maryland travel time data• VPP suite (probe based, provided by INRIX™)

– www.RITIS.org• 2011 data at one minute resolution• AM peak (7AM‐9AM)• PM peak (4PM‐6PM)• Five major corridors in the Baltimore/ Washington metro area

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

48

Major Corridors• I‐95 (b/w Washington and Baltimore beltways)

– 22 mile (21 minute)• I‐270 (Beltway to Frederick)

– 41 mile (42 minute)• I‐495 (I‐95 to I‐270 spur)

– 16 mile (18 minute)• MD‐295 (DC line to Baltimore)

– 29 mile (32 minute)• US‐29 (Beltway to I‐70)

– 21 mile (22 minute)

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

49

Comparisons• US‐29/I‐95/MD‐295

– Direction• Northbound• Southbound

– Peak Period• AM• PM

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

50

ComparisonsUS‐29/I‐95/MD‐295

Northbound

0 5 10 15 20 25 30 350

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Average Travel Time (Minute)

Rel

iabi

lity

Rat

io -

RR

(Uni

tless

)

AM Peak Period

I-95MD-295US-29

0 10 20 30 40 50 600

0.2

0.4

0.6

0.8

1

Average Travel Time (Minute)

Rel

iabi

lity

Rat

io -

RR

(Uni

tless

)

PM Peak Period

I-95MD-295US-29

0 5 10 15 20 25 300

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Length (Mile)

Rel

iabi

lity

Rat

io -

RR

(Uni

tless

)

AM Peak Period

I-95MD-295US-29

0 5 10 15 20 25 300

0.2

0.4

0.6

0.8

1

Length (Mile)

Rel

iabi

lity

Rat

io -

RR

(Uni

tless

)

PM Peak Period

I-95MD-295US-29

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

51

ComparisonsUS‐29/I‐95/MD‐295

Southbound

0 5 10 15 20 25 30 35 40 450

0.2

0.4

0.6

0.8

1

Average Travel Time (Minute)

Rel

iabi

lity

Rat

io -

RR

(Uni

tless

)

AM Peak Period

I-95MD-295US-29

0 5 10 15 20 25 30 35 400

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Average Travel Time (Minute)

Rel

iabi

lity

Rat

io -

RR

(Uni

tless

)

PM Peak Period

I-95MD-295US-29

0 5 10 15 20 25 300

0.2

0.4

0.6

0.8

1

Length (Mile)

Rel

iabi

lity

Rat

io -

RR

(Uni

tless

)

AM Peak Period

I-95MD-295US-29

0 5 10 15 20 25 300

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Length (Mile)

Rel

iabi

lity

Rat

io -

RR

(Uni

tless

)

PM Peak Period

I-95MD-295US-29

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

52

95 Percentile Travel Time vs.Average Travel Time

0 10 20 30 40 50 60 700

10

20

30

40

50

60

70

80

90

100

Y=-0.291+1.320XR2=0.971

Average Travel Time (Minute)

95 P

erce

ntile

Tra

vel T

ime

(Min

ute)

Path Level / Across Days

AM PeakPM Peak

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

53

Reliability Ratio (RR) vs.Average Travel Time

0 10 20 30 40 50 60 700

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gompertz Function:

Y=1-e17.355(e-0.004X-1)

MSE=0.001

Average Travel Time (Minute)

Rel

iabi

lity

Rat

io -

RR

(U

nitl

ess)

Path Level / Across Days

AM PeakPM Peak

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

54

Estimated vs. ObservedReliability Ratio (RR)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Y=0.006+0.987XR2=0.98

Observed Reliability Ratio - RR (Unitless)

Estim

ated

Rel

iabi

lity

Rat

io -

RR

(Uni

tless

)

Path Level / Across Days

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

55

Summary Valuation Approach for Travel Time Reliability

– Data driven– Actuarial as opposed to perception‐based– Understandable/simple

• Exploits the ups and downs of travel time• Uses a Random Walk

– Flexible• Underlying process• Termination function

– Equivalent Solutions• Numerical methods, especially a binary tree • Closed form

56L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

Potential Use for MD‐SHA• Value of Reliability

– Validate the currently adopted RR (0.75)– Specify a value/range of values for RR for different

• Highway modes (auto, truck)• Corridors/regions• Time of day (AM/PM peak)

• Tool to analyze travel time data and to evaluate customized RR– Input raw travel time data– Estimate travel time process parameters– Characterize travel time distribution and relevant metrics from its histogram– Perform hypothesis testing– Evaluate travel time insurance value and reliability ratios

• Annual Mobility Report– Reliability profile along significant corridors– Include unreliability cost estimates

• Maryland Statewide Transportation Model (MSTM)– Update volume‐delay functions considering certainty‐equivalent extra travel times– Potentially improve mode/route choice sub‐models’ performance

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

57

0 20 40 60 80 100 1200

0.2

0.4

0.6

0.8

1

TIME (MINUTES)

RE

LIA

BIL

ITY

RA

TIO

(UN

ITLE

SS

)

AM PEAK PERIOD

0 20 40 60 80 100 1200

0.2

0.4

0.6

0.8

1

TIME (MINUTES)

RE

LIA

BIL

ITY

RA

TIO

(UN

ITLE

SS

)

PM PEAK PERIOD

0 2 4 6 8 10 12 14 160

0.2

0.4

0.6

0.8

1

LENGTH (MILES)

RE

LIA

BIL

ITY

RA

TIO

(UN

ITLE

SS

)

0 2 4 6 8 10 12 14 160

0.2

0.4

0.6

0.8

1

LENGTH (MILES)

RE

LIA

BIL

ITY

RA

TIO

(UN

ITLE

SS

)

RELIABILITY RATIOS (RR)PATH LEVEL & INTERDAY (ACROSS DAYS)

CORRIDOR NAME: I495 CW

RR=0.75?

Subrat MahapatraTransportation Engineering ManagerOffice of Planning and Preliminary 

EngineeringMaryland State Highway Administration

smahapatra@sha.state.md.us410.545.5649

Thomas H. JacobsDirector

tjacobs@umd.edu301.405.7328

Kaveh FarokhiFaculty Research Assistant

kfarokhi@umd.edu301.405.1352

Center for Advanced Transportation Technology (CATT)

University of MarylandCollege Park, MD 20742

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making  58

Frederick W. DuccaSenior Research Scientist

fducca@umd.edu301.405.1945

Sevgi ErdoganFaculty Research Associate

serdogan@umd.edu301.405.9877

National Center for Smart Growth (NCSG)

University of MarylandCollege Park, MD 20742

List of Appendices• Option valuation (travel time vs. speed)• Binary tree vs. closed form (Black‐Scholes) solution

• Numerical example (binary tree’s convergence to BS)

• Corridor examples

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

59

Travel Time vs. Speed

Travel Time Process

• ∆ log ~ ∆ , ∆t 

• ∆ ∆ ,

~ 0,1

Speed Process

• ∆ log ~ ∆ , ∆t 

• ∆ ∆ ,~ 0,1

60

Trends:  Same magnitude, but opposite signsStandard Deviations:  Equal

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

Travel Time vs. SpeedTravel Time ProcessBinomial Tree Representation

• 1 ∆

• ∆ ∆

• ∆ ∆

• ,– 1,… , ; 0,1,… ,

Speed ProcessBinomial Tree Representation

• 1 ∆

• ∆ ∆

• ∆ ∆

• ,– 1,… , ; 0,1,… ,

61

Probabilities:  1Factors: 1; 1

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

Travel Time vs. SpeedTravel Time ProcessRisk Valuation

• , max , , 0– 0,1,… ,

• ∆

• ,, ,

∆– 1,… , 1; 0,1, … ,

Speed ProcessRisk Valuation

• , max,

, 0

– 0,1,… ,

• ∆

• ,, ,

∆– 1,… , 1; 0,1, … ,

62

Terminal Values: Note unconventional valuation in speed processProbabilities: Discounted expected values: 1; 1

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

Binary Tree – Mathematical MagicLeads to Essentially Same Answer as other Formulations 

63L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

Example Valuation• A simple binary example

• 1; 1;∆ ⁄ 1• 0.2; 0.4

• ∆ ∆ 1.13

• ∆ ∆ 0.51

• 1 ∆ 0.25• 5%;  112

• ∆ 0.87

•∆

. ∗.

0.83

64

100

q

1‐q

113

51

?

p

1‐p

max 113 112,0 1

max 51 112,0 0

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

Example Valuation• A simple binary example

• 1; 2;∆ ⁄ 0.5• 0.2; 0.4

• ∆ ∆ 1.15

• ∆ ∆ 0.65

• 1 ∆ 0.32• 5%;  112

• ∆ 0.74

•∆

. ∗ .. ∗ .

11.04

65

100

q

1‐q

133

43

115

6576

VOR ?

p

1‐p

21

0

15.25

00

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

Example Valuation• Black‐Scholes formula

• 1• 0.2; 0.4• 5%;  112

•⁄ . .

.0.042

• 0.042 0.4 1 0.358• 100 0.042 112 . 0.358 13.30

66L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

Binary Tree vs. Black‐Scholes

67L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

Analysis Mode7:00 7:01 7:02 . . 9:00

Day 1

Day 2

Day 3

Day 4

Day 5

.

.

.

.

.

Across W

eek‐Da

ys

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

68

I‐95 North

0 5 10 15 20 250

5

10

15

20

25

30

LENGTH (MILES)

AVE

RA

GE

TRA

VEL

TIM

E (M

INU

TES)

AVERAGE TRAVEL TIMESCORRIDOR NAME: I95 NB (LENGTH = 22.0677 MILES)

AM PEAKPM PEAK

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

69

I‐95 North

0 20 40 60 80 100 1200

0.2

0.4

0.6

0.8

1

TIME (MINUTES)

RE

LIA

BIL

ITY

RA

TIO

(UN

ITLE

SS

)AM PEAK PERIOD

0 20 40 60 80 100 1200

0.2

0.4

0.6

0.8

1

TIME (MINUTES)

RE

LIA

BIL

ITY

RA

TIO

(UN

ITLE

SS

)

PM PEAK PERIOD

0 5 10 15 20 250

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

LENGTH (MILES)

RE

LIA

BIL

ITY

RA

TIO

(UN

ITLE

SS

)

0 5 10 15 20 250

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

LENGTH (MILES)

RE

LIA

BIL

ITY

RA

TIO

(UN

ITLE

SS

)

RELIABILITY RATIOS (RR)PATH LEVEL & INTERDAY (ACROSS DAYS)

CORRIDOR NAME: I95 NB

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

70

I‐95 South

0 5 10 15 20 250

5

10

15

20

25

30

LENGTH (MILES)

AVE

RA

GE

TRA

VEL

TIM

E (M

INU

TES)

AVERAGE TRAVEL TIMESCORRIDOR NAME: I95 SB (LENGTH = 21.797 MILES)

AM PEAKPM PEAK

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

71

I‐95 South

0 20 40 60 80 100 1200

0.2

0.4

0.6

0.8

1

TIME (MINUTES)

RE

LIA

BIL

ITY

RA

TIO

(UN

ITLE

SS

)AM PEAK PERIOD

0 20 40 60 80 100 1200

0.2

0.4

0.6

0.8

1

TIME (MINUTES)

RE

LIA

BIL

ITY

RA

TIO

(UN

ITLE

SS

)

PM PEAK PERIOD

0 5 10 15 20 250

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

LENGTH (MILES)

RE

LIA

BIL

ITY

RA

TIO

(UN

ITLE

SS

)

0 5 10 15 20 250

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

LENGTH (MILES)

RE

LIA

BIL

ITY

RA

TIO

(UN

ITLE

SS

)

RELIABILITY RATIOS (RR)PATH LEVEL & INTERDAY (ACROSS DAYS)

CORRIDOR NAME: I95 SB

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

72

I‐270 North

0 5 10 15 20 25 30 35 40 450

10

20

30

40

50

60

70

LENGTH (MILES)

AVE

RA

GE

TRA

VEL

TIM

E (M

INU

TES)

AVERAGE TRAVEL TIMESCORRIDOR NAME: I270 NB (LENGTH = 40.9652 MILES)

AM PEAKPM PEAK

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

73

I‐270 North

0 20 40 60 80 100 1200

0.2

0.4

0.6

0.8

1

TIME (MINUTES)

RE

LIA

BIL

ITY

RA

TIO

(UN

ITLE

SS

)AM PEAK PERIOD

0 20 40 60 80 100 1200

0.2

0.4

0.6

0.8

1

TIME (MINUTES)

RE

LIA

BIL

ITY

RA

TIO

(UN

ITLE

SS

)

PM PEAK PERIOD

0 5 10 15 20 25 30 35 40 450

0.2

0.4

0.6

0.8

1

LENGTH (MILES)

RE

LIA

BIL

ITY

RA

TIO

(UN

ITLE

SS

)

0 5 10 15 20 25 30 35 40 450

0.2

0.4

0.6

0.8

1

LENGTH (MILES)

RE

LIA

BIL

ITY

RA

TIO

(UN

ITLE

SS

)

RELIABILITY RATIOS (RR)PATH LEVEL & INTERDAY (ACROSS DAYS)

CORRIDOR NAME: I270 NB

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

74

I‐270 South

0 5 10 15 20 25 30 35 40 450

10

20

30

40

50

60

70

LENGTH (MILES)

AVE

RA

GE

TRA

VEL

TIM

E (M

INU

TES)

AVERAGE TRAVEL TIMESCORRIDOR NAME: I270 SB (LENGTH = 41.1712 MILES)

AM PEAKPM PEAK

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

75

I‐270 South

0 20 40 60 80 100 1200

0.2

0.4

0.6

0.8

1

TIME (MINUTES)

RE

LIA

BIL

ITY

RA

TIO

(UN

ITLE

SS

)AM PEAK PERIOD

0 20 40 60 80 100 1200

0.2

0.4

0.6

0.8

1

TIME (MINUTES)

RE

LIA

BIL

ITY

RA

TIO

(UN

ITLE

SS

)

PM PEAK PERIOD

0 5 10 15 20 25 30 35 40 450

0.2

0.4

0.6

0.8

1

LENGTH (MILES)

RE

LIA

BIL

ITY

RA

TIO

(UN

ITLE

SS

)

0 5 10 15 20 25 30 35 40 450

0.2

0.4

0.6

0.8

1

LENGTH (MILES)

RE

LIA

BIL

ITY

RA

TIO

(UN

ITLE

SS

)

RELIABILITY RATIOS (RR)PATH LEVEL & INTERDAY (ACROSS DAYS)

CORRIDOR NAME: I270 SB

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

76

I‐495 Innerloop

0 2 4 6 8 10 12 14 160

5

10

15

20

25

30

35

40

45

LENGTH (MILES)

AVE

RA

GE

TRA

VEL

TIM

E (M

INU

TES)

AVERAGE TRAVEL TIMESCORRIDOR NAME: I495 CW (LENGTH = 15.0123 MILES)

AM PEAKPM PEAK

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

77

I‐495 Innerloop

0 20 40 60 80 100 1200

0.2

0.4

0.6

0.8

1

TIME (MINUTES)

RE

LIA

BIL

ITY

RA

TIO

(UN

ITLE

SS

)AM PEAK PERIOD

0 20 40 60 80 100 1200

0.2

0.4

0.6

0.8

1

TIME (MINUTES)

RE

LIA

BIL

ITY

RA

TIO

(UN

ITLE

SS

)

PM PEAK PERIOD

0 2 4 6 8 10 12 14 160

0.2

0.4

0.6

0.8

1

LENGTH (MILES)

RE

LIA

BIL

ITY

RA

TIO

(UN

ITLE

SS

)

0 2 4 6 8 10 12 14 160

0.2

0.4

0.6

0.8

1

LENGTH (MILES)

RE

LIA

BIL

ITY

RA

TIO

(UN

ITLE

SS

)

RELIABILITY RATIOS (RR)PATH LEVEL & INTERDAY (ACROSS DAYS)

CORRIDOR NAME: I495 CW

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

78

I‐495 Outerloop

0 2 4 6 8 10 12 14 16 180

5

10

15

20

25

30

35

LENGTH (MILES)

AVE

RA

GE

TRA

VEL

TIM

E (M

INU

TES)

AVERAGE TRAVEL TIMESCORRIDOR NAME: I495 CCW (LENGTH = 16.0245 MILES)

AM PEAKPM PEAK

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

79

I‐495 Outerloop

0 20 40 60 80 100 1200

0.2

0.4

0.6

0.8

1

TIME (MINUTES)

RE

LIA

BIL

ITY

RA

TIO

(UN

ITLE

SS

)AM PEAK PERIOD

0 20 40 60 80 100 1200

0.2

0.4

0.6

0.8

1

TIME (MINUTES)

RE

LIA

BIL

ITY

RA

TIO

(UN

ITLE

SS

)

PM PEAK PERIOD

0 2 4 6 8 10 12 14 16 180

0.2

0.4

0.6

0.8

1

LENGTH (MILES)

RE

LIA

BIL

ITY

RA

TIO

(UN

ITLE

SS

)

0 2 4 6 8 10 12 14 16 180

0.2

0.4

0.6

0.8

1

LENGTH (MILES)

RE

LIA

BIL

ITY

RA

TIO

(UN

ITLE

SS

)

RELIABILITY RATIOS (RR)PATH LEVEL & INTERDAY (ACROSS DAYS)

CORRIDOR NAME: I495 CCW

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

80

MD‐295 North

0 5 10 15 20 25 300

10

20

30

40

50

60

LENGTH (MILES)

AVE

RA

GE

TRA

VEL

TIM

E (M

INU

TES)

AVERAGE TRAVEL TIMESCORRIDOR NAME: MD295 NB (LENGTH = 29.4831 MILES)

AM PEAKPM PEAK

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

81

MD‐295 North

0 20 40 60 80 100 1200

0.2

0.4

0.6

0.8

1

TIME (MINUTES)

RE

LIA

BIL

ITY

RA

TIO

(UN

ITLE

SS

)AM PEAK PERIOD

0 20 40 60 80 100 1200

0.2

0.4

0.6

0.8

1

TIME (MINUTES)

RE

LIA

BIL

ITY

RA

TIO

(UN

ITLE

SS

)

PM PEAK PERIOD

0 5 10 15 20 25 300

0.2

0.4

0.6

0.8

1

LENGTH (MILES)

RE

LIA

BIL

ITY

RA

TIO

(UN

ITLE

SS

)

0 5 10 15 20 25 300

0.2

0.4

0.6

0.8

1

LENGTH (MILES)

RE

LIA

BIL

ITY

RA

TIO

(UN

ITLE

SS

)

RELIABILITY RATIOS (RR)PATH LEVEL & INTERDAY (ACROSS DAYS)

CORRIDOR NAME: MD295 NB

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

82

MD‐295 South

0 5 10 15 20 25 300

5

10

15

20

25

30

35

40

45

LENGTH (MILES)

AVE

RA

GE

TRA

VEL

TIM

E (M

INU

TES)

AVERAGE TRAVEL TIMESCORRIDOR NAME: MD295 SB (LENGTH = 29.3012 MILES)

AM PEAKPM PEAK

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

83

MD‐295 South

0 20 40 60 80 100 1200

0.2

0.4

0.6

0.8

1

TIME (MINUTES)

RE

LIA

BIL

ITY

RA

TIO

(UN

ITLE

SS

)AM PEAK PERIOD

0 20 40 60 80 100 1200

0.2

0.4

0.6

0.8

1

TIME (MINUTES)

RE

LIA

BIL

ITY

RA

TIO

(UN

ITLE

SS

)

PM PEAK PERIOD

0 5 10 15 20 25 300

0.2

0.4

0.6

0.8

1

LENGTH (MILES)

RE

LIA

BIL

ITY

RA

TIO

(UN

ITLE

SS

)

0 5 10 15 20 25 300

0.2

0.4

0.6

0.8

1

LENGTH (MILES)

RE

LIA

BIL

ITY

RA

TIO

(UN

ITLE

SS

)

RELIABILITY RATIOS (RR)PATH LEVEL & INTERDAY (ACROSS DAYS)

CORRIDOR NAME: MD295 SB

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

84

US‐29 North

0 5 10 15 20 250

5

10

15

20

25

30

LENGTH (MILES)

AVE

RA

GE

TRA

VEL

TIM

E (M

INU

TES)

AVERAGE TRAVEL TIMESCORRIDOR NAME: US29 NB (LENGTH = 20.6504 MILES)

AM PEAKPM PEAK

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

85

US‐29 North

0 20 40 60 80 100 1200

0.2

0.4

0.6

0.8

1

TIME (MINUTES)

RE

LIA

BIL

ITY

RA

TIO

(UN

ITLE

SS

)AM PEAK PERIOD

0 20 40 60 80 100 1200

0.2

0.4

0.6

0.8

1

TIME (MINUTES)

RE

LIA

BIL

ITY

RA

TIO

(UN

ITLE

SS

)

PM PEAK PERIOD

0 5 10 15 20 250

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

LENGTH (MILES)

RE

LIA

BIL

ITY

RA

TIO

(UN

ITLE

SS

)

0 5 10 15 20 250

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

LENGTH (MILES)

RE

LIA

BIL

ITY

RA

TIO

(UN

ITLE

SS

)

RELIABILITY RATIOS (RR)PATH LEVEL & INTERDAY (ACROSS DAYS)

CORRIDOR NAME: US29 NB

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

86

US‐29 South

0 5 10 15 20 250

5

10

15

20

25

30

LENGTH (MILES)

AVE

RA

GE

TRA

VEL

TIM

E (M

INU

TES)

AVERAGE TRAVEL TIMESCORRIDOR NAME: US29 SB (LENGTH = 20.7763 MILES)

AM PEAKPM PEAK

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

87

US‐29 South

0 20 40 60 80 100 1200

0.2

0.4

0.6

0.8

1

TIME (MINUTES)

RE

LIA

BIL

ITY

RA

TIO

(UN

ITLE

SS

)AM PEAK PERIOD

0 20 40 60 80 100 1200

0.2

0.4

0.6

0.8

1

TIME (MINUTES)

RE

LIA

BIL

ITY

RA

TIO

(UN

ITLE

SS

)

PM PEAK PERIOD

0 5 10 15 20 250

0.2

0.4

0.6

0.8

1

LENGTH (MILES)

RE

LIA

BIL

ITY

RA

TIO

(UN

ITLE

SS

)

0 5 10 15 20 250

0.2

0.4

0.6

0.8

1

LENGTH (MILES)

RE

LIA

BIL

ITY

RA

TIO

(UN

ITLE

SS

)

RELIABILITY RATIOS (RR)PATH LEVEL & INTERDAY (ACROSS DAYS)

CORRIDOR NAME: US29 SB

L35‐B Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making 

88

Recommended