Laplace Transforms and Integral Equations · Laplace Transforms and Integral Equations. logo1...

Preview:

Citation preview

logo1

Transforms and New Formulas An Example Double Check

Laplace Transforms and IntegralEquations

Bernd Schroder

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Laplace Transforms and Integral Equations

logo1

Transforms and New Formulas An Example Double Check

Everything Remains As It Was

No matter what functions arise, the idea for solving differentialequations with Laplace transforms stays the same.

Time Domain (t)

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Laplace Transforms and Integral Equations

logo1

Transforms and New Formulas An Example Double Check

Everything Remains As It WasNo matter what functions arise, the idea for solving differentialequations with Laplace transforms stays the same.

Time Domain (t)

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Laplace Transforms and Integral Equations

logo1

Transforms and New Formulas An Example Double Check

Everything Remains As It WasNo matter what functions arise, the idea for solving differentialequations with Laplace transforms stays the same.

Time Domain (t)

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Laplace Transforms and Integral Equations

logo1

Transforms and New Formulas An Example Double Check

Everything Remains As It WasNo matter what functions arise, the idea for solving differentialequations with Laplace transforms stays the same.

Time Domain (t)

OriginalDE & IVP

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Laplace Transforms and Integral Equations

logo1

Transforms and New Formulas An Example Double Check

Everything Remains As It WasNo matter what functions arise, the idea for solving differentialequations with Laplace transforms stays the same.

Time Domain (t)

OriginalDE & IVP

-L

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Laplace Transforms and Integral Equations

logo1

Transforms and New Formulas An Example Double Check

Everything Remains As It WasNo matter what functions arise, the idea for solving differentialequations with Laplace transforms stays the same.

Time Domain (t)

OriginalDE & IVP

Algebraic equation forthe Laplace transform

-L

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Laplace Transforms and Integral Equations

logo1

Transforms and New Formulas An Example Double Check

Everything Remains As It WasNo matter what functions arise, the idea for solving differentialequations with Laplace transforms stays the same.

Time Domain (t) Transform domain (s)

OriginalDE & IVP

Algebraic equation forthe Laplace transform

-L

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Laplace Transforms and Integral Equations

logo1

Transforms and New Formulas An Example Double Check

Everything Remains As It WasNo matter what functions arise, the idea for solving differentialequations with Laplace transforms stays the same.

Time Domain (t) Transform domain (s)

OriginalDE & IVP

Algebraic equation forthe Laplace transform

-L

Algebraic solution,partial fractions

?

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Laplace Transforms and Integral Equations

logo1

Transforms and New Formulas An Example Double Check

Everything Remains As It WasNo matter what functions arise, the idea for solving differentialequations with Laplace transforms stays the same.

Time Domain (t) Transform domain (s)

OriginalDE & IVP

Algebraic equation forthe Laplace transform

Laplace transformof the solution

-L

Algebraic solution,partial fractions

?

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Laplace Transforms and Integral Equations

logo1

Transforms and New Formulas An Example Double Check

Everything Remains As It WasNo matter what functions arise, the idea for solving differentialequations with Laplace transforms stays the same.

Time Domain (t) Transform domain (s)

OriginalDE & IVP

Algebraic equation forthe Laplace transform

Laplace transformof the solution

-

L

L −1

Algebraic solution,partial fractions

?

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Laplace Transforms and Integral Equations

logo1

Transforms and New Formulas An Example Double Check

Everything Remains As It WasNo matter what functions arise, the idea for solving differentialequations with Laplace transforms stays the same.

Time Domain (t) Transform domain (s)

OriginalDE & IVP

Algebraic equation forthe Laplace transform

Laplace transformof the solutionSolution

-

L

L −1

Algebraic solution,partial fractions

?

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Laplace Transforms and Integral Equations

logo1

Transforms and New Formulas An Example Double Check

The Laplace Transform of an Integral

1. Definite integrals of the form∫ t

0f (τ)dτ arise in circuit

theory: The charge of a capacitor is the integral of thecurrent over time.(We assume the capacitor is initially uncharged.)

2. L

{∫ t

0f (τ)dτ

}=

F(s)s

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Laplace Transforms and Integral Equations

logo1

Transforms and New Formulas An Example Double Check

The Laplace Transform of an Integral1. Definite integrals of the form

∫ t

0f (τ)dτ arise in circuit

theory: The charge of a capacitor is the integral of thecurrent over time.

(We assume the capacitor is initially uncharged.)

2. L

{∫ t

0f (τ)dτ

}=

F(s)s

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Laplace Transforms and Integral Equations

logo1

Transforms and New Formulas An Example Double Check

The Laplace Transform of an Integral1. Definite integrals of the form

∫ t

0f (τ)dτ arise in circuit

theory: The charge of a capacitor is the integral of thecurrent over time.(We assume the capacitor is initially uncharged.)

2. L

{∫ t

0f (τ)dτ

}=

F(s)s

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Laplace Transforms and Integral Equations

logo1

Transforms and New Formulas An Example Double Check

The Laplace Transform of an Integral1. Definite integrals of the form

∫ t

0f (τ)dτ arise in circuit

theory: The charge of a capacitor is the integral of thecurrent over time.(We assume the capacitor is initially uncharged.)

2. L

{∫ t

0f (τ)dτ

}=

F(s)s

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Laplace Transforms and Integral Equations

logo1

Transforms and New Formulas An Example Double Check

Solve the Initial Value Problem

f ′(t)+ f (t)−2∫ t

0f (z) dz = t, f (0) = 0

f ′(t)+ f (t)−2∫ t

0f (z) dz = t, f (0) = 0

sF +F−2Fs

=1s2

F(

s+1− 2s

)=

1s2

Fs2 + s−2

s=

1s2

F =s

s2(s−1)(s+2)

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Laplace Transforms and Integral Equations

logo1

Transforms and New Formulas An Example Double Check

Solve the Initial Value Problem

f ′(t)+ f (t)−2∫ t

0f (z) dz = t, f (0) = 0

f ′(t)+ f (t)−2∫ t

0f (z) dz = t, f (0) = 0

sF +F−2Fs

=1s2

F(

s+1− 2s

)=

1s2

Fs2 + s−2

s=

1s2

F =s

s2(s−1)(s+2)

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Laplace Transforms and Integral Equations

logo1

Transforms and New Formulas An Example Double Check

Solve the Initial Value Problem

f ′(t)+ f (t)−2∫ t

0f (z) dz = t, f (0) = 0

f ′(t)+ f (t)−2∫ t

0f (z) dz = t, f (0) = 0

sF +F−2Fs

=1s2

F(

s+1− 2s

)=

1s2

Fs2 + s−2

s=

1s2

F =s

s2(s−1)(s+2)

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Laplace Transforms and Integral Equations

logo1

Transforms and New Formulas An Example Double Check

Solve the Initial Value Problem

f ′(t)+ f (t)−2∫ t

0f (z) dz = t, f (0) = 0

f ′(t)+ f (t)−2∫ t

0f (z) dz = t, f (0) = 0

sF +F−2Fs

=1s2

F(

s+1− 2s

)=

1s2

Fs2 + s−2

s=

1s2

F =s

s2(s−1)(s+2)

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Laplace Transforms and Integral Equations

logo1

Transforms and New Formulas An Example Double Check

Solve the Initial Value Problem

f ′(t)+ f (t)−2∫ t

0f (z) dz = t, f (0) = 0

f ′(t)+ f (t)−2∫ t

0f (z) dz = t, f (0) = 0

sF +F−2Fs

=1s2

F(

s+1− 2s

)=

1s2

Fs2 + s−2

s=

1s2

F =s

s2(s−1)(s+2)

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Laplace Transforms and Integral Equations

logo1

Transforms and New Formulas An Example Double Check

Solve the Initial Value Problem

f ′(t)+ f (t)−2∫ t

0f (z) dz = t, f (0) = 0

f ′(t)+ f (t)−2∫ t

0f (z) dz = t, f (0) = 0

sF +F−2Fs

=1s2

F(

s+1− 2s

)=

1s2

Fs2 + s−2

s=

1s2

F =s

s2(s−1)(s+2)Bernd Schroder Louisiana Tech University, College of Engineering and Science

Laplace Transforms and Integral Equations

logo1

Transforms and New Formulas An Example Double Check

Solve f ′(t)+ f (t)−2∫ t

0f (z) dz = t, f (0) = 0

F =s

s2(s−1)(s+2)=

As

+Bs2 +

Cs−1

+D

s+2

s = As(s−1)(s+2)+B(s−1)(s+2)+Cs2(s+2)+Ds2(s−1)s = 0 : 0 = B · (−1) ·2, B = 0

s = 1 : 1 = C ·12 ·3, C =13

s = −2 : −2 = D · (−2)2 · (−3), D =16

s = −1 : −1=A·(−1)·(−2)·1+0+13·(−1)2·1+

16·(−1)2·(−2), A = −1

2

F = −12

1s

+0 · 1s2 +

13

1s−1

+16

1s+2

f (t) = −12

+13

et +16

e−2t

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Laplace Transforms and Integral Equations

logo1

Transforms and New Formulas An Example Double Check

Solve f ′(t)+ f (t)−2∫ t

0f (z) dz = t, f (0) = 0

F =s

s2(s−1)(s+2)=

As

+Bs2 +

Cs−1

+D

s+2

s = As(s−1)(s+2)+B(s−1)(s+2)+Cs2(s+2)+Ds2(s−1)s = 0 : 0 = B · (−1) ·2, B = 0

s = 1 : 1 = C ·12 ·3, C =13

s = −2 : −2 = D · (−2)2 · (−3), D =16

s = −1 : −1=A·(−1)·(−2)·1+0+13·(−1)2·1+

16·(−1)2·(−2), A = −1

2

F = −12

1s

+0 · 1s2 +

13

1s−1

+16

1s+2

f (t) = −12

+13

et +16

e−2t

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Laplace Transforms and Integral Equations

logo1

Transforms and New Formulas An Example Double Check

Solve f ′(t)+ f (t)−2∫ t

0f (z) dz = t, f (0) = 0

F =s

s2(s−1)(s+2)=

As

+Bs2 +

Cs−1

+D

s+2

s = As(s−1)(s+2)+B(s−1)(s+2)+Cs2(s+2)+Ds2(s−1)

s = 0 : 0 = B · (−1) ·2, B = 0

s = 1 : 1 = C ·12 ·3, C =13

s = −2 : −2 = D · (−2)2 · (−3), D =16

s = −1 : −1=A·(−1)·(−2)·1+0+13·(−1)2·1+

16·(−1)2·(−2), A = −1

2

F = −12

1s

+0 · 1s2 +

13

1s−1

+16

1s+2

f (t) = −12

+13

et +16

e−2t

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Laplace Transforms and Integral Equations

logo1

Transforms and New Formulas An Example Double Check

Solve f ′(t)+ f (t)−2∫ t

0f (z) dz = t, f (0) = 0

F =s

s2(s−1)(s+2)=

As

+Bs2 +

Cs−1

+D

s+2

s = As(s−1)(s+2)+B(s−1)(s+2)+Cs2(s+2)+Ds2(s−1)s = 0 : 0 = B · (−1) ·2

, B = 0

s = 1 : 1 = C ·12 ·3, C =13

s = −2 : −2 = D · (−2)2 · (−3), D =16

s = −1 : −1=A·(−1)·(−2)·1+0+13·(−1)2·1+

16·(−1)2·(−2), A = −1

2

F = −12

1s

+0 · 1s2 +

13

1s−1

+16

1s+2

f (t) = −12

+13

et +16

e−2t

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Laplace Transforms and Integral Equations

logo1

Transforms and New Formulas An Example Double Check

Solve f ′(t)+ f (t)−2∫ t

0f (z) dz = t, f (0) = 0

F =s

s2(s−1)(s+2)=

As

+Bs2 +

Cs−1

+D

s+2

s = As(s−1)(s+2)+B(s−1)(s+2)+Cs2(s+2)+Ds2(s−1)s = 0 : 0 = B · (−1) ·2, B = 0

s = 1 : 1 = C ·12 ·3, C =13

s = −2 : −2 = D · (−2)2 · (−3), D =16

s = −1 : −1=A·(−1)·(−2)·1+0+13·(−1)2·1+

16·(−1)2·(−2), A = −1

2

F = −12

1s

+0 · 1s2 +

13

1s−1

+16

1s+2

f (t) = −12

+13

et +16

e−2t

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Laplace Transforms and Integral Equations

logo1

Transforms and New Formulas An Example Double Check

Solve f ′(t)+ f (t)−2∫ t

0f (z) dz = t, f (0) = 0

F =s

s2(s−1)(s+2)=

As

+Bs2 +

Cs−1

+D

s+2

s = As(s−1)(s+2)+B(s−1)(s+2)+Cs2(s+2)+Ds2(s−1)s = 0 : 0 = B · (−1) ·2, B = 0

s = 1 : 1 = C ·12 ·3

, C =13

s = −2 : −2 = D · (−2)2 · (−3), D =16

s = −1 : −1=A·(−1)·(−2)·1+0+13·(−1)2·1+

16·(−1)2·(−2), A = −1

2

F = −12

1s

+0 · 1s2 +

13

1s−1

+16

1s+2

f (t) = −12

+13

et +16

e−2t

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Laplace Transforms and Integral Equations

logo1

Transforms and New Formulas An Example Double Check

Solve f ′(t)+ f (t)−2∫ t

0f (z) dz = t, f (0) = 0

F =s

s2(s−1)(s+2)=

As

+Bs2 +

Cs−1

+D

s+2

s = As(s−1)(s+2)+B(s−1)(s+2)+Cs2(s+2)+Ds2(s−1)s = 0 : 0 = B · (−1) ·2, B = 0

s = 1 : 1 = C ·12 ·3, C =13

s = −2 : −2 = D · (−2)2 · (−3), D =16

s = −1 : −1=A·(−1)·(−2)·1+0+13·(−1)2·1+

16·(−1)2·(−2), A = −1

2

F = −12

1s

+0 · 1s2 +

13

1s−1

+16

1s+2

f (t) = −12

+13

et +16

e−2t

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Laplace Transforms and Integral Equations

logo1

Transforms and New Formulas An Example Double Check

Solve f ′(t)+ f (t)−2∫ t

0f (z) dz = t, f (0) = 0

F =s

s2(s−1)(s+2)=

As

+Bs2 +

Cs−1

+D

s+2

s = As(s−1)(s+2)+B(s−1)(s+2)+Cs2(s+2)+Ds2(s−1)s = 0 : 0 = B · (−1) ·2, B = 0

s = 1 : 1 = C ·12 ·3, C =13

s = −2 : −2 = D · (−2)2 · (−3)

, D =16

s = −1 : −1=A·(−1)·(−2)·1+0+13·(−1)2·1+

16·(−1)2·(−2), A = −1

2

F = −12

1s

+0 · 1s2 +

13

1s−1

+16

1s+2

f (t) = −12

+13

et +16

e−2t

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Laplace Transforms and Integral Equations

logo1

Transforms and New Formulas An Example Double Check

Solve f ′(t)+ f (t)−2∫ t

0f (z) dz = t, f (0) = 0

F =s

s2(s−1)(s+2)=

As

+Bs2 +

Cs−1

+D

s+2

s = As(s−1)(s+2)+B(s−1)(s+2)+Cs2(s+2)+Ds2(s−1)s = 0 : 0 = B · (−1) ·2, B = 0

s = 1 : 1 = C ·12 ·3, C =13

s = −2 : −2 = D · (−2)2 · (−3), D =16

s = −1 : −1=A·(−1)·(−2)·1+0+13·(−1)2·1+

16·(−1)2·(−2), A = −1

2

F = −12

1s

+0 · 1s2 +

13

1s−1

+16

1s+2

f (t) = −12

+13

et +16

e−2t

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Laplace Transforms and Integral Equations

logo1

Transforms and New Formulas An Example Double Check

Solve f ′(t)+ f (t)−2∫ t

0f (z) dz = t, f (0) = 0

F =s

s2(s−1)(s+2)=

As

+Bs2 +

Cs−1

+D

s+2

s = As(s−1)(s+2)+B(s−1)(s+2)+Cs2(s+2)+Ds2(s−1)s = 0 : 0 = B · (−1) ·2, B = 0

s = 1 : 1 = C ·12 ·3, C =13

s = −2 : −2 = D · (−2)2 · (−3), D =16

s = −1 : −1=A·(−1)·(−2)·1+0+13·(−1)2·1+

16·(−1)2·(−2)

, A = −12

F = −12

1s

+0 · 1s2 +

13

1s−1

+16

1s+2

f (t) = −12

+13

et +16

e−2t

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Laplace Transforms and Integral Equations

logo1

Transforms and New Formulas An Example Double Check

Solve f ′(t)+ f (t)−2∫ t

0f (z) dz = t, f (0) = 0

F =s

s2(s−1)(s+2)=

As

+Bs2 +

Cs−1

+D

s+2

s = As(s−1)(s+2)+B(s−1)(s+2)+Cs2(s+2)+Ds2(s−1)s = 0 : 0 = B · (−1) ·2, B = 0

s = 1 : 1 = C ·12 ·3, C =13

s = −2 : −2 = D · (−2)2 · (−3), D =16

s = −1 : −1=A·(−1)·(−2)·1+0+13·(−1)2·1+

16·(−1)2·(−2), A = −1

2

F = −12

1s

+0 · 1s2 +

13

1s−1

+16

1s+2

f (t) = −12

+13

et +16

e−2t

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Laplace Transforms and Integral Equations

logo1

Transforms and New Formulas An Example Double Check

Solve f ′(t)+ f (t)−2∫ t

0f (z) dz = t, f (0) = 0

F =s

s2(s−1)(s+2)=

As

+Bs2 +

Cs−1

+D

s+2

s = As(s−1)(s+2)+B(s−1)(s+2)+Cs2(s+2)+Ds2(s−1)s = 0 : 0 = B · (−1) ·2, B = 0

s = 1 : 1 = C ·12 ·3, C =13

s = −2 : −2 = D · (−2)2 · (−3), D =16

s = −1 : −1=A·(−1)·(−2)·1+0+13·(−1)2·1+

16·(−1)2·(−2), A = −1

2

F = −12

1s

+0 · 1s2 +

13

1s−1

+16

1s+2

f (t) = −12

+13

et +16

e−2t

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Laplace Transforms and Integral Equations

logo1

Transforms and New Formulas An Example Double Check

Solve f ′(t)+ f (t)−2∫ t

0f (z) dz = t, f (0) = 0

F =s

s2(s−1)(s+2)=

As

+Bs2 +

Cs−1

+D

s+2

s = As(s−1)(s+2)+B(s−1)(s+2)+Cs2(s+2)+Ds2(s−1)s = 0 : 0 = B · (−1) ·2, B = 0

s = 1 : 1 = C ·12 ·3, C =13

s = −2 : −2 = D · (−2)2 · (−3), D =16

s = −1 : −1=A·(−1)·(−2)·1+0+13·(−1)2·1+

16·(−1)2·(−2), A = −1

2

F = −12

1s

+0 · 1s2 +

13

1s−1

+16

1s+2

f (t) = −12

+13

et +16

e−2t

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Laplace Transforms and Integral Equations

logo1

Transforms and New Formulas An Example Double Check

Does f (t) = −12

+13

et +16

e−2t Really Solve the Initial Value Problem

f ′(t)+ f (t)−2∫ t

0f (z) dz = t, f (0) = 0?

Initial value: Look at f ![−1

2+

13

et +16

e−2t]′

+[−1

2+

13

et +16

e−2t]−2

∫ t

0−1

2+

13

ez +16

e−2z dz

=13

et − 13

e−2t − 12

+13

et +16

e−2t −2[−1

2z+

13

ez− 112

e−2z]t

0

=13

et − 13

e−2t − 12

+13

et +16

e−2t + t−0− 23

et +23

+16

e−2t − 16

= et(

13

+13− 2

3

)+ e−2t

(−1

3+

16

+16

)+ t +

(−1

2+

23− 1

6

)= t

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Laplace Transforms and Integral Equations

logo1

Transforms and New Formulas An Example Double Check

Does f (t) = −12

+13

et +16

e−2t Really Solve the Initial Value Problem

f ′(t)+ f (t)−2∫ t

0f (z) dz = t, f (0) = 0?

Initial value:

Look at f ![−1

2+

13

et +16

e−2t]′

+[−1

2+

13

et +16

e−2t]−2

∫ t

0−1

2+

13

ez +16

e−2z dz

=13

et − 13

e−2t − 12

+13

et +16

e−2t −2[−1

2z+

13

ez− 112

e−2z]t

0

=13

et − 13

e−2t − 12

+13

et +16

e−2t + t−0− 23

et +23

+16

e−2t − 16

= et(

13

+13− 2

3

)+ e−2t

(−1

3+

16

+16

)+ t +

(−1

2+

23− 1

6

)= t

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Laplace Transforms and Integral Equations

logo1

Transforms and New Formulas An Example Double Check

Does f (t) = −12

+13

et +16

e−2t Really Solve the Initial Value Problem

f ′(t)+ f (t)−2∫ t

0f (z) dz = t, f (0) = 0?

Initial value: Look at f !

[−1

2+

13

et +16

e−2t]′

+[−1

2+

13

et +16

e−2t]−2

∫ t

0−1

2+

13

ez +16

e−2z dz

=13

et − 13

e−2t − 12

+13

et +16

e−2t −2[−1

2z+

13

ez− 112

e−2z]t

0

=13

et − 13

e−2t − 12

+13

et +16

e−2t + t−0− 23

et +23

+16

e−2t − 16

= et(

13

+13− 2

3

)+ e−2t

(−1

3+

16

+16

)+ t +

(−1

2+

23− 1

6

)= t

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Laplace Transforms and Integral Equations

logo1

Transforms and New Formulas An Example Double Check

Does f (t) = −12

+13

et +16

e−2t Really Solve the Initial Value Problem

f ′(t)+ f (t)−2∫ t

0f (z) dz = t, f (0) = 0?

Initial value: Look at f ![−1

2+

13

et +16

e−2t]′

+[−1

2+

13

et +16

e−2t]−2

∫ t

0−1

2+

13

ez +16

e−2z dz

=13

et − 13

e−2t − 12

+13

et +16

e−2t −2[−1

2z+

13

ez− 112

e−2z]t

0

=13

et − 13

e−2t − 12

+13

et +16

e−2t + t−0− 23

et +23

+16

e−2t − 16

= et(

13

+13− 2

3

)+ e−2t

(−1

3+

16

+16

)+ t +

(−1

2+

23− 1

6

)= t

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Laplace Transforms and Integral Equations

logo1

Transforms and New Formulas An Example Double Check

Does f (t) = −12

+13

et +16

e−2t Really Solve the Initial Value Problem

f ′(t)+ f (t)−2∫ t

0f (z) dz = t, f (0) = 0?

Initial value: Look at f ![−1

2+

13

et +16

e−2t]′

+[−1

2+

13

et +16

e−2t]−2

∫ t

0−1

2+

13

ez +16

e−2z dz

=13

et − 13

e−2t − 12

+13

et +16

e−2t −2[−1

2z+

13

ez− 112

e−2z]t

0

=13

et − 13

e−2t − 12

+13

et +16

e−2t + t−0− 23

et +23

+16

e−2t − 16

= et(

13

+13− 2

3

)+ e−2t

(−1

3+

16

+16

)+ t +

(−1

2+

23− 1

6

)= t

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Laplace Transforms and Integral Equations

logo1

Transforms and New Formulas An Example Double Check

Does f (t) = −12

+13

et +16

e−2t Really Solve the Initial Value Problem

f ′(t)+ f (t)−2∫ t

0f (z) dz = t, f (0) = 0?

Initial value: Look at f ![−1

2+

13

et +16

e−2t]′

+[−1

2+

13

et +16

e−2t]−2

∫ t

0−1

2+

13

ez +16

e−2z dz

=13

et − 13

e−2t − 12

+13

et +16

e−2t −2[−1

2z+

13

ez− 112

e−2z]t

0

=13

et − 13

e−2t − 12

+13

et +16

e−2t + t−0− 23

et +23

+16

e−2t − 16

= et(

13

+13− 2

3

)+ e−2t

(−1

3+

16

+16

)+ t +

(−1

2+

23− 1

6

)= t

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Laplace Transforms and Integral Equations

logo1

Transforms and New Formulas An Example Double Check

Does f (t) = −12

+13

et +16

e−2t Really Solve the Initial Value Problem

f ′(t)+ f (t)−2∫ t

0f (z) dz = t, f (0) = 0?

Initial value: Look at f ![−1

2+

13

et +16

e−2t]′

+[−1

2+

13

et +16

e−2t]−2

∫ t

0−1

2+

13

ez +16

e−2z dz

=13

et − 13

e−2t − 12

+13

et +16

e−2t −2[−1

2z+

13

ez− 112

e−2z]t

0

=13

et − 13

e−2t − 12

+13

et +16

e−2t + t−0− 23

et +23

+16

e−2t − 16

= et(

13

+13− 2

3

)

+ e−2t(−1

3+

16

+16

)+ t +

(−1

2+

23− 1

6

)= t

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Laplace Transforms and Integral Equations

logo1

Transforms and New Formulas An Example Double Check

Does f (t) = −12

+13

et +16

e−2t Really Solve the Initial Value Problem

f ′(t)+ f (t)−2∫ t

0f (z) dz = t, f (0) = 0?

Initial value: Look at f ![−1

2+

13

et +16

e−2t]′

+[−1

2+

13

et +16

e−2t]−2

∫ t

0−1

2+

13

ez +16

e−2z dz

=13

et − 13

e−2t − 12

+13

et +16

e−2t −2[−1

2z+

13

ez− 112

e−2z]t

0

=13

et − 13

e−2t − 12

+13

et +16

e−2t + t−0− 23

et +23

+16

e−2t − 16

= et(

13

+13− 2

3

)+ e−2t

(−1

3+

16

+16

)

+ t +(−1

2+

23− 1

6

)= t

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Laplace Transforms and Integral Equations

logo1

Transforms and New Formulas An Example Double Check

Does f (t) = −12

+13

et +16

e−2t Really Solve the Initial Value Problem

f ′(t)+ f (t)−2∫ t

0f (z) dz = t, f (0) = 0?

Initial value: Look at f ![−1

2+

13

et +16

e−2t]′

+[−1

2+

13

et +16

e−2t]−2

∫ t

0−1

2+

13

ez +16

e−2z dz

=13

et − 13

e−2t − 12

+13

et +16

e−2t −2[−1

2z+

13

ez− 112

e−2z]t

0

=13

et − 13

e−2t − 12

+13

et +16

e−2t + t−0− 23

et +23

+16

e−2t − 16

= et(

13

+13− 2

3

)+ e−2t

(−1

3+

16

+16

)+ t

+(−1

2+

23− 1

6

)= t

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Laplace Transforms and Integral Equations

logo1

Transforms and New Formulas An Example Double Check

Does f (t) = −12

+13

et +16

e−2t Really Solve the Initial Value Problem

f ′(t)+ f (t)−2∫ t

0f (z) dz = t, f (0) = 0?

Initial value: Look at f ![−1

2+

13

et +16

e−2t]′

+[−1

2+

13

et +16

e−2t]−2

∫ t

0−1

2+

13

ez +16

e−2z dz

=13

et − 13

e−2t − 12

+13

et +16

e−2t −2[−1

2z+

13

ez− 112

e−2z]t

0

=13

et − 13

e−2t − 12

+13

et +16

e−2t + t−0− 23

et +23

+16

e−2t − 16

= et(

13

+13− 2

3

)+ e−2t

(−1

3+

16

+16

)+ t +

(−1

2+

23− 1

6

)

= t√

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Laplace Transforms and Integral Equations

logo1

Transforms and New Formulas An Example Double Check

Does f (t) = −12

+13

et +16

e−2t Really Solve the Initial Value Problem

f ′(t)+ f (t)−2∫ t

0f (z) dz = t, f (0) = 0?

Initial value: Look at f ![−1

2+

13

et +16

e−2t]′

+[−1

2+

13

et +16

e−2t]−2

∫ t

0−1

2+

13

ez +16

e−2z dz

=13

et − 13

e−2t − 12

+13

et +16

e−2t −2[−1

2z+

13

ez− 112

e−2z]t

0

=13

et − 13

e−2t − 12

+13

et +16

e−2t + t−0− 23

et +23

+16

e−2t − 16

= et(

13

+13− 2

3

)+ e−2t

(−1

3+

16

+16

)+ t +

(−1

2+

23− 1

6

)= t

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Laplace Transforms and Integral Equations

logo1

Transforms and New Formulas An Example Double Check

Does f (t) = −12

+13

et +16

e−2t Really Solve the Initial Value Problem

f ′(t)+ f (t)−2∫ t

0f (z) dz = t, f (0) = 0?

Initial value: Look at f ![−1

2+

13

et +16

e−2t]′

+[−1

2+

13

et +16

e−2t]−2

∫ t

0−1

2+

13

ez +16

e−2z dz

=13

et − 13

e−2t − 12

+13

et +16

e−2t −2[−1

2z+

13

ez− 112

e−2z]t

0

=13

et − 13

e−2t − 12

+13

et +16

e−2t + t−0− 23

et +23

+16

e−2t − 16

= et(

13

+13− 2

3

)+ e−2t

(−1

3+

16

+16

)+ t +

(−1

2+

23− 1

6

)= t

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Laplace Transforms and Integral Equations

Recommended