Laplace Transforms Circuit Analysis - Web Services Overview

Preview:

Citation preview

Laplace Transforms Circuit Analysis

• Passive element equivalents

• Review of ECE 221 methods in s domain

• Many examples

J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 1

Example 1: Circuit Analysis

We can use the Laplace transform for circuit analysis if we can definethe circuit behavior in terms of a linear ODE.

For example, solve for v(t). Check your answer using the initial andfinal value theorems and the methods discussed in Chapter 7.

10 u(t) v(t)

-

+

5 mH

i(0-) = -2 mA

5 kΩ

J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 2

Example 1:Workspace

Hint: � [r,p,k] = residue([-2e-3 2e3],[1 1e6 0])

r = -0.0040, 0.0020,

p = -1000000, 0

k = []

J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 3

Example 1:Workspace

J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 4

Laplace Transform Circuit Analysis Overview

• LPT is useful for circuit analysis because it transforms differentialequations into an algebra problem

• Our approach will be similar to the phasor transform

1. Solve for the initial conditions– Current flowing through each inductor

– Voltage across each capacitor

2. Transform all of the circuit elements to the s domain

3. Solve for the s domain voltages and currents of interest

4. Apply the inverse Laplace transform to find time domainexpressions

• How do we know this will work?

J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 5

Kirchhoff’s Laws

N∑k=1

vk(t) = 0N∑

k=1

Vk(s) = 0

M∑k=1

ik(t) = 0M∑

k=1

Ik(s) = 0

• Kirchhoff’s laws are the foundation of circuit analysis

– KVL: The sum of voltages around a closed path is zero

– KCL: The sum of currents entering a node is equal to the sumof currents leaving a node

• If Kirchhoff’s laws apply in the s domain, we can use the sametechniques that you learned last term (ECE 221)

• Apply the LPT to both sides of the time domain expression forthese laws

• The laws hold in the s domain

J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 6

Defining s Domain Equations: Resistors

R

v(t) -+

i(t) R

V(s) -+

I(s)

v(t) = R i(t) V (s) = R I(s)

• Generalization of Ohm’s Law

• As with KCL & KVL, the relationship is the same in the s domainas in the time domain

• Note that we used the linearity property of the LPT for bothOhm’s law and Kirchhoff’s laws

J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 7

Defining s Domain Equations: Inductors

v(t) -+

i(t) L

V(s) -+

I(s) LsL I0

V(s) -+

I(s) Ls

I0s

v(t) = Ldi(t)dt

i(t) =1L

∫ t

0-

v(τ) dτ + I0

V (s) = L [sI(s) − I0] I(s) =1sL

V (s) +1sI0

V (s) = sLI(s) − LI0

Where I0 � i(0-)

J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 8

Defining s Domain Equations: Capacitors

v(t) -+

i(t)

V(s) -+

I(s)

V(s) -+

I(s)

CV0C

1sC

V0s 1

sC

i(t) = Cdv(t)dt

v(t) =1C

∫ t

0-

i(τ) dτ + V0

I(s) = C [sV (s) − V0] V (s) =1C

[1sI(s)

]+

1sV0

I(s) = sCV (s) − CV0 V (s) =1

sCI(s) +

V0

s

Where V0 � v(0-)

J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 9

s Domain Impedance and Admittance

Impedance: Z(s) =V (s)I(s)

Admittance: Y (s) =I(s)V (s)

• The s domain impedance of a circuit element is defined for zeroinitial conditions

• This is also true for the s domain admittance

• We will see that circuit s domain circuit analysis is easier when wecan assume zero initial conditions

J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 10

s Domain Circuit Element Summary

Resistor V (s) = RI(s) V = RI R

Inductor V (s) = sLI(s) V = sLI Ls

Capacitor V (s) = 1sC I(s) V = 1

sC I1

sC

• All of these are in the form V (s) = ZI(s)

• Note similarity to phasor transform

• Identical if s = jω

• Will discuss further later

• Equations only hold for zero initial conditions

J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 11

Example 2: Circuit Analysis

10 u(t) v(t)

-

+

5 mH

i(0-) = -2 mA

5 kΩ

Solve for v(t) using s-domain circuit analysis.

J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 12

Example 2: Workspace

J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 13

Example 3: Circuit Analysis

t = 0

vo

-

+1 kΩ

sin(1000t) 1 μF

Given vo(0) = 0, solve for vo(t) for t ≥ 0.

J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 14

Example 3: Workspace

Hint: � [r,p,k] = residue([1e6],conv([1 0 1e6],[1 1e3]))

r = [ 0.5000, -0.2500 - 0.2500i, -0.2500 + 0.2500i]

p = 1.0e+003 *[ -1.0000, 0.0000 + 1.0000i, 0.0000 - 1.0000i]

k = []

� [abs(r) angle(r)*180/pi]

ans = [ 0.5000 0, 0.3536 -135.0000, 0.3536 135.0000]

J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 15

Example 3: Workspace

J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 16

Example 3: Plot of Results

0 5 10 15 20 25−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1 TotalTransientSteady State

Time (ms)

vo(t

)(V

)

J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 17

Example 4: Circuit Analysis

40 V

10 mF

10 mH

t = 0

v

-

+

50 Ω

50 Ω

100 Ω

175 Ω

175 Ω

Solve for v(t).

J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 18

Example 4: Workspace

Hint: � [r,p,k] = residue([1e-3 20 0],[1 21.25e3 10e3])

r = [-1.2496, -0.0004]

p = [-21250,-0.4706]

k = [0.0010]

J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 19

Example 4: Workspace

J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 20

Example 5: Parallel RLC Circuits

C L R v(t)

-

+

i(t)

Find an expression for V (s). Assume zero initial conditions.

J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 21

Example 6: Circuit Analysis

8 H v

-

+

iL

20 kΩ0.125 μF

Given v(0) = 0 V and the current through the inductor isiL(0-) = −12.25 mA, solve for v(t).

J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 22

Example 6: Workspace

Hint: � [r,p,k] = residue([98e3],[1 400 1e6])

r = [ 0 -50.0104i, 0 +50.0104i]

p = 1.0e+002 * [ -2.0000 + 9.7980i, -2.0000 - 9.7980i]

k = []

� [abs(r) angle(r)*180/pi]

ans =[ 50.0104 -90.0000, 50.0104 90.0000]

J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 23

Example 6: Workspace

J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 24

Example 6: Plot of v(t)

0 5 10 15 20 25 30 35 40

−40

−20

0

20

40

60

80

Time (ms)

(vol

ts)

J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 25

Example 6: MATLAB Code

t = 0:0.01e-3:40e-3;v = 50*exp(-200*t).*sin(979.8*t);t = t*1000;h = plot(t,v,’b’);set(h,’LineWidth’,1.2);xlim([0 max(t)]);ylim([-23 40]);box off;xlabel(’Time (ms)’);ylabel(’(volts)’);title(’’);

J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 26

Example 7: Series RLC Circuits

R L

Cv(t)

vR(t) -+ vL(t) -+

vC(t)

-

+

Find an expression for VR(s), VL(s), and VC(s). Assume zero initialconditions.

J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 27

Example 7: Workspace

J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 28

Example 8: Circuit Analysis

50 nF

10 nF 2.5 nF

80 V

t = 0

v1(t)

-

+

v2(t)

-

+

20 kΩ

There is no energy stored in the circuit at t = 0. Solve for v2(t).

J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 29

Example 8: Workspace

Hint: � [r,p,k] = residue([320e3],[1 5e3 0])

r = [-64, 64]

p = [-5000,0]

k = []

J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 30

Example 8: Workspace

J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 31

Example 9: Circuit Analysis

0.25 v1

20 H

0.1 F600 u(t)

v1 v2

10 Ω

140 Ω

Solve for V2(s). Assume zero initial conditions.

J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 32

Example 9: Workspace

J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 33

Example 9: Workspace

J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 34

Example 10: Circuit Analysis

10 mF

9 i(t)

u(t)

a

b

i(t)

100 Ω

Find the Thevenin equivalent of the circuit above. Assume that thecapacitor is initially uncharged.

J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 35

Example 10: Workspace

J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 36

Example 10: Workspace

J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 37

Example 11: Circuit Analysis

v(t)

L

R vo(t)

-

+

iL

Find an expression for vo(t) given that v(t) = e−αtu(t) andiL(0) = I0 mA.

J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 38

Example 11: Workspace

J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 39

Example 11: Workspace

J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 40

Example 12: Circuit Analysis

100 mH

vs(t) vo(t)

-

+

200 Ω

1 kΩ1 μF

Find an expression for Vo(s) in terms of Vs(s). Assume there is noenergy stored in the circuit initially. What is vo(t) if vs(t) = u(t)?

J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 41

Example 12: Workspace

Hint: � [r,p,k] = residue([-0.2 0],conv([1 2e3],[1 1e3]))

r = [-0.4000, 0.2000]

p = [-2000, -1000]

k = []

J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 42

Example 12: Workspace

J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 43

Example 13: Circuit Analysis

vo(t)

-

+vs(t)

RL

RA

CA RB

CB

Find an expression for Vo(s) in terms of Vs(s). Assume there is noenergy stored in the circuit initially.

J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 44

Example 13: Workspace

J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 45

Example 13: Workspace

J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 46

Example 14: Circuit Analysis

vs(t)vo(t)

-

+

RL

C

R

Find an expression for Vo(s) in terms of Vs(s). Assume there is noenergy stored in the circuit initially.

J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 47

Example 14: Workspace

J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 48