Lecture 27 29

Preview:

DESCRIPTION

b

Citation preview

BITS Pilani Pilani Campus

MATH F112 (Mathematics-II)

Complex Analysis

BITS Pilani Pilani Campus

Lecture 27-30 Elementary Functions

Dr Trilok Mathur, Assistant Professor, Department of Mathematics

BITS Pilani, Pilani Campus

1. Exponential Functions

2. Trigonometric Functions

3. Hyperbolic Functions

4. Logarithmic Functions

5. Complex Exponents

BITS Pilani, Pilani Campus

Self Study (Sec 36, p.112-115)

6. Inverse Trigonometric Functions

7. Inverse Hyperbolic Functions

BITS Pilani, Pilani Campus

z

nz

e

...n!

z...

!

z

!

zze z

iy xz

of seriesMaclaurin' called is

then Let

321)(exp

,)1(32

21

2

121

21 ,. zzz

zzz e

e

eeee

zz

BITS Pilani, Pilani Campus

,sin,cos

)sin(cos

)()2(

yevyeu

ivu

yi ye

e.e

eezf

xx

x

iyx

iyxz

Let

BITS Pilani, Pilani Campus

xyyx

xy

xx

xy

xx

vuvu

yevyev

yeuyeu

,

cos,sin

sin,cos

continuous are clearly

and satisfied are equations-CR Thus

yxyx v,v,,uu

BITS Pilani, Pilani Campus

zz

ziyxxx

xx

eedz

d

eeeyeiye

vi u zf

zf

.sincos

)(

)( and abledifferenti is

BITS Pilani, Pilani Campus

,.3 iyxz eee )( yiyeiy sincos

1sincos 22 yyeiy

Rxeeee xxxz 0 as

. numbercomplex any for zez 0

BITS Pilani, Pilani Campus

yee

eeeezx

iiyxz

&0

,.

when

may write We

...2,1,0

,2arg

n

nyez

BITS Pilani, Pilani Campus

12sin2cos

02sin12cos)4(2

iπe

π & π πi Hence

01

1sincos

i

i

e

ie

1sincos ie i

BITS Pilani, Pilani Campus

iie i 2/sin2/cos2/

i

ie i

2/sin2/cos2/

BITS Pilani, Pilani Campus

ziziz eeee 22 .).5(

,...3,2,1,0,

.22

nee

i

e

zinz

z

period

imaginarywithperiodicis

BITS Pilani, Pilani Campus

Cze

xez

x

ifnegativebemay But

0).6(

1zez that such Find :Example

iiyx

z

eee

e.1.

1

:Solution

BITS Pilani, Pilani Campus

nyx

nny

ex

2&0

...2,1,0,2

,1

and

1

210

).12(

ze

,...,, n

, in

iy xz

then

if Thus,

BITS Pilani, Pilani Campus

anywhere.analytic not is

:Excerciseze)7(

ie

z z 112

that such of values all Find Q.

BITS Pilani, Pilani Campus

then, real is If (1) x

,2

cosixix ee

x

.2

sini

eex

ixix

BITS Pilani, Pilani Campus

define wecomplex, is ifSimilarly z

,2

cosiziz ee

z

)1(2

sin

i

eez

iziz

,sincos zizeiz

BITS Pilani, Pilani Campus

zzec

zz

z

zz

z

zz

sin

1cos,

cos

1sec

,sin

coscot,

cos

sintan

BITS Pilani, Pilani Campus

(2). Since ez is analytic z and linear

combination of two analytic functions is

again analytic, hence it follows that

sin z and cos z are analytic functions.

BITS Pilani, Pilani Campus

:prove toeasy is it Using )1()3( .

zzi sin)sin()(

zzii cos)cos()(

zzdz

diii cossin)(

BITS Pilani, Pilani Campus

zzdz

div sincos)(

zzdz

dv 2sectan)(

BITS Pilani, Pilani Campus

2121

21

sincoscossin

)sin()(

zzzz

zzvi

2121

21

sinsincos.cos

cos)(

zzzz

zzvii

BITS Pilani, Pilani Campus

then Put

,0

.2

sin

,2

cos4

x

i

eez

eez

iziz

iziz

BITS Pilani, Pilani Campus

2cos

iyiiyi eeiy

yee yy

cosh2

BITS Pilani, Pilani Campus

)(2

1sin yy ee

iiy

yi

eei yy

sinh

)(2

1

BITS Pilani, Pilani Campus

)cos(cos iyxz

)(sin.sin)(coscos iyxiyx

hyxiyx sin.sincosh.cos

BITS Pilani, Pilani Campus

hyxiyx

iyxiyx

iyxz

sin.coscosh.sin

sin.coscos.sin

sinsin

BITS Pilani, Pilani Campus

yhxz

yx z

222

222

sincoscos

sinhsinsin

(Exercise) Hence

1sincos

1sinhcos22

22

xx

xxh

(Use) :Hints

BITS Pilani, Pilani Campus

zz,

z

z z

z z &

cos

1sec

cos

sintan

sectan

: oficity (5).Analyt

0cos

sec&tan

z

zz

where

points the atexcept everywhere

analytic are

BITS Pilani, Pilani Campus

0sinsincoscos

cos

0cos

hyxihyx

iyx

z

0sinhsin

&,0coscos

yx

hyx

BITS Pilani, Pilani Campus

0cosh y

)010

1

2

1

2cosh(

2

y

yy

yy

e

ee

eey

...2,1,0,2

120cos nnxx

BITS Pilani, Pilani Campus

2

120sin

nxx for But

0102

sinh

00sinh

2 yeee

y

yy

yyy

BITS Pilani, Pilani Campus

,...21,02

12

sectan2

12

n,π

nz

z z &

niyxz

atexcept eevery wher

analytic are

BITS Pilani, Pilani Campus

0sin

cos&cot

sin

1cos

sin

coscot

coscot)(

z

zecz

zzec&

z

z z

ec z: z &

where

points the at except everywhere

analytic are

ofty Analytici6Ex.

BITS Pilani, Pilani Campus

.2

cosh

,2

sinh

zz

zz

eez

eez

:Definition

BITS Pilani, Pilani Campus

.everywhere

analytic are

everywhere

analytic are

zz

ee zz

cosh&sinh

&).1(

BITS Pilani, Pilani Campus

zee

ee

dz

dz

dz

d

zz

zz

cosh2

2sinh).2(

zzdz

dsinhcosh Similarly,

BITS Pilani, Pilani Campus

z--z. sinh)sinh()3(

1sinhcosh 22 zz

zz coshcosh

BITS Pilani, Pilani Campus

),cosh(cos).4( izz

zee

zi

eez

zizi

zz

cos2

cosh

2cosh

BITS Pilani, Pilani Campus

zz

zizi

ziz

coshcosh

coshcos

coshcos

2

zzi coshcos).5(

BITS Pilani, Pilani Campus

ziiz sinhsin).6(

zi

zizi.

sinh

sinhsin)7(

BITS Pilani, Pilani Campus

2121

21

sinh.coshcosh.sinh

sinh).8(

zzzz

zz

2121

21

sinh.sinhcosh.cosh

cosh).9(

zzzz

zz

BITS Pilani, Pilani Campus

:Soln

yxiyx

z

sin.coshcos.sinh

sinh.10

zizi sinhsin

BITS Pilani, Pilani Campus

)sin(

)sin(sinh

yixi

iziz

]sin)cos(

cos)[sin(

yix

yixi

BITS Pilani, Pilani Campus

]sincosh

cossinh[

yx

yxii

yxiyx

z

sincoshcossinh

sinh

BITS Pilani, Pilani Campus

yxz 222sinsinhsinh

: Excercise

BITS Pilani, Pilani Campus

yxi

yxza

sin.sinh

cos.coshcosh)(

Similarly

)cos(coscosh yixziz Use

yxzb 222cossinhcosh)(

BITS Pilani, Pilani Campus

:sec&tanh).11( hzzofyAnalyticit

.cosh

1sec

,cosh

sinhtanh

zhz

z

zz

BITS Pilani, Pilani Campus

.0cosh

sec&tanh

z

hzz

wherepoints

the at except everywhere

analytic are

BITS Pilani, Pilani Campus

0cosh zNow

0coscos yixzi

0sin.sincos.cos yixyxi

0sin.sinhcos.cosh yxiyx

BITS Pilani, Pilani Campus

.0sin.sinh

,0coscosh

yx

yx.

and

,...2,1,0,2

12

0cos0cosh

nny

yx

BITS Pilani, Pilani Campus

00sinh

0sin,2

12

xx

yny

For

...,2,1,0

,2

12

n

in

iyxz

BITS Pilani, Pilani Campus

,....2,1,0,2

12

sec&tanh

ni

nz

hzz

at except

everywhere analytic

are

BITS Pilani, Pilani Campus

Exercise:

coth z and cosech z are analytic

everywhere except at z = ni,

,.....2,1,0 n

BITS Pilani, Pilani Campus

zzzii

zzzi

ImcoshcosImsinh)(

ImcoshsinImsinh)(

:

thatShowQ.

yhxi

yxzi

sin.cos

cosh.sinsin)(

:Sol

BITS Pilani, Pilani Campus

yx

yxz22

222

sinh.cos

cosh.sinsin

yx

yx22

22

sinh.sin1

sinh1sin

yx 22 sinhsin

BITS Pilani, Pilani Campus

y

y

yxzy

2

2

2222

cosh

sinh1

sinhsinsinsinh

yzy coshsinsinh

BITS Pilani, Pilani Campus

yx

yxz

yxi

yxzii

22

222

sinh.sin

cosh.coscos

sinh.sin

cosh.coscos)(

BITS Pilani, Pilani Campus

yx

yx

yxz

22

22

222

sinhcos

sinh.cos1

sinh1coscos

BITS Pilani, Pilani Campus

hyzyh

y

yh

yhxzyh

coscossin

cosh

sin1

sincoscossin

2

2

2222

BITS Pilani, Pilani Campus

z, w

z,

iy xz

log

log

i.e.

by denoted is

of logarithm natural The

for defined is and 0log z z

)....(.......... izew

relation theby

BITS Pilani, Pilani Campus

zw

zew

log

,

writewethen ifi.e.

zArg

er

ririyxz

ivuw

i

,

,

sincos

,

where

Let

BITS Pilani, Pilani Campus

iivu

iivu

eree

erei

.

)(Then

,......2,1,0

,2

,

n

nv

zreu

BITS Pilani, Pilani Campus

nv

zru

2

,lnln

niz

viuzw

2ln

log

BITS Pilani, Pilani Campus

integerany is

and

Since

n

nz

zArg

,2arg

,

0,arglnlog zzizz

BITS Pilani, Pilani Campus

Arg z z n arg0 then , When

.0ln

log

log0

zz,Argiz Log z

Log z

z

zn

i.e. ,by denoted is and

of value principal the called is

of value the then , When

BITS Pilani, Pilani Campus

niiz

niz

zizz

2ln

2ln

arglnlog

,...2,1,0

,2log

n

nizLogz

BITS Pilani, Pilani Campus

,.....2,1,0

,2ln

arglnlog

n

niz

ziz z

Since

1:Remark

function. dmultivaluea is zlog

BITS Pilani, Pilani Campus

zArg

izzLog

Since

:2 Remark

,ln

function.

valued-single a is zLog

BITS Pilani, Pilani Campus

.00

ln2

1ln 22

,

yxz

at except

everywhere continuous is

:3Remark

BITS Pilani, Pilani Campus

2,0

,ln

lnlog

r

ir

izzzf

consider and

number, realany be Let :4 Remark

,,ln, rvrru

BITS Pilani, Pilani Campus

y

x

}20{

log

,zz:D

z

domain the in continuous

and valued- single is Then

BITS Pilani, Pilani Campus

Remark 5: The function log z is NOT continuous on the line θ = α as arg z is NOT continuous on the line θ = α .

For if z is a point on the ray = then there are points arbitrary close to z at which the values of v are nearer to , and also there are points such that the values of v are nearer to + 2.

exist.notdoes zαz

arglim

BITS Pilani, Pilani Campus

}2)arg(,0:{

lnlog)(

1

zrzzD

θ i r z i

domain in

analytic is

:6 Remark

})(,0:{

ln)(

2

zArgrzzD

irLog z ii

domain

the inanalytic is

BITS Pilani, Pilani Campus

1,0

0,1

,,ln,,

vv

ur

u

rvrru

r

r

As

.continuous are sderivative

partial order-first and satisfied are

form polar in equations-CR

rθθr vru,vur

BITS Pilani, Pilani Campus

rri viuez

dz

dzf log

1

11D

zer iin

.1

2Dz

zLogdz

din

when,particular In

BITS Pilani, Pilani Campus

axis. realnegative oni.e.,-

ray the on and at except plane

complex wholethe onanalytic is

7:Remark

00,

Log z

.and

by given are of essingularti i.e.

0Im0Re z z

Log z

BITS Pilani, Pilani Campus

.

)(

zfz D, Fz

SD

zF

Szf

of values the of one is

all for that such domain some

inanalytic isthat function valued

singleany is set a on defined

function valued-multiple a of branchA

:Definition

BITS Pilani, Pilani Campus

ziz z

z

θizz

arglnlog

2,0

,lnlog

of branch a is

, fixed each For Ex.

BITS Pilani, Pilani Campus

branch. principal the called is

,0

,ln

z

izzLog

BITS Pilani, Pilani Campus

.01

x y

izLog

line halfthe on except

everywhereanalytic is

function the thatShow :97 p. Q.9(a)

bygivenis ofy singularit

have We:Solution

zf

izLogzf

BITS Pilani, Pilani Campus

1&0

01Im

&01Re

0Im&0Re

yx

yix

yix

iziz

y=1 O

BITS Pilani, Pilani Campus

axis. real the of portion

the on and points the

at except everywhereanalytic is

functionthe thatShow b9Q

4

21

42

x

/i

iz

zLogzf

BITS Pilani, Pilani Campus

thennumbers,complex

zeronontwoanybe If 21 z&z

2121 logloglog)1( zzzz

212

1 logloglog)2( zzz

z

BITS Pilani, Pilani Campus

2121 zLogzLogzzLog

But

212

1 zLogzLogz

zLog

zLognzLog n

BITS Pilani, Pilani Campus

1,1 21 zzLet(1)Ex

z1 z2 z1

z1= -1+i0

BITS Pilani, Pilani Campus

111 ln zArgizzLog

i

zArgiLog

0

1ln1 1

izLogzLog 221

BITS Pilani, Pilani Campus

00.0

ln

1.

212121

21

i

zzArgizzzzLog

zz

But

2121 zLogzLogzzLog

Thus

BITS Pilani, Pilani Campus

iLogiLog 121 297 p. Q.3(b)

iLog

iiLog

iLog

2

21

12

2

LHS

iiArgi 22ln

BITS Pilani, Pilani Campus

22ln

22ln

i

i

BITS Pilani, Pilani Campus

iLog 12RHS

iArgii 11ln2

4

32ln2

i

BITS Pilani, Pilani Campus

RHSLHS

2

32ln

]4

32ln

2

1[2

i

i

BITS Pilani, Pilani Campus

4

9

4,0

,lnlog

,log2log)( 2

zr

irz

iia

when

thatShow:p.97Q.4

BITS Pilani, Pilani Campus

4

11

4

3

,0

,lnlog

,log2log 2

when

zr

irz

iib

BITS Pilani, Pilani Campus

zcc

c

ez

iszc

z

log

0)1(

as

defined no.Thencomplex any is

and no.,complex a be Let

.

log

c

Logzcc

z

ez

Log z,z

of value principal the calledis

then by replaced is If

BITS Pilani, Pilani Campus

value. principal its find

and real is thatShow :p.104 aQ.2 ii

iiii arglnlog

iii ei log :Soln

inni

2

122

20

BITS Pilani, Pilani Campus

is of value Principal

real, is whichi

ni

i

e i ,2

12

).0(2

ne

BITS Pilani, Pilani Campus

. of P.V. Findb i-i

2

2

12

2

12

log

,..2,1,0,

ei

ne

eei

i

n

iniiii

of value Principal

:Solution

BITS Pilani, Pilani Campus

iba iLog of terms in Write(c) )log(

iLog 2

have We

iiiiiLog

2arg

2ln

2loglog

ni 2

22ln

2

2ln

iiLogLog is

of value Principal

BITS Pilani, Pilani Campus

ii

11 of value principal the FindQ.

- / 4

1

-i

iii ei 1log111:Solution

BITS Pilani, Pilani Campus

102