Lesson 4: Calculating Limits (Section 41 slides)

Preview:

DESCRIPTION

Basic limits, limit laws, algebraic limits, and limits of some trigonometric quotients.

Citation preview

Section 1.4Calculating Limits

V63.0121.041, Calculus I

New York University

September 15, 2010

Announcements

I First written homework due today (put it in the envelope)Remember to put your lecture and recitation section numbers onyour paper

. . . . . .

. . . . . .

Announcements

I First written homework duetoday (put it in theenvelope) Remember toput your lecture andrecitation section numberson your paper

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 2 / 45

. . . . . .

Yoda on teaching a concepts course

“You must unlearn what you have learned.”

In other words, we are building up concepts and allowing ourselvesonly to speak in terms of what we personally have produced.

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 3 / 45

. . . . . .

Objectives

I Know basic limits likelimx→a

x = a and limx→a

c = c.

I Use the limit laws tocompute elementary limits.

I Use algebra to simplifylimits.

I Understand and state theSqueeze Theorem.

I Use the Squeeze Theoremto demonstrate a limit.

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 4 / 45

. . . . . .

Outline

Recall: The concept of limit

Basic Limits

Limit LawsThe direct substitution property

Limits with AlgebraTwo more limit theorems

Two important trigonometric limits

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 5 / 45

. . . . . .

Heuristic Definition of a Limit

DefinitionWe write

limx→a

f(x) = L

and say

“the limit of f(x), as x approaches a, equals L”

if we can make the values of f(x) arbitrarily close to L (as close to L aswe like) by taking x to be sufficiently close to a (on either side of a) butnot equal to a.

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 6 / 45

. . . . . .

The error-tolerance game

A game between two players (Dana and Emerson) to decide if a limitlimx→a

f(x) exists.

Step 1 Dana proposes L to be the limit.Step 2 Emerson challenges with an “error” level around L.Step 3 Dana chooses a “tolerance” level around a so that points x

within that tolerance of a (not counting a itself) are taken tovalues y within the error level of L. If Dana cannot, Emersonwins and the limit cannot be L.

Step 4 If Dana’s move is a good one, Emerson can challenge again orgive up. If Emerson gives up, Dana wins and the limit is L.

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 7 / 45

. . . . . .

The error-tolerance game

.

.This tolerance is too big.Still too big.This looks good.So does this

.a

.L

I To be legit, the part of the graph inside the blue (vertical) stripmust also be inside the green (horizontal) strip.

I If Emerson shrinks the error, Dana can still win.

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 8 / 45

. . . . . .

Limit FAIL: Jump

. .x

.y

..−1

..1 .

..Part of graphinside blue is notinside green

.Part of graphinside blue is notinside green

I So limx→0

|x|x

does not exist.

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 9 / 45

. . . . . .

Limit FAIL: Jump

. .x

.y

..−1

..1 .

.

.Part of graphinside blue is notinside green

.Part of graphinside blue is notinside green

I So limx→0

|x|x

does not exist.

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 9 / 45

. . . . . .

Limit FAIL: Jump

. .x

.y

..−1

..1 .

.

.Part of graphinside blue is notinside green

.Part of graphinside blue is notinside green

I So limx→0

|x|x

does not exist.

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 9 / 45

. . . . . .

Limit FAIL: unboundedness

. .x

.y

.0

..L?

.The graph escapesthe green, so no good.Even worse!

.lim

x→0+1xdoes not exist

because the functionis unbounded near 0

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 10 / 45

. . . . . .

Limit EPIC FAIL

Here is a graph of the function f(x) = sin(πx

):

. .x

.y

..−1

..1

For every y in [−1,1], there are infinitely many points x arbitrarily closeto zero where f(x) = y. So lim

x→0f(x) cannot exist.

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 11 / 45

. . . . . .

Outline

Recall: The concept of limit

Basic Limits

Limit LawsThe direct substitution property

Limits with AlgebraTwo more limit theorems

Two important trigonometric limits

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 12 / 45

. . . . . .

Really basic limits

FactLet c be a constant and a a real number.(i) lim

x→ax = a

(ii) limx→a

c = c

Proof.The first is tautological, the second is trivial.

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 13 / 45

. . . . . .

Really basic limits

FactLet c be a constant and a a real number.(i) lim

x→ax = a

(ii) limx→a

c = c

Proof.The first is tautological, the second is trivial.

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 13 / 45

. . . . . .

ET game for f(x) = x

. .x

.y

..a

..a

I Setting error equal to tolerance works!

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 14 / 45

. . . . . .

ET game for f(x) = x

. .x

.y

..a

..a

I Setting error equal to tolerance works!

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 14 / 45

. . . . . .

ET game for f(x) = x

. .x

.y

..a

..a

I Setting error equal to tolerance works!

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 14 / 45

. . . . . .

ET game for f(x) = x

. .x

.y

..a

..a

I Setting error equal to tolerance works!

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 14 / 45

. . . . . .

ET game for f(x) = x

. .x

.y

..a

..a

I Setting error equal to tolerance works!

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 14 / 45

. . . . . .

ET game for f(x) = x

. .x

.y

..a

..a

I Setting error equal to tolerance works!

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 14 / 45

. . . . . .

ET game for f(x) = x

. .x

.y

..a

..a

I Setting error equal to tolerance works!

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 14 / 45

. . . . . .

ET game for f(x) = c

.

.x

.y

..a

..c

I any tolerance works!

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 15 / 45

. . . . . .

ET game for f(x) = c

. .x

.y

..a

..c

I any tolerance works!

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 15 / 45

. . . . . .

ET game for f(x) = c

. .x

.y

..a

..c

I any tolerance works!

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 15 / 45

. . . . . .

ET game for f(x) = c

. .x

.y

..a

..c

I any tolerance works!

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 15 / 45

. . . . . .

ET game for f(x) = c

. .x

.y

..a

..c

I any tolerance works!

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 15 / 45

. . . . . .

ET game for f(x) = c

. .x

.y

..a

..c

I any tolerance works!

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 15 / 45

. . . . . .

ET game for f(x) = c

. .x

.y

..a

..c

I any tolerance works!

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 15 / 45

. . . . . .

Really basic limits

FactLet c be a constant and a a real number.(i) lim

x→ax = a

(ii) limx→a

c = c

Proof.The first is tautological, the second is trivial.

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 16 / 45

. . . . . .

Outline

Recall: The concept of limit

Basic Limits

Limit LawsThe direct substitution property

Limits with AlgebraTwo more limit theorems

Two important trigonometric limits

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 17 / 45

. . . . . .

Limits and arithmetic

FactSuppose lim

x→af(x) = L and lim

x→ag(x) = M and c is a constant. Then

1. limx→a

[f(x) + g(x)] = L+M

(errors add)

2. limx→a

[f(x)− g(x)] = L−M

(combination of adding and scaling)

3. limx→a

[cf(x)] = cL

(error scales)

4. limx→a

[f(x)g(x)] = L ·M

(more complicated, but doable)

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 18 / 45

. . . . . .

Limits and arithmetic

FactSuppose lim

x→af(x) = L and lim

x→ag(x) = M and c is a constant. Then

1. limx→a

[f(x) + g(x)] = L+M (errors add)

2. limx→a

[f(x)− g(x)] = L−M

(combination of adding and scaling)

3. limx→a

[cf(x)] = cL

(error scales)

4. limx→a

[f(x)g(x)] = L ·M

(more complicated, but doable)

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 18 / 45

. . . . . .

Limits and arithmetic

FactSuppose lim

x→af(x) = L and lim

x→ag(x) = M and c is a constant. Then

1. limx→a

[f(x) + g(x)] = L+M (errors add)

2. limx→a

[f(x)− g(x)] = L−M

(combination of adding and scaling)

3. limx→a

[cf(x)] = cL

(error scales)

4. limx→a

[f(x)g(x)] = L ·M

(more complicated, but doable)

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 19 / 45

. . . . . .

Limits and arithmetic

FactSuppose lim

x→af(x) = L and lim

x→ag(x) = M and c is a constant. Then

1. limx→a

[f(x) + g(x)] = L+M (errors add)

2. limx→a

[f(x)− g(x)] = L−M

(combination of adding and scaling)

3. limx→a

[cf(x)] = cL

(error scales)

4. limx→a

[f(x)g(x)] = L ·M

(more complicated, but doable)

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 19 / 45

. . . . . .

Limits and arithmetic

FactSuppose lim

x→af(x) = L and lim

x→ag(x) = M and c is a constant. Then

1. limx→a

[f(x) + g(x)] = L+M (errors add)

2. limx→a

[f(x)− g(x)] = L−M

(combination of adding and scaling)

3. limx→a

[cf(x)] = cL (error scales)

4. limx→a

[f(x)g(x)] = L ·M

(more complicated, but doable)

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 19 / 45

. . . . . .

Justification of the scaling law

I errors scale: If f(x) is e away from L, then

(c · f(x)− c · L) = c · (f(x)− L) = c · e

That is, (c · f)(x) is c · e away from cL,I So if Emerson gives us an error of 1 (for instance), Dana can use

the fact that limx→a

f(x) = L to find a tolerance for f and gcorresponding to the error 1/c.

I Dana wins the round.

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 20 / 45

. . . . . .

Limits and arithmetic

FactSuppose lim

x→af(x) = L and lim

x→ag(x) = M and c is a constant. Then

1. limx→a

[f(x) + g(x)] = L+M (errors add)

2. limx→a

[f(x)− g(x)] = L−M (combination of adding and scaling)

3. limx→a

[cf(x)] = cL (error scales)

4. limx→a

[f(x)g(x)] = L ·M

(more complicated, but doable)

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 21 / 45

. . . . . .

Limits and arithmetic

FactSuppose lim

x→af(x) = L and lim

x→ag(x) = M and c is a constant. Then

1. limx→a

[f(x) + g(x)] = L+M (errors add)

2. limx→a

[f(x)− g(x)] = L−M (combination of adding and scaling)

3. limx→a

[cf(x)] = cL (error scales)

4. limx→a

[f(x)g(x)] = L ·M

(more complicated, but doable)

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 22 / 45

. . . . . .

Limits and arithmetic

FactSuppose lim

x→af(x) = L and lim

x→ag(x) = M and c is a constant. Then

1. limx→a

[f(x) + g(x)] = L+M (errors add)

2. limx→a

[f(x)− g(x)] = L−M (combination of adding and scaling)

3. limx→a

[cf(x)] = cL (error scales)

4. limx→a

[f(x)g(x)] = L ·M (more complicated, but doable)

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 22 / 45

. . . . . .

Limits and arithmetic II

Fact (Continued)

5. limx→a

f(x)g(x)

=LM, if M ̸= 0.

6. limx→a

[f(x)]n =[limx→a

f(x)]n

(follows from 4 repeatedly)

7. limx→a

xn = an

(follows from 6)

8. limx→a

n√x = n

√a

9. limx→a

n√

f(x) = n√

limx→a

f(x) (If n is even, we must additionally assumethat lim

x→af(x) > 0)

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 23 / 45

. . . . . .

Caution!

I The quotient rule for limits says that if limx→a

g(x) ̸= 0, then

limx→a

f(x)g(x)

=limx→a f(x)limx→a g(x)

I It does NOT say that if limx→a

g(x) = 0, then

limx→a

f(x)g(x)

does not exist

In fact, limits of quotients where numerator and denominator bothtend to 0 are exactly where the magic happens.

I more about this later

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 24 / 45

. . . . . .

Limits and arithmetic II

Fact (Continued)

5. limx→a

f(x)g(x)

=LM, if M ̸= 0.

6. limx→a

[f(x)]n =[limx→a

f(x)]n

(follows from 4 repeatedly)

7. limx→a

xn = an

(follows from 6)

8. limx→a

n√x = n

√a

9. limx→a

n√

f(x) = n√

limx→a

f(x) (If n is even, we must additionally assumethat lim

x→af(x) > 0)

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 25 / 45

. . . . . .

Limits and arithmetic II

Fact (Continued)

5. limx→a

f(x)g(x)

=LM, if M ̸= 0.

6. limx→a

[f(x)]n =[limx→a

f(x)]n

(follows from 4 repeatedly)

7. limx→a

xn = an

(follows from 6)

8. limx→a

n√x = n

√a

9. limx→a

n√

f(x) = n√

limx→a

f(x) (If n is even, we must additionally assumethat lim

x→af(x) > 0)

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 25 / 45

. . . . . .

Limits and arithmetic II

Fact (Continued)

5. limx→a

f(x)g(x)

=LM, if M ̸= 0.

6. limx→a

[f(x)]n =[limx→a

f(x)]n

(follows from 4 repeatedly)

7. limx→a

xn = an

(follows from 6)

8. limx→a

n√x = n

√a

9. limx→a

n√

f(x) = n√

limx→a

f(x) (If n is even, we must additionally assumethat lim

x→af(x) > 0)

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 25 / 45

. . . . . .

Limits and arithmetic II

Fact (Continued)

5. limx→a

f(x)g(x)

=LM, if M ̸= 0.

6. limx→a

[f(x)]n =[limx→a

f(x)]n

(follows from 4 repeatedly)

7. limx→a

xn = an

(follows from 6)

8. limx→a

n√x = n

√a

9. limx→a

n√

f(x) = n√

limx→a

f(x) (If n is even, we must additionally assumethat lim

x→af(x) > 0)

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 25 / 45

. . . . . .

Limits and arithmetic II

Fact (Continued)

5. limx→a

f(x)g(x)

=LM, if M ̸= 0.

6. limx→a

[f(x)]n =[limx→a

f(x)]n

(follows from 4 repeatedly)

7. limx→a

xn = an (follows from 6)

8. limx→a

n√x = n

√a

9. limx→a

n√

f(x) = n√

limx→a

f(x) (If n is even, we must additionally assumethat lim

x→af(x) > 0)

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 25 / 45

. . . . . .

Limits and arithmetic II

Fact (Continued)

5. limx→a

f(x)g(x)

=LM, if M ̸= 0.

6. limx→a

[f(x)]n =[limx→a

f(x)]n

(follows from 4 repeatedly)

7. limx→a

xn = an (follows from 6)

8. limx→a

n√x = n

√a

9. limx→a

n√

f(x) = n√

limx→a

f(x) (If n is even, we must additionally assumethat lim

x→af(x) > 0)

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 25 / 45

. . . . . .

Applying the limit laws

Example

Find limx→3

(x2 + 2x+ 4

).

SolutionBy applying the limit laws repeatedly:

limx→3

(x2 + 2x+ 4

)

= limx→3

(x2)+ lim

x→3(2x) + lim

x→3(4)

=

(limx→3

x)2

+ 2 · limx→3

(x) + 4

= (3)2 + 2 · 3+ 4= 9+ 6+ 4 = 19.

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 26 / 45

. . . . . .

Applying the limit laws

Example

Find limx→3

(x2 + 2x+ 4

).

SolutionBy applying the limit laws repeatedly:

limx→3

(x2 + 2x+ 4

)

= limx→3

(x2)+ lim

x→3(2x) + lim

x→3(4)

=

(limx→3

x)2

+ 2 · limx→3

(x) + 4

= (3)2 + 2 · 3+ 4= 9+ 6+ 4 = 19.

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 26 / 45

. . . . . .

Applying the limit laws

Example

Find limx→3

(x2 + 2x+ 4

).

SolutionBy applying the limit laws repeatedly:

limx→3

(x2 + 2x+ 4

)= lim

x→3

(x2)+ lim

x→3(2x) + lim

x→3(4)

=

(limx→3

x)2

+ 2 · limx→3

(x) + 4

= (3)2 + 2 · 3+ 4= 9+ 6+ 4 = 19.

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 26 / 45

. . . . . .

Applying the limit laws

Example

Find limx→3

(x2 + 2x+ 4

).

SolutionBy applying the limit laws repeatedly:

limx→3

(x2 + 2x+ 4

)= lim

x→3

(x2)+ lim

x→3(2x) + lim

x→3(4)

=

(limx→3

x)2

+ 2 · limx→3

(x) + 4

= (3)2 + 2 · 3+ 4= 9+ 6+ 4 = 19.

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 26 / 45

. . . . . .

Applying the limit laws

Example

Find limx→3

(x2 + 2x+ 4

).

SolutionBy applying the limit laws repeatedly:

limx→3

(x2 + 2x+ 4

)= lim

x→3

(x2)+ lim

x→3(2x) + lim

x→3(4)

=

(limx→3

x)2

+ 2 · limx→3

(x) + 4

= (3)2 + 2 · 3+ 4

= 9+ 6+ 4 = 19.

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 26 / 45

. . . . . .

Applying the limit laws

Example

Find limx→3

(x2 + 2x+ 4

).

SolutionBy applying the limit laws repeatedly:

limx→3

(x2 + 2x+ 4

)= lim

x→3

(x2)+ lim

x→3(2x) + lim

x→3(4)

=

(limx→3

x)2

+ 2 · limx→3

(x) + 4

= (3)2 + 2 · 3+ 4= 9+ 6+ 4 = 19.

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 26 / 45

. . . . . .

Your turn

Example

Find limx→3

x2 + 2x+ 4x3 + 11

Solution

The answer is1938

=12.

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 27 / 45

. . . . . .

Your turn

Example

Find limx→3

x2 + 2x+ 4x3 + 11

Solution

The answer is1938

=12.

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 27 / 45

. . . . . .

Direct Substitution Property

Theorem (The Direct Substitution Property)

If f is a polynomial or a rational function and a is in the domain of f, then

limx→a

f(x) = f(a)

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 28 / 45

. . . . . .

Outline

Recall: The concept of limit

Basic Limits

Limit LawsThe direct substitution property

Limits with AlgebraTwo more limit theorems

Two important trigonometric limits

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 29 / 45

. . . . . .

Limits do not see the point! (in a good way)

TheoremIf f(x) = g(x) when x ̸= a, and lim

x→ag(x) = L, then lim

x→af(x) = L.

Example

Find limx→−1

x2 + 2x+ 1x+ 1

, if it exists.

Solution

Sincex2 + 2x+ 1

x+ 1= x+ 1 whenever x ̸= −1, and since

limx→−1

x+ 1 = 0, we have limx→−1

x2 + 2x+ 1x+ 1

= 0.

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 30 / 45

. . . . . .

Limits do not see the point! (in a good way)

TheoremIf f(x) = g(x) when x ̸= a, and lim

x→ag(x) = L, then lim

x→af(x) = L.

Example

Find limx→−1

x2 + 2x+ 1x+ 1

, if it exists.

Solution

Sincex2 + 2x+ 1

x+ 1= x+ 1 whenever x ̸= −1, and since

limx→−1

x+ 1 = 0, we have limx→−1

x2 + 2x+ 1x+ 1

= 0.

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 30 / 45

. . . . . .

Limits do not see the point! (in a good way)

TheoremIf f(x) = g(x) when x ̸= a, and lim

x→ag(x) = L, then lim

x→af(x) = L.

Example

Find limx→−1

x2 + 2x+ 1x+ 1

, if it exists.

Solution

Sincex2 + 2x+ 1

x+ 1= x+ 1 whenever x ̸= −1, and since

limx→−1

x+ 1 = 0, we have limx→−1

x2 + 2x+ 1x+ 1

= 0.

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 30 / 45

. . . . . .

ET game for f(x) =x2 + 2x+ 1

x+ 1

. .x

.y

...−1

I Even if f(−1) were something else, it would not effect the limit.

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 31 / 45

. . . . . .

ET game for f(x) =x2 + 2x+ 1

x+ 1

. .x

.y

...−1

I Even if f(−1) were something else, it would not effect the limit.

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 31 / 45

. . . . . .

Limit of a function defined piecewise at a boundary

point

Example

Let

f(x) =

{x2 x ≥ 0−x x < 0

Does limx→0

f(x) exist?

.

.

SolutionWe have

limx→0+

f(x) MTP= lim

x→0+x2 DSP

= 02 = 0

Likewise:lim

x→0−f(x) = lim

x→0−−x = −0 = 0

So limx→0

f(x) = 0.

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 32 / 45

. . . . . .

Limit of a function defined piecewise at a boundary

point

Example

Let

f(x) =

{x2 x ≥ 0−x x < 0

Does limx→0

f(x) exist?

.

.

SolutionWe have

limx→0+

f(x) MTP= lim

x→0+x2 DSP

= 02 = 0

Likewise:lim

x→0−f(x) = lim

x→0−−x = −0 = 0

So limx→0

f(x) = 0.

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 32 / 45

. . . . . .

Limit of a function defined piecewise at a boundary

point

Example

Let

f(x) =

{x2 x ≥ 0−x x < 0

Does limx→0

f(x) exist?

.

.

SolutionWe have

limx→0+

f(x) MTP= lim

x→0+x2 DSP

= 02 = 0

Likewise:lim

x→0−f(x) = lim

x→0−−x = −0 = 0

So limx→0

f(x) = 0.

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 32 / 45

. . . . . .

Limit of a function defined piecewise at a boundary

point

Example

Let

f(x) =

{x2 x ≥ 0−x x < 0

Does limx→0

f(x) exist?

..

SolutionWe have

limx→0+

f(x) MTP= lim

x→0+x2 DSP

= 02 = 0

Likewise:lim

x→0−f(x) = lim

x→0−−x = −0 = 0

So limx→0

f(x) = 0.

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 32 / 45

. . . . . .

Limit of a function defined piecewise at a boundary

point

Example

Let

f(x) =

{x2 x ≥ 0−x x < 0

Does limx→0

f(x) exist?

..

SolutionWe have

limx→0+

f(x) MTP= lim

x→0+x2 DSP

= 02 = 0

Likewise:lim

x→0−f(x) = lim

x→0−−x = −0 = 0

So limx→0

f(x) = 0.

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 32 / 45

. . . . . .

Limit of a function defined piecewise at a boundary

point

Example

Let

f(x) =

{x2 x ≥ 0−x x < 0

Does limx→0

f(x) exist?

.

.

SolutionWe have

limx→0+

f(x) MTP= lim

x→0+x2 DSP

= 02 = 0

Likewise:lim

x→0−f(x) = lim

x→0−−x = −0 = 0

So limx→0

f(x) = 0.

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 32 / 45

. . . . . .

Limit of a function defined piecewise at a boundary

point

Example

Let

f(x) =

{x2 x ≥ 0−x x < 0

Does limx→0

f(x) exist?

.

.

SolutionWe have

limx→0+

f(x) MTP= lim

x→0+x2 DSP

= 02 = 0

Likewise:lim

x→0−f(x) = lim

x→0−−x = −0 = 0

So limx→0

f(x) = 0.V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 32 / 45

. . . . . .

Finding limits by algebraic manipulations

Example

Find limx→4

√x− 2x− 4

.

SolutionWrite the denominator as x− 4 =

√x2 − 4 = (

√x− 2)(

√x+ 2). So

limx→4

√x− 2x− 4

= limx→4

√x− 2

(√x− 2)(

√x+ 2)

= limx→4

1√x+ 2

=14

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 33 / 45

. . . . . .

Finding limits by algebraic manipulations

Example

Find limx→4

√x− 2x− 4

.

SolutionWrite the denominator as x− 4 =

√x2 − 4 = (

√x− 2)(

√x+ 2).

So

limx→4

√x− 2x− 4

= limx→4

√x− 2

(√x− 2)(

√x+ 2)

= limx→4

1√x+ 2

=14

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 33 / 45

. . . . . .

Finding limits by algebraic manipulations

Example

Find limx→4

√x− 2x− 4

.

SolutionWrite the denominator as x− 4 =

√x2 − 4 = (

√x− 2)(

√x+ 2). So

limx→4

√x− 2x− 4

= limx→4

√x− 2

(√x− 2)(

√x+ 2)

= limx→4

1√x+ 2

=14

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 33 / 45

. . . . . .

Your turn

Example

Let

f(x) =

{1− x2 x ≥ 12x x < 1

Find limx→1

f(x) if it exists.

.

..1

.

.

SolutionWe have

limx→1+

f(x) = limx→1+

(1− x2

)DSP= 0

limx→1−

f(x) = limx→1−

(2x) DSP= 2

The left- and right-hand limits disagree, so the limit does not exist.

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 34 / 45

. . . . . .

Your turn

Example

Let

f(x) =

{1− x2 x ≥ 12x x < 1

Find limx→1

f(x) if it exists.

.

..1

.

.

SolutionWe have

limx→1+

f(x) = limx→1+

(1− x2

)DSP= 0

limx→1−

f(x) = limx→1−

(2x) DSP= 2

The left- and right-hand limits disagree, so the limit does not exist.

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 34 / 45

. . . . . .

Your turn

Example

Let

f(x) =

{1− x2 x ≥ 12x x < 1

Find limx→1

f(x) if it exists.

. ..1

.

.

SolutionWe have

limx→1+

f(x) = limx→1+

(1− x2

)DSP= 0

limx→1−

f(x) = limx→1−

(2x) DSP= 2

The left- and right-hand limits disagree, so the limit does not exist.

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 34 / 45

. . . . . .

Your turn

Example

Let

f(x) =

{1− x2 x ≥ 12x x < 1

Find limx→1

f(x) if it exists.

. ..1

.

.

SolutionWe have

limx→1+

f(x) = limx→1+

(1− x2

)DSP= 0

limx→1−

f(x) = limx→1−

(2x) DSP= 2

The left- and right-hand limits disagree, so the limit does not exist.

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 34 / 45

. . . . . .

Your turn

Example

Let

f(x) =

{1− x2 x ≥ 12x x < 1

Find limx→1

f(x) if it exists.

. ..1

.

.

SolutionWe have

limx→1+

f(x) = limx→1+

(1− x2

)DSP= 0

limx→1−

f(x) = limx→1−

(2x) DSP= 2

The left- and right-hand limits disagree, so the limit does not exist.

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 34 / 45

. . . . . .

Your turn

Example

Let

f(x) =

{1− x2 x ≥ 12x x < 1

Find limx→1

f(x) if it exists.

. ..1

.

.

SolutionWe have

limx→1+

f(x) = limx→1+

(1− x2

)DSP= 0

limx→1−

f(x) = limx→1−

(2x) DSP= 2

The left- and right-hand limits disagree, so the limit does not exist.V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 34 / 45

. . . . . .

A message from the Mathematical Grammar Police

Please do not say “ limx→a

f(x) = DNE.” Does not compute.

I Too many verbsI Leads to FALSE limit laws like “If lim

x→af(x) DNE and lim

x→ag(x) DNE,

then limx→a

(f(x) + g(x)) DNE.”

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 35 / 45

. . . . . .

A message from the Mathematical Grammar Police

Please do not say “ limx→a

f(x) = DNE.” Does not compute.

I Too many verbs

I Leads to FALSE limit laws like “If limx→a

f(x) DNE and limx→a

g(x) DNE,then lim

x→a(f(x) + g(x)) DNE.”

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 35 / 45

. . . . . .

A message from the Mathematical Grammar Police

Please do not say “ limx→a

f(x) = DNE.” Does not compute.

I Too many verbsI Leads to FALSE limit laws like “If lim

x→af(x) DNE and lim

x→ag(x) DNE,

then limx→a

(f(x) + g(x)) DNE.”

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 35 / 45

. . . . . .

Two More Important Limit Theorems

TheoremIf f(x) ≤ g(x) when x is near a (except possibly at a), then

limx→a

f(x) ≤ limx→a

g(x)

(as usual, provided these limits exist).

Theorem (The Squeeze/Sandwich/Pinching Theorem)

If f(x) ≤ g(x) ≤ h(x) when x is near a (as usual, except possibly at a),and

limx→a

f(x) = limx→a

h(x) = L,

thenlimx→a

g(x) = L.

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 36 / 45

. . . . . .

Using the Squeeze Theorem

We can use the Squeeze Theorem to replace complicated expressionswith simple ones when taking the limit.

Example

Show that limx→0

x2 sin(πx

)= 0.

SolutionWe have for all x,

−1 ≤ sin(πx

)≤ 1 =⇒ −x2 ≤ x2 sin

(πx

)≤ x2

The left and right sides go to zero as x → 0.

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 37 / 45

. . . . . .

Using the Squeeze Theorem

We can use the Squeeze Theorem to replace complicated expressionswith simple ones when taking the limit.

Example

Show that limx→0

x2 sin(πx

)= 0.

SolutionWe have for all x,

−1 ≤ sin(πx

)≤ 1 =⇒ −x2 ≤ x2 sin

(πx

)≤ x2

The left and right sides go to zero as x → 0.

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 37 / 45

. . . . . .

Using the Squeeze Theorem

We can use the Squeeze Theorem to replace complicated expressionswith simple ones when taking the limit.

Example

Show that limx→0

x2 sin(πx

)= 0.

SolutionWe have for all x,

−1 ≤ sin(πx

)≤ 1 =⇒ −x2 ≤ x2 sin

(πx

)≤ x2

The left and right sides go to zero as x → 0.

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 37 / 45

. . . . . .

Illustration of the Squeeze Theorem

. .x

.y .h(x) = x2

.f(x) = −x2

.g(x) = x2 sin(πx

)

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 38 / 45

. . . . . .

Illustration of the Squeeze Theorem

. .x

.y .h(x) = x2

.f(x) = −x2

.g(x) = x2 sin(πx

)

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 38 / 45

. . . . . .

Illustration of the Squeeze Theorem

. .x

.y .h(x) = x2

.f(x) = −x2

.g(x) = x2 sin(πx

)

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 38 / 45

. . . . . .

Outline

Recall: The concept of limit

Basic Limits

Limit LawsThe direct substitution property

Limits with AlgebraTwo more limit theorems

Two important trigonometric limits

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 39 / 45

. . . . . .

Two important trigonometric limits

TheoremThe following two limits hold:

I limθ→0

sin θθ

= 1

I limθ→0

cos θ − 1θ

= 0

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 40 / 45

. . . . . .

Proof of the Sine Limit

Proof.

. .θ

.sin θ

.cos θ

.tan θ

.−1 .1

Notice

sin θ ≤

θ

≤ 2 tanθ

2≤ tan θ

Divide by sin θ:

1 ≤ θ

sin θ≤ 1

cos θ

Take reciprocals:

1 ≥ sin θθ

≥ cos θ

As θ → 0, the left and right sides tend to 1. So, then, must the middleexpression.

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 41 / 45

. . . . . .

Proof of the Sine Limit

Proof.

. .θ.sin θ

.cos θ

.tan θ

.−1 .1

Notice

sin θ ≤ θ

≤ 2 tanθ

2≤ tan θ

Divide by sin θ:

1 ≤ θ

sin θ≤ 1

cos θ

Take reciprocals:

1 ≥ sin θθ

≥ cos θ

As θ → 0, the left and right sides tend to 1. So, then, must the middleexpression.

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 41 / 45

. . . . . .

Proof of the Sine Limit

Proof.

. .θ.sin θ

.cos θ

.θ .tan θ

.−1 .1

Notice

sin θ ≤ θ

≤ 2 tanθ

2≤

tan θ

Divide by sin θ:

1 ≤ θ

sin θ≤ 1

cos θ

Take reciprocals:

1 ≥ sin θθ

≥ cos θ

As θ → 0, the left and right sides tend to 1. So, then, must the middleexpression.

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 41 / 45

. . . . . .

Proof of the Sine Limit

Proof.

. .θ.sin θ

.cos θ

.θ .tan θ

.−1 .1

Notice

sin θ ≤ θ ≤ 2 tanθ

2≤ tan θ

Divide by sin θ:

1 ≤ θ

sin θ≤ 1

cos θ

Take reciprocals:

1 ≥ sin θθ

≥ cos θ

As θ → 0, the left and right sides tend to 1. So, then, must the middleexpression.

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 41 / 45

. . . . . .

Proof of the Sine Limit

Proof.

. .θ.sin θ

.cos θ

.θ .tan θ

.−1 .1

Notice

sin θ ≤ θ ≤ 2 tanθ

2≤ tan θ

Divide by sin θ:

1 ≤ θ

sin θ≤ 1

cos θ

Take reciprocals:

1 ≥ sin θθ

≥ cos θ

As θ → 0, the left and right sides tend to 1. So, then, must the middleexpression.

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 41 / 45

. . . . . .

Proof of the Sine Limit

Proof.

. .θ.sin θ

.cos θ

.θ .tan θ

.−1 .1

Notice

sin θ ≤ θ ≤ 2 tanθ

2≤ tan θ

Divide by sin θ:

1 ≤ θ

sin θ≤ 1

cos θ

Take reciprocals:

1 ≥ sin θθ

≥ cos θ

As θ → 0, the left and right sides tend to 1. So, then, must the middleexpression.

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 41 / 45

. . . . . .

Proof of the Sine Limit

Proof.

. .θ.sin θ

.cos θ

.θ .tan θ

.−1 .1

Notice

sin θ ≤ θ ≤ 2 tanθ

2≤ tan θ

Divide by sin θ:

1 ≤ θ

sin θ≤ 1

cos θ

Take reciprocals:

1 ≥ sin θθ

≥ cos θ

As θ → 0, the left and right sides tend to 1. So, then, must the middleexpression.

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 41 / 45

. . . . . .

Proof of the Cosine Limit

Proof.

1− cos θθ

=1− cos θ

θ· 1+ cos θ1+ cos θ

=1− cos2 θθ(1+ cos θ)

=sin2 θ

θ(1+ cos θ)=

sin θθ

· sin θ1+ cos θ

So

limθ→0

1− cos θθ

=

(limθ→0

sin θθ

)·(limθ→0

sin θ1+ cos θ

)= 1 · 0 = 0.

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 42 / 45

. . . . . .

Try these

Example

1. limθ→0

tan θθ

2. limθ→0

sin 2θθ

Answer

1. 12. 2

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 43 / 45

. . . . . .

Try these

Example

1. limθ→0

tan θθ

2. limθ→0

sin 2θθ

Answer

1. 12. 2

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 43 / 45

. . . . . .

Solutions

1. Use the basic trigonometric limit and the definition of tangent.

limθ→0

tan θθ

= limθ→0

sin θθ cos θ

= limθ→0

sin θθ

· limθ→0

1cos θ

= 1 · 11= 1.

2. Change the variable:

limθ→0

sin 2θθ

= lim2θ→0

sin 2θ2θ · 1

2= 2 · lim

2θ→0

sin 2θ2θ

= 2 · 1 = 2

OR use a trigonometric identity:

limθ→0

sin 2θθ

= limθ→0

2 sin θ cos θθ

= 2 · limθ→0

sin θθ

· limθ→0

cos θ = 2 ·1 ·1 = 2

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 44 / 45

. . . . . .

Solutions

1. Use the basic trigonometric limit and the definition of tangent.

limθ→0

tan θθ

= limθ→0

sin θθ cos θ

= limθ→0

sin θθ

· limθ→0

1cos θ

= 1 · 11= 1.

2. Change the variable:

limθ→0

sin 2θθ

= lim2θ→0

sin 2θ2θ · 1

2= 2 · lim

2θ→0

sin 2θ2θ

= 2 · 1 = 2

OR use a trigonometric identity:

limθ→0

sin 2θθ

= limθ→0

2 sin θ cos θθ

= 2 · limθ→0

sin θθ

· limθ→0

cos θ = 2 ·1 ·1 = 2

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 44 / 45

. . . . . .

Solutions

1. Use the basic trigonometric limit and the definition of tangent.

limθ→0

tan θθ

= limθ→0

sin θθ cos θ

= limθ→0

sin θθ

· limθ→0

1cos θ

= 1 · 11= 1.

2. Change the variable:

limθ→0

sin 2θθ

= lim2θ→0

sin 2θ2θ · 1

2= 2 · lim

2θ→0

sin 2θ2θ

= 2 · 1 = 2

OR use a trigonometric identity:

limθ→0

sin 2θθ

= limθ→0

2 sin θ cos θθ

= 2 · limθ→0

sin θθ

· limθ→0

cos θ = 2 ·1 ·1 = 2

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 44 / 45

. . . . . .

Summary

I The limit laws allow us to compute limits reasonably.I BUT we cannot make up extra laws otherwise we get into trouble.

V63.0121.041, Calculus I (NYU) Section 1.4 Calculating Limits September 15, 2010 45 / 45

Recommended