MASE 5Centro de Ciencias de la Tierra, Univers …Pérez-Campos et al. (2008) Husker & Davis...

Preview:

Citation preview

Geometry transition in the Cocos plate, from flat-steep to constant dip

ABSTRACTSubduction of the Cocos plate beneath North America has a variable and complex behavior along the Middle-American Trench. Initially, its geometry was delineated from regional seismicity. In the last 10 years, seismic experiments have illuminated some details in the geometry. They have reported, from NW to SE an abrupt dip transition, from 50 to 26°, as the result of a tear that splits Cocos North from Cocos South; then there is a smooth transition to a horizontal geometry under central Mexico. Further southeast, under the Isthmus of Tehuantepec, the Cocos plate shows a constant ~26° subduction dip. This last transition has been assumed to be smooth from the sparse seismicity in the region. A first glimpse of the slab geometry under Oaxaca, shows the slab continues to be flat at least until 97.5°W longitude, where the slab suddenly changes to a ~55° dip to the northeast. This occurs at a distance of ~75 km from the Pico de Orizaba volcano, which is a similar distance as the active Popocatepetl volcano from the place where the slab dives into the mantle along the Meso-American Subduction Experiment line, in central Mexico. East of this region, receiver function images show an abrupt change in the geometry and length of the slab.

Xyoli Pérez-Campos1, Robert W. Clayton2, Miguel A. Rodríguez3, Michael R. Brudzinski4, Carlos Valdés-González1, Enrique Cabral1, Alejandra Arciniega1, Francisco Córdoba-Montiel5

1 Instituto de Geofísica, Universid Nacional Autónoma de México. xyoli@geofisica.unam.mx2 Seismological Laboratory, California Institute of Technology

3 Posgrado en Ciencias de la Tierra, Universidad Nacional Autónoma de México4 Department of Geology and Environmental Earth Science, Miami University

5Centro de Ciencias de la Tierra, Universidad Veracruzana.MASE VEOX

Easter Transision

112

-105˚

-105˚

-100˚

-100˚

-95˚

-95˚

-90˚

-90˚

15˚ 15˚

18˚ 18˚

21˚ 21˚MCVA

LTVF

AH

TMVB

20 km

40 km

60 km

80 km

100 km

150 km

Slab edge

PACIFIC

MAT

OGFZ

OFZ

TR

NORTH AMERICA

COCOS

RIVERA

CARIBBEAN

RFZ

EPR

11,4.8

17.6,5.6

8,2.0

17.5,6.314.5,5.6

18,6.3

23,7.1

35,7.1

10,2.4

432

1

SSN

OXNETCENAPREDVEOXMASEMARS

UV

Stations

20132013-2015

Slab contours modified fromPardo & Suárez (1995)

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

Dep

th [k

m]

Horizontal distance from Acapulco station [km]

Tom

ogra

phy:

% d

iffer

ence

to th

e ba

ckgr

ound

mod

el

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

RF: Average Amplitude

LVM (NA)Continental crust (NA Plate)LC (NA)

Mantle wedge

OC (C Plate)

0 100 200 300 400 500

100

200

300

400

500

600

700 700

600

500

400

300

200

100

0

Aca

pulc

o

Mex

ico

City

Tem

poal

TMVB2 20E

leva

tion

[km

]

Horizontal subduction for ~200 km.LVL.

Pérez-Campos et al. (2008)Husker & Davis (2009)Kim et al. (2010; 2012)

MASEMASE

Steep subduction of 76°.Slab reaches 500 km depth.

REFERENCES:Espíndola Castro, V.H. (2009). Ph.D. Thesis, Posgrado en Ciencias de la Tierra, UNAM, 120 pp.

Husker, A. & Davis, P.M. (2009). J. Geophys. Res., 114, B04306, doi:10.1029/2008JB006039.

Kim, Y., Clayton, R.W. & Jackson, J.M. (2010). J. Geophys. Res., 115, B06310, doi:10.1029/2009JB006942.

Kim, Y., Miller, M.S, Pearce, F. & Clayton, R.W. (2012). Geophys. Geosyst., 13, Q07001, doi:10.1029/2012GC004033.

Melgar, D. & X. Pérez Campos (2011). Pure Appl. Geophys., DOI 10.1007/s00024-010-0199-5.

Pardo, M. & Suárez, G. (1995). J. Geophys. Res., 110, B7, 12,357-

Pérez-Campos,X., Kim, Y., Husker, A., Davis, P.M., Clayton, R.W., Iglesias, A., Pacheco, J.F., Singh, S.K., Manea, V.C. & Gurnis, M. (2008).

Geophys. Res. Lett., 35, L18303, doi:10.1029/2008GL035127.

Rodríguez Domínguez, M. (2013). Bachelor's Thesis, Facultad de Ingeniería, UNAM, 68 pp.

Slab dip: 26°.No plate is observed beyond 150 km depth.

VEOXVEOX

Melgar & Pérez-Campos (2011)

SSN localized hypocenters

Cocos Plate (PARDO and SUÁREZ, 1995)Cocos Plate, this studyMoho, this study

Relocated events (CASTRO ARTOLA, 2010)

PacificOcean

Gulf ofMexico

MAT

LTVFCoast

A A’

1000

2000

1000

2000

1000

2000Elevation [m]

Distance from trench [km]

Dep

th [k

m]

0

25

50

75

100

125

150

175

200

225

250

0

25

50

75

100

125

150

175

200

225

2500 50 100 150 200 250 300 350 400 450

GECOGECO

Smooth geometry transition was inferred from scarse seismicity (Pardo & Suárez, 1995).Slab depth at SSN (Espíndola Castro, 2009) and TUXT stations (Rodríguez Domínguez, 2013), suggests otherwise.

GECO: Geometry of Cocos

50

100

150

200

450 0 50 100 150 200 250 300 350 400 450

50

100

150

200

250

Distance along profile [km]

NECoa

st

Coa

stProfile 4

450 0 50 100 150 200 250 300 350 400

Coa

st

Coa

stProfile 3

0 50 100 150 200 250 300 350 400

Profile 2

50

100

150

200

250

Dep

th [k

m]

−50 0 50 100 150 200 250 300 350 400 450

0

50

100

150

200

250

0

Dep

th [k

m]

SW Coa

st Profile 1

Average Amplitude

−1.0 −0.6 −0.2 0.2 0.6 −1.0

TMVB = Trans Mexican Volcanic BeltAH = Anegada HighLTVF = Los Tuxtlas Volcanic FieldMCVB = Modern Chiapanecan Volcanic Belt

EPR = East Pacific RiseMAT = Middle American TrenchRFZ = Rivera Fracture ZoneOFZ = Orozco Fracture ZoneOGFZ = O‘Gorman Fracture ZoneTR = Tehuantepec Ridge

Age,Convergence rate11,4.8

km

TUXT?

Top right: Backprojected RF profiles (top) and interpreted profiles (bottom). Dots are hypocenters reported in the SSN catalogue. Gray lines correspond to Pardo & Suárez (1995) top of the slab. Brown line shows Moho; blue and red lines, top and bottom of the oceanic crust, as interpreted from RFs. Light blue and light orange lines show alternative RF interpretation. Profiles 1 and 2 show a horizontal subduction, consistent with Pardo & Suárez (1995) and seismicity. Profiles 3 and 4, show two possibilities, one is somewhat consistent with Pardo & Suárez (1995), and the other one shows a deeper slab. This might be due to azimuthal variation, suggesting the geometry transition taking place in this region is not smooth.

Coa

st

Seismicity and receiver functions delineate the geometry of the slab, going from horizontal subduction in central Mexico to central Oaxaca, and changing abruptly to the east for a smooth 26° dip angle. This suggest a possible tear in the slab.

Conclusions and future work

17 portable stations are to be installed in the area (light blue

squares), plus 3 permanent statios (green squares) to

focus on the deeper transition.−99˚

−99˚

−98˚

−98˚

−97˚

−97˚

−96˚

−96˚

−95˚

−95˚

−94˚

−94˚

14˚ 14˚

15˚ 15˚

16˚ 16˚

17˚ 17˚

18˚ 18˚

19˚ 19˚

20˚ 20˚

21˚ 21˚

TR

43

21

MAT

Our gratitude to station operatos of SSN, GECO

and OXNET. Stations currently operating in

Oaxaca are funded through PAPIIT-UNAM

project IN119505-3, stations in Veracruz and Puebla trough Conacyt

project 177676

Acknowledgements

Bottom left: Slab isodepth contours. Dotted lines are isodepth contours from Pardo & Suárez (1995). Continuous lines are interpolated contours given slab depths observed by Espíndola Castro (2009) at SSN stations (large squares), by Melgar & Pérez-Campos along the VEOX profile (small squares), and by Rodríguez Domínguez (2013) at station TUXT (circles).

Rodríguez Domínguez (2013)

Recommended