MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix...

Preview:

Citation preview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

MAT2305 LINEAR ALGEBRA :Week2

Thanatyod Jampawai, Ph.D.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 1 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Review Week 1

Linear Equation and Linear System of Linear EquationsSolutionConsistent and InconsistentGuass EliminationAugmented MatrixElementary Row Operations (EROs)Row Echelon Form (REF) vs Row Reduced Echelon Form (RREF)Guass-Jordan Elimination

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 2 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Outline for Week 2

Chapter 2 Matrices2.1 Matrices and Matrix Operations2.2 Inverse Matrix2.3 Linear System with Invertibility

Assignment 2

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 3 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices

Chapter 2 Matrices

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 4 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

2.1 Matrices and Matrix Operations

Aj.Thanatyod Jampwai, faculty of education, SSRU, spent lecture two sujectsduring a certain week for semester 2/2017:

Mon. Tues. Wed. Thurs. Fri. Sat. SunMAP1405: Number Theory 0 6 0 0 0 0 0MAT2305: Linear Algebra 6 0 0 0 0 0 0

The following rectangular array of number with 2 rows and 7 columns iscalled a matrix: [

0 6 0 0 0 0 06 0 0 0 0 0 0

]

Definition (2.1.1)

A matrix is a rectangular array of numbers. The numbers in the array are

called the entries in the matrix.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 5 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

2.1 Matrices and Matrix Operations

Aj.Thanatyod Jampwai, faculty of education, SSRU, spent lecture two sujectsduring a certain week for semester 2/2017:

Mon. Tues. Wed. Thurs. Fri. Sat. SunMAP1405: Number Theory 0 6 0 0 0 0 0MAT2305: Linear Algebra 6 0 0 0 0 0 0

The following rectangular array of number with 2 rows and 7 columns iscalled a matrix: [

0 6 0 0 0 0 06 0 0 0 0 0 0

]

Definition (2.1.1)

A matrix is a rectangular array of numbers. The numbers in the array are

called the entries in the matrix.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 5 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

2.1 Matrices and Matrix Operations

Aj.Thanatyod Jampwai, faculty of education, SSRU, spent lecture two sujectsduring a certain week for semester 2/2017:

Mon. Tues. Wed. Thurs. Fri. Sat. SunMAP1405: Number Theory 0 6 0 0 0 0 0MAT2305: Linear Algebra 6 0 0 0 0 0 0

The following rectangular array of number with 2 rows and 7 columns iscalled a matrix: [

0 6 0 0 0 0 06 0 0 0 0 0 0

]

Definition (2.1.1)

A matrix is a rectangular array of numbers. The numbers in the array are

called the entries in the matrix.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 5 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

The size of a matrix is described in term of the number of rows andcolumns it contains.

[−1 3 0 21 0 1 0

]is a martix that its size is 2 by 4 (written 2× 4).

A matrix with only one column is called a column matrix (or a columnvector),

row matrix:[1 0 2 3 5

]A matrix with only one row is called a row matrix (or a row vector).

column matrix:[12

]

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 6 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

The size of a matrix is described in term of the number of rows andcolumns it contains. [

−1 3 0 21 0 1 0

]is a martix that its size is 2 by 4 (written 2× 4).

A matrix with only one column is called a column matrix (or a columnvector),

row matrix:[1 0 2 3 5

]A matrix with only one row is called a row matrix (or a row vector).

column matrix:[12

]

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 6 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

The size of a matrix is described in term of the number of rows andcolumns it contains. [

−1 3 0 21 0 1 0

]is a martix that its size is 2 by 4 (written 2× 4).

A matrix with only one column is called a column matrix (or a columnvector),

row matrix:[1 0 2 3 5

]

A matrix with only one row is called a row matrix (or a row vector).

column matrix:[12

]

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 6 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

The size of a matrix is described in term of the number of rows andcolumns it contains. [

−1 3 0 21 0 1 0

]is a martix that its size is 2 by 4 (written 2× 4).

A matrix with only one column is called a column matrix (or a columnvector),

row matrix:[1 0 2 3 5

]A matrix with only one row is called a row matrix (or a row vector).

column matrix:[12

]

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 6 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

A general m× n matrix as

a11 a12 · · · a1na21 a22 · · · a2n

......

...am1 am2 · · · amn

The preceding matrix A can be written as

[aij ]m×n or [aij ].

The entry that occurs in row i and column j of a matrix A will be denoted by aij .

A = [aij ]3×5 =

a11 a12 a13 a14 a15a21 a22 a23 a24 a25a31 a32 a33 a34 a35

A matrix A with n rows and n columns is called a square matrix of order n , and entries

a11, a22, ..., ann are said to be on the main diagonal of A.

A = [aij ]3×3 =

a11 a12 a13a21 a22 a23a31 a32 a33

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 7 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

A general m× n matrix as

a11 a12 · · · a1na21 a22 · · · a2n

......

...am1 am2 · · · amn

The preceding matrix A can be written as

[aij ]m×n or [aij ].

The entry that occurs in row i and column j of a matrix A will be denoted by aij .

A = [aij ]3×5 =

a11 a12 a13 a14 a15a21 a22 a23 a24 a25a31 a32 a33 a34 a35

A matrix A with n rows and n columns is called a square matrix of order n , and entries

a11, a22, ..., ann are said to be on the main diagonal of A.

A = [aij ]3×3 =

a11 a12 a13a21 a22 a23a31 a32 a33

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 7 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

A general m× n matrix as

a11 a12 · · · a1na21 a22 · · · a2n

......

...am1 am2 · · · amn

The preceding matrix A can be written as

[aij ]m×n or [aij ].

The entry that occurs in row i and column j of a matrix A will be denoted by aij .

A = [aij ]3×5 =

a11 a12 a13 a14 a15a21 a22 a23 a24 a25a31 a32 a33 a34 a35

A matrix A with n rows and n columns is called a square matrix of order n , and entries

a11, a22, ..., ann are said to be on the main diagonal of A.

A = [aij ]3×3 =

a11 a12 a13a21 a22 a23a31 a32 a33

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 7 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

A general m× n matrix as

a11 a12 · · · a1na21 a22 · · · a2n

......

...am1 am2 · · · amn

The preceding matrix A can be written as

[aij ]m×n or [aij ].

The entry that occurs in row i and column j of a matrix A will be denoted by aij .

A = [aij ]3×5 =

a11 a12 a13 a14 a15a21 a22 a23 a24 a25a31 a32 a33 a34 a35

A matrix A with n rows and n columns is called a square matrix of order n , and entries

a11, a22, ..., ann are said to be on the main diagonal of A.

A = [aij ]3×3 =

a11 a12 a13a21 a22 a23a31 a32 a33

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 7 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

A general m× n matrix as

a11 a12 · · · a1na21 a22 · · · a2n

......

...am1 am2 · · · amn

The preceding matrix A can be written as

[aij ]m×n or [aij ].

The entry that occurs in row i and column j of a matrix A will be denoted by aij .

A = [aij ]3×5 =

a11 a12 a13 a14 a15a21 a22 a23 a24 a25a31 a32 a33 a34 a35

A matrix A with n rows and n columns is called a square matrix of order n ,

and entries

a11, a22, ..., ann are said to be on the main diagonal of A.

A = [aij ]3×3 =

a11 a12 a13a21 a22 a23a31 a32 a33

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 7 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

A general m× n matrix as

a11 a12 · · · a1na21 a22 · · · a2n

......

...am1 am2 · · · amn

The preceding matrix A can be written as

[aij ]m×n or [aij ].

The entry that occurs in row i and column j of a matrix A will be denoted by aij .

A = [aij ]3×5 =

a11 a12 a13 a14 a15a21 a22 a23 a24 a25a31 a32 a33 a34 a35

A matrix A with n rows and n columns is called a square matrix of order n , and entries

a11, a22, ..., ann are said to be on the main diagonal of A.

A = [aij ]3×3 =

a11 a12 a13a21 a22 a23a31 a32 a33

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 7 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Definition (2.1.2)

Two matrices are defined to be equal if they have the same size and thiercorresponding entries are eqaul.

Example (2.1.1)

Compute x and y if A = B.

A =

[1 x+ 13 2

]and B =

[1 y + 2

1− y 2

].

Solution

x+ 1 = y + 2 → x− y = 1

3 = 1− y → y = −2 ∴ x = −1

Therefore, x = −1 and y = −2 #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 8 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Definition (2.1.2)

Two matrices are defined to be equal if they have the same size and thiercorresponding entries are eqaul.

Example (2.1.1)

Compute x and y if A = B.

A =

[1 x+ 13 2

]and B =

[1 y + 2

1− y 2

].

Solution

x+ 1 = y + 2 → x− y = 1

3 = 1− y → y = −2 ∴ x = −1

Therefore, x = −1 and y = −2 #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 8 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Definition (2.1.2)

Two matrices are defined to be equal if they have the same size and thiercorresponding entries are eqaul.

Example (2.1.1)

Compute x and y if A = B.

A =

[1 x+ 13 2

]and B =

[1 y + 2

1− y 2

].

Solution

x+ 1 = y + 2 → x− y = 1

3 = 1− y → y = −2 ∴ x = −1

Therefore, x = −1 and y = −2 #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 8 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Sum and Difference of Matrices

Definition (2.1.3)

Let A = [aij ] and B = [bij ] be matrices of the same size.

The sum of A and B

A+B = [aij + bij ]

The difference of A and B

A−B = [aij − bij ]

Matrices of different sizes cannot be added or substracted.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 9 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Example (2.1.2)

Find A+B, A−B, A+ C and B − C.

A =

1 3 43 2 −20 −1 3

, B =

1 2 3−4 2 15 1 0

and C =

[1 67 2

].

Solution

A+B =

1 3 43 2 −20 −1 3

+

1 2 3−4 2 15 1 0

=

2 5 7−1 4 −15 0 3

#

A−B =

1 3 43 2 −20 −1 3

1 2 3−4 2 15 1 0

=

0 1 17 0 −3−5 −2 3

#

A+ C and B − C are undefined because two matrices are different sizes. #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 10 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Example (2.1.2)

Find A+B, A−B, A+ C and B − C.

A =

1 3 43 2 −20 −1 3

, B =

1 2 3−4 2 15 1 0

and C =

[1 67 2

].

Solution

A+B =

1 3 43 2 −20 −1 3

+

1 2 3−4 2 15 1 0

=

2 5 7−1 4 −15 0 3

#

A−B =

1 3 43 2 −20 −1 3

1 2 3−4 2 15 1 0

=

0 1 17 0 −3−5 −2 3

#

A+ C and B − C are undefined because two matrices are different sizes. #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 10 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Example (2.1.2)

Find A+B, A−B, A+ C and B − C.

A =

1 3 43 2 −20 −1 3

, B =

1 2 3−4 2 15 1 0

and C =

[1 67 2

].

Solution

A+B =

1 3 43 2 −20 −1 3

+

1 2 3−4 2 15 1 0

=

2 5 7−1 4 −15 0 3

#

A−B =

1 3 43 2 −20 −1 3

1 2 3−4 2 15 1 0

=

0 1 17 0 −3−5 −2 3

#

A+ C and B − C are undefined because two matrices are different sizes. #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 10 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Scalar Multiplication

Definition (2.1.4)

Let A = [aij ] be any matrix and c be any scalar. Then the product cA is thematrix obtained by multuplying each entry of the matrix A by c. The matrixcA is said to be a scalar multiple of A .

cA = [caij ]

Example (2.1.3)

For the matrices

A =

[1 −4 4 10 3 −2 10

], B =

[1 6 3 53 2 −1 2

]and C =

[5 0 9 57 2 0 −3

].

Compute 2A, 3B −A, C − (A+ 2B) and 2(A+B)− 3C

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 11 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Scalar Multiplication

Definition (2.1.4)

Let A = [aij ] be any matrix and c be any scalar. Then the product cA is thematrix obtained by multuplying each entry of the matrix A by c. The matrixcA is said to be a scalar multiple of A .

cA = [caij ]

Example (2.1.3)

For the matrices

A =

[1 −4 4 10 3 −2 10

], B =

[1 6 3 53 2 −1 2

]and C =

[5 0 9 57 2 0 −3

].

Compute 2A, 3B −A, C − (A+ 2B) and 2(A+B)− 3C

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 11 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Solution

2A = 2

[1 −4 4 10 3 −2 10

]=

[2 −8 8 20 6 −4 20

]#

3B −A = 3

[1 6 3 53 2 −1 2

]−

[1 −4 4 10 3 −2 10

]=

[3 18 9 159 6 −3 6

]−

[1 −4 4 10 3 −2 10

]=

[2 22 5 149 3 −1 −4

]#

C − (A+ 2B) =

[5 0 9 57 2 0 −3

]− (

[1 −4 4 10 3 −2 10

]+ 2

[1 6 3 53 2 −1 2

])

=

[5 0 9 57 2 0 −3

]− (

[1 −4 4 10 3 −2 10

]+

[2 12 6 106 4 −2 4

])

=

[5 0 9 57 2 0 −3

]−

[3 −8 10 116 7 −4 14

]=

[2 8 −1 −61 −5 4 −17

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 12 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Solution

2A = 2

[1 −4 4 10 3 −2 10

]=

[2 −8 8 20 6 −4 20

]#

3B −A = 3

[1 6 3 53 2 −1 2

]−

[1 −4 4 10 3 −2 10

]

=

[3 18 9 159 6 −3 6

]−

[1 −4 4 10 3 −2 10

]=

[2 22 5 149 3 −1 −4

]#

C − (A+ 2B) =

[5 0 9 57 2 0 −3

]− (

[1 −4 4 10 3 −2 10

]+ 2

[1 6 3 53 2 −1 2

])

=

[5 0 9 57 2 0 −3

]− (

[1 −4 4 10 3 −2 10

]+

[2 12 6 106 4 −2 4

])

=

[5 0 9 57 2 0 −3

]−

[3 −8 10 116 7 −4 14

]=

[2 8 −1 −61 −5 4 −17

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 12 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Solution

2A = 2

[1 −4 4 10 3 −2 10

]=

[2 −8 8 20 6 −4 20

]#

3B −A = 3

[1 6 3 53 2 −1 2

]−

[1 −4 4 10 3 −2 10

]=

[3 18 9 159 6 −3 6

]−

[1 −4 4 10 3 −2 10

]

=

[2 22 5 149 3 −1 −4

]#

C − (A+ 2B) =

[5 0 9 57 2 0 −3

]− (

[1 −4 4 10 3 −2 10

]+ 2

[1 6 3 53 2 −1 2

])

=

[5 0 9 57 2 0 −3

]− (

[1 −4 4 10 3 −2 10

]+

[2 12 6 106 4 −2 4

])

=

[5 0 9 57 2 0 −3

]−

[3 −8 10 116 7 −4 14

]=

[2 8 −1 −61 −5 4 −17

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 12 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Solution

2A = 2

[1 −4 4 10 3 −2 10

]=

[2 −8 8 20 6 −4 20

]#

3B −A = 3

[1 6 3 53 2 −1 2

]−

[1 −4 4 10 3 −2 10

]=

[3 18 9 159 6 −3 6

]−

[1 −4 4 10 3 −2 10

]=

[2 22 5 149 3 −1 −4

]#

C − (A+ 2B) =

[5 0 9 57 2 0 −3

]− (

[1 −4 4 10 3 −2 10

]+ 2

[1 6 3 53 2 −1 2

])

=

[5 0 9 57 2 0 −3

]− (

[1 −4 4 10 3 −2 10

]+

[2 12 6 106 4 −2 4

])

=

[5 0 9 57 2 0 −3

]−

[3 −8 10 116 7 −4 14

]=

[2 8 −1 −61 −5 4 −17

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 12 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Solution

2A = 2

[1 −4 4 10 3 −2 10

]=

[2 −8 8 20 6 −4 20

]#

3B −A = 3

[1 6 3 53 2 −1 2

]−

[1 −4 4 10 3 −2 10

]=

[3 18 9 159 6 −3 6

]−

[1 −4 4 10 3 −2 10

]=

[2 22 5 149 3 −1 −4

]#

C − (A+ 2B) =

[5 0 9 57 2 0 −3

]− (

[1 −4 4 10 3 −2 10

]+ 2

[1 6 3 53 2 −1 2

])

=

[5 0 9 57 2 0 −3

]− (

[1 −4 4 10 3 −2 10

]+

[2 12 6 106 4 −2 4

])

=

[5 0 9 57 2 0 −3

]−

[3 −8 10 116 7 −4 14

]=

[2 8 −1 −61 −5 4 −17

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 12 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Solution

2A = 2

[1 −4 4 10 3 −2 10

]=

[2 −8 8 20 6 −4 20

]#

3B −A = 3

[1 6 3 53 2 −1 2

]−

[1 −4 4 10 3 −2 10

]=

[3 18 9 159 6 −3 6

]−

[1 −4 4 10 3 −2 10

]=

[2 22 5 149 3 −1 −4

]#

C − (A+ 2B) =

[5 0 9 57 2 0 −3

]− (

[1 −4 4 10 3 −2 10

]+ 2

[1 6 3 53 2 −1 2

])

=

[5 0 9 57 2 0 −3

]− (

[1 −4 4 10 3 −2 10

]+

[2 12 6 106 4 −2 4

])

=

[5 0 9 57 2 0 −3

]−

[3 −8 10 116 7 −4 14

]=

[2 8 −1 −61 −5 4 −17

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 12 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Solution

2A = 2

[1 −4 4 10 3 −2 10

]=

[2 −8 8 20 6 −4 20

]#

3B −A = 3

[1 6 3 53 2 −1 2

]−

[1 −4 4 10 3 −2 10

]=

[3 18 9 159 6 −3 6

]−

[1 −4 4 10 3 −2 10

]=

[2 22 5 149 3 −1 −4

]#

C − (A+ 2B) =

[5 0 9 57 2 0 −3

]− (

[1 −4 4 10 3 −2 10

]+ 2

[1 6 3 53 2 −1 2

])

=

[5 0 9 57 2 0 −3

]− (

[1 −4 4 10 3 −2 10

]+

[2 12 6 106 4 −2 4

])

=

[5 0 9 57 2 0 −3

]−

[3 −8 10 116 7 −4 14

]

=

[2 8 −1 −61 −5 4 −17

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 12 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Solution

2A = 2

[1 −4 4 10 3 −2 10

]=

[2 −8 8 20 6 −4 20

]#

3B −A = 3

[1 6 3 53 2 −1 2

]−

[1 −4 4 10 3 −2 10

]=

[3 18 9 159 6 −3 6

]−

[1 −4 4 10 3 −2 10

]=

[2 22 5 149 3 −1 −4

]#

C − (A+ 2B) =

[5 0 9 57 2 0 −3

]− (

[1 −4 4 10 3 −2 10

]+ 2

[1 6 3 53 2 −1 2

])

=

[5 0 9 57 2 0 −3

]− (

[1 −4 4 10 3 −2 10

]+

[2 12 6 106 4 −2 4

])

=

[5 0 9 57 2 0 −3

]−

[3 −8 10 116 7 −4 14

]=

[2 8 −1 −61 −5 4 −17

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 12 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Solution

2(A+B)− 3C = 2(

[1 −4 4 10 3 −2 10

]+

[1 6 3 53 2 −1 2

])− 3

[5 0 9 57 2 0 −3

]= 2

[2 2 7 63 5 −3 12

]−

[15 0 27 1521 6 0 −6

]=

[4 4 14 126 10 −6 24

]−

[15 0 27 1521 6 0 −6

]=

[−11 4 −13 −3−15 4 −6 30

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 13 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Matrix Multiplication

Definition (2.1.5)

Let A = [aij ] be an m× r matrix and B = [bij ] be an r × n matrix. Then

AB =

a11 a12 · · · a1ra21 a22 · · · a2r...

......

ai1 ai2 · · · air...

......

am1 am2 · · · amr

b11 b12 · · · b1j · · · b1nb21 b22 · · · b2j · · · b2n...

......

...br1 br2 · · · brj · · · brn

,

the entry cij of product AB which

AB = [aij ]m×r[bij ]r×n = [cij ]m×n

is given bycij = ai1b1j + ai2b2j + · · ·+ airbrj .

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 14 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Example (2.1.4)

Find AB, BA, BC, CB, CA and AC.

A =

[1 3 45 2 6

], B =

1 67 20 1

and C =

0 6 −15 1 20 1 0

Solution

AB =

[1 3 45 2 6

] 1 67 20 1

=

[1 + 21 + 0 6 + 6 + 45 + 14 + 0 30 + 4 + 6

]=

[22 1619 40

]#

BA =

1 67 20 1

[ 1 3 45 2 6

]=

1 + 30 3 + 12 4 + 367 + 10 21 + 4 28 + 120 + 5 0 + 2 0 + 6

=

31 15 4017 25 405 2 6

#

BC =

1 67 20 1

0 6 −15 1 20 1 0

Undefined #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 15 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Example (2.1.4)

Find AB, BA, BC, CB, CA and AC.

A =

[1 3 45 2 6

], B =

1 67 20 1

and C =

0 6 −15 1 20 1 0

Solution

AB =

[1 3 45 2 6

] 1 67 20 1

=

[1 + 21 + 0 6 + 6 + 45 + 14 + 0 30 + 4 + 6

]=

[22 1619 40

]#

BA =

1 67 20 1

[ 1 3 45 2 6

]=

1 + 30 3 + 12 4 + 367 + 10 21 + 4 28 + 120 + 5 0 + 2 0 + 6

=

31 15 4017 25 405 2 6

#

BC =

1 67 20 1

0 6 −15 1 20 1 0

Undefined #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 15 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Example (2.1.4)

Find AB, BA, BC, CB, CA and AC.

A =

[1 3 45 2 6

], B =

1 67 20 1

and C =

0 6 −15 1 20 1 0

Solution

AB =

[1 3 45 2 6

] 1 67 20 1

=

[1 + 21 + 0 6 + 6 + 45 + 14 + 0 30 + 4 + 6

]

=

[22 1619 40

]#

BA =

1 67 20 1

[ 1 3 45 2 6

]=

1 + 30 3 + 12 4 + 367 + 10 21 + 4 28 + 120 + 5 0 + 2 0 + 6

=

31 15 4017 25 405 2 6

#

BC =

1 67 20 1

0 6 −15 1 20 1 0

Undefined #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 15 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Example (2.1.4)

Find AB, BA, BC, CB, CA and AC.

A =

[1 3 45 2 6

], B =

1 67 20 1

and C =

0 6 −15 1 20 1 0

Solution

AB =

[1 3 45 2 6

] 1 67 20 1

=

[1 + 21 + 0 6 + 6 + 45 + 14 + 0 30 + 4 + 6

]=

[22 1619 40

]#

BA =

1 67 20 1

[ 1 3 45 2 6

]=

1 + 30 3 + 12 4 + 367 + 10 21 + 4 28 + 120 + 5 0 + 2 0 + 6

=

31 15 4017 25 405 2 6

#

BC =

1 67 20 1

0 6 −15 1 20 1 0

Undefined #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 15 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Example (2.1.4)

Find AB, BA, BC, CB, CA and AC.

A =

[1 3 45 2 6

], B =

1 67 20 1

and C =

0 6 −15 1 20 1 0

Solution

AB =

[1 3 45 2 6

] 1 67 20 1

=

[1 + 21 + 0 6 + 6 + 45 + 14 + 0 30 + 4 + 6

]=

[22 1619 40

]#

BA =

1 67 20 1

[ 1 3 45 2 6

]

=

1 + 30 3 + 12 4 + 367 + 10 21 + 4 28 + 120 + 5 0 + 2 0 + 6

=

31 15 4017 25 405 2 6

#

BC =

1 67 20 1

0 6 −15 1 20 1 0

Undefined #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 15 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Example (2.1.4)

Find AB, BA, BC, CB, CA and AC.

A =

[1 3 45 2 6

], B =

1 67 20 1

and C =

0 6 −15 1 20 1 0

Solution

AB =

[1 3 45 2 6

] 1 67 20 1

=

[1 + 21 + 0 6 + 6 + 45 + 14 + 0 30 + 4 + 6

]=

[22 1619 40

]#

BA =

1 67 20 1

[ 1 3 45 2 6

]=

1 + 30 3 + 12 4 + 367 + 10 21 + 4 28 + 120 + 5 0 + 2 0 + 6

=

31 15 4017 25 405 2 6

#

BC =

1 67 20 1

0 6 −15 1 20 1 0

Undefined #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 15 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Example (2.1.4)

Find AB, BA, BC, CB, CA and AC.

A =

[1 3 45 2 6

], B =

1 67 20 1

and C =

0 6 −15 1 20 1 0

Solution

AB =

[1 3 45 2 6

] 1 67 20 1

=

[1 + 21 + 0 6 + 6 + 45 + 14 + 0 30 + 4 + 6

]=

[22 1619 40

]#

BA =

1 67 20 1

[ 1 3 45 2 6

]=

1 + 30 3 + 12 4 + 367 + 10 21 + 4 28 + 120 + 5 0 + 2 0 + 6

=

31 15 4017 25 405 2 6

#

BC =

1 67 20 1

0 6 −15 1 20 1 0

Undefined #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 15 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Example (2.1.4)

Find AB, BA, BC, CB, CA and AC.

A =

[1 3 45 2 6

], B =

1 67 20 1

and C =

0 6 −15 1 20 1 0

Solution

AB =

[1 3 45 2 6

] 1 67 20 1

=

[1 + 21 + 0 6 + 6 + 45 + 14 + 0 30 + 4 + 6

]=

[22 1619 40

]#

BA =

1 67 20 1

[ 1 3 45 2 6

]=

1 + 30 3 + 12 4 + 367 + 10 21 + 4 28 + 120 + 5 0 + 2 0 + 6

=

31 15 4017 25 405 2 6

#

BC =

1 67 20 1

0 6 −15 1 20 1 0

Undefined #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 15 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Example (2.1.4)

Find AB, BA, BC, CB, CA and AC.

A =

[1 3 45 2 6

], B =

1 67 20 1

and C =

0 6 −15 1 20 1 0

Solution

AB =

[1 3 45 2 6

] 1 67 20 1

=

[1 + 21 + 0 6 + 6 + 45 + 14 + 0 30 + 4 + 6

]=

[22 1619 40

]#

BA =

1 67 20 1

[ 1 3 45 2 6

]=

1 + 30 3 + 12 4 + 367 + 10 21 + 4 28 + 120 + 5 0 + 2 0 + 6

=

31 15 4017 25 405 2 6

#

BC =

1 67 20 1

0 6 −15 1 20 1 0

Undefined #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 15 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Solution

CB=

0 6 −15 1 20 1 0

1 67 20 1

=

0 + 42 + 0 0 + 12− 15 + 7 + 0 30 + 2 + 20 + 7 + 0 0 + 2 + 0

=

42 1112 347 2

#

CA =

0 6 −15 1 20 1 0

[ 1 3 45 2 6

]Undefined #

AC =

[1 3 45 2 6

] 0 6 −15 1 20 1 0

=

[0 + 15 + 0 6 + 3 + 4 −1 + 6 + 00 + 10 + 0 30 + 2 + 6 −5 + 4 + 0

]

=

[15 13 510 38 −1

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 16 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Solution

CB=

0 6 −15 1 20 1 0

1 67 20 1

=

0 + 42 + 0 0 + 12− 15 + 7 + 0 30 + 2 + 20 + 7 + 0 0 + 2 + 0

=

42 1112 347 2

#

CA =

0 6 −15 1 20 1 0

[ 1 3 45 2 6

]Undefined #

AC =

[1 3 45 2 6

] 0 6 −15 1 20 1 0

=

[0 + 15 + 0 6 + 3 + 4 −1 + 6 + 00 + 10 + 0 30 + 2 + 6 −5 + 4 + 0

]

=

[15 13 510 38 −1

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 16 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Solution

CB=

0 6 −15 1 20 1 0

1 67 20 1

=

0 + 42 + 0 0 + 12− 15 + 7 + 0 30 + 2 + 20 + 7 + 0 0 + 2 + 0

=

42 1112 347 2

#

CA =

0 6 −15 1 20 1 0

[ 1 3 45 2 6

]Undefined #

AC =

[1 3 45 2 6

] 0 6 −15 1 20 1 0

=

[0 + 15 + 0 6 + 3 + 4 −1 + 6 + 00 + 10 + 0 30 + 2 + 6 −5 + 4 + 0

]

=

[15 13 510 38 −1

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 16 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Solution

CB=

0 6 −15 1 20 1 0

1 67 20 1

=

0 + 42 + 0 0 + 12− 15 + 7 + 0 30 + 2 + 20 + 7 + 0 0 + 2 + 0

=

42 1112 347 2

#

CA =

0 6 −15 1 20 1 0

[ 1 3 45 2 6

]

Undefined #

AC =

[1 3 45 2 6

] 0 6 −15 1 20 1 0

=

[0 + 15 + 0 6 + 3 + 4 −1 + 6 + 00 + 10 + 0 30 + 2 + 6 −5 + 4 + 0

]

=

[15 13 510 38 −1

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 16 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Solution

CB=

0 6 −15 1 20 1 0

1 67 20 1

=

0 + 42 + 0 0 + 12− 15 + 7 + 0 30 + 2 + 20 + 7 + 0 0 + 2 + 0

=

42 1112 347 2

#

CA =

0 6 −15 1 20 1 0

[ 1 3 45 2 6

]Undefined #

AC =

[1 3 45 2 6

] 0 6 −15 1 20 1 0

=

[0 + 15 + 0 6 + 3 + 4 −1 + 6 + 00 + 10 + 0 30 + 2 + 6 −5 + 4 + 0

]

=

[15 13 510 38 −1

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 16 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Solution

CB=

0 6 −15 1 20 1 0

1 67 20 1

=

0 + 42 + 0 0 + 12− 15 + 7 + 0 30 + 2 + 20 + 7 + 0 0 + 2 + 0

=

42 1112 347 2

#

CA =

0 6 −15 1 20 1 0

[ 1 3 45 2 6

]Undefined #

AC =

[1 3 45 2 6

] 0 6 −15 1 20 1 0

=

[0 + 15 + 0 6 + 3 + 4 −1 + 6 + 00 + 10 + 0 30 + 2 + 6 −5 + 4 + 0

]

=

[15 13 510 38 −1

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 16 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Solution

CB=

0 6 −15 1 20 1 0

1 67 20 1

=

0 + 42 + 0 0 + 12− 15 + 7 + 0 30 + 2 + 20 + 7 + 0 0 + 2 + 0

=

42 1112 347 2

#

CA =

0 6 −15 1 20 1 0

[ 1 3 45 2 6

]Undefined #

AC =

[1 3 45 2 6

] 0 6 −15 1 20 1 0

=

[0 + 15 + 0 6 + 3 + 4 −1 + 6 + 00 + 10 + 0 30 + 2 + 6 −5 + 4 + 0

]

=

[15 13 510 38 −1

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 16 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Solution

CB=

0 6 −15 1 20 1 0

1 67 20 1

=

0 + 42 + 0 0 + 12− 15 + 7 + 0 30 + 2 + 20 + 7 + 0 0 + 2 + 0

=

42 1112 347 2

#

CA =

0 6 −15 1 20 1 0

[ 1 3 45 2 6

]Undefined #

AC =

[1 3 45 2 6

] 0 6 −15 1 20 1 0

=

[0 + 15 + 0 6 + 3 + 4 −1 + 6 + 00 + 10 + 0 30 + 2 + 6 −5 + 4 + 0

]

=

[15 13 510 38 −1

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 16 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Theorem (2.1.1)

Assuming that the sizes of the matrices are such that indicated operations can beperformed, the following rules of matrix arithemetic are valid.

1 A+B = B +A (Commutative law for addition)

2 A+ (B + C) = (A+B) + C (Associative law for addition)

3 A(BC) = (AB)C (Commutative law for multiplication)

4 A(B + C) = AB +AC (Left distributive law)

5 (B + C)A = BA+ CA (Right distributive law)

Theorem (2.1.2)

Assuming that the sizes of the matrices are such that indicated operations can beperformed, the following rules of matrix arithemetic are valid. For any scalars a and b,

1 A(B − C) = AB −AC and (B − C)A = BA− CA

2 a(B + C) = aB + aC and a(B − C) = aB − aC

3 (a+ b)C = aC + bC and (a− b)C = aC − bC

4 (ab)C = a(bC) = b(aC) and a(BC) = B(aC) = (aB)C

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 17 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Theorem (2.1.1)

Assuming that the sizes of the matrices are such that indicated operations can beperformed, the following rules of matrix arithemetic are valid.

1 A+B = B +A (Commutative law for addition)

2 A+ (B + C) = (A+B) + C (Associative law for addition)

3 A(BC) = (AB)C (Commutative law for multiplication)

4 A(B + C) = AB +AC (Left distributive law)

5 (B + C)A = BA+ CA (Right distributive law)

Theorem (2.1.2)

Assuming that the sizes of the matrices are such that indicated operations can beperformed, the following rules of matrix arithemetic are valid. For any scalars a and b,

1 A(B − C) = AB −AC and (B − C)A = BA− CA

2 a(B + C) = aB + aC and a(B − C) = aB − aC

3 (a+ b)C = aC + bC and (a− b)C = aC − bC

4 (ab)C = a(bC) = b(aC) and a(BC) = B(aC) = (aB)C

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 17 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Transpose

Definition (2.1.6)

Let A = [aij ] be an m× n matrix. Then the traspose of A , denoted by AT ,is defined to be

AT = [aji]n×m

Example (2.1.5)

Find transposes of the following matrices.

A =

[1 5 62 2 7

], B =

[3 95 8

], C =

[1 3 −2

]and D =

123

Solution

AT =

1 25 26 7

, BT =

[3 59 8

], CT =

13−2

and DT =[1 2 3

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 18 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Transpose

Definition (2.1.6)

Let A = [aij ] be an m× n matrix. Then the traspose of A , denoted by AT ,is defined to be

AT = [aji]n×m

Example (2.1.5)

Find transposes of the following matrices.

A =

[1 5 62 2 7

], B =

[3 95 8

], C =

[1 3 −2

]and D =

123

Solution

AT =

1 25 26 7

, BT =

[3 59 8

], CT =

13−2

and DT =[1 2 3

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 18 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Transpose

Definition (2.1.6)

Let A = [aij ] be an m× n matrix. Then the traspose of A , denoted by AT ,is defined to be

AT = [aji]n×m

Example (2.1.5)

Find transposes of the following matrices.

A =

[1 5 62 2 7

], B =

[3 95 8

], C =

[1 3 −2

]and D =

123

Solution

AT =

1 25 26 7

, BT =

[3 59 8

], CT =

13−2

and DT =[1 2 3

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 18 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Theorem (2.1.3)

Assuming that the sizes of the matrices are such that indicated operations canbe performed, the following rules of transpose of matrices are valid.

1 (A+B)T = AT +BT and (A−B)T = AT −BT

2 (AB)T = BTAT

3 (AT )T = A

4 (aA)T = a(AT ) where a is a scalar.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 19 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Zero Matrix

Definition (2.1.7)

A zero matrix is a matrix whose entries are zero, denoted by 0.

Theorem (2.1.4)

Assuming that the sizes of the matrices are such that indicated operations canbe performed, the following rules of matrix arithemetic are valid.

1 A+ 0 = A = 0 +A (0 is the identity under addition of matrix)

2 A+ (−A) = 0 = (−A) +A (additive inverse of matrix)

3 0−A = −A

4 0A = 0 = A0

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 20 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Zero Matrix

Definition (2.1.7)

A zero matrix is a matrix whose entries are zero, denoted by 0.

Theorem (2.1.4)

Assuming that the sizes of the matrices are such that indicated operations canbe performed, the following rules of matrix arithemetic are valid.

1 A+ 0 = A = 0 +A (0 is the identity under addition of matrix)

2 A+ (−A) = 0 = (−A) +A (additive inverse of matrix)

3 0−A = −A

4 0A = 0 = A0

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 20 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

2.2 Inverse Matrix

Definition (2.2.1)

An identity matrix , denoted by I, is a square matrix with 1’s on the maindoagonal and 0’s off the main diagonal.

If it is important to emphasize the size, we shall write In for n× n identitymatrix, such as

I2 =

[1 00 1

], I3 =

1 0 00 1 00 0 1

, I4 =

1 0 0 00 1 0 00 0 1 00 0 0 1

, and so on.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 21 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

2.2 Inverse Matrix

Definition (2.2.1)

An identity matrix , denoted by I, is a square matrix with 1’s on the maindoagonal and 0’s off the main diagonal.

If it is important to emphasize the size, we shall write In for n× n identitymatrix, such as

I2 =

[1 00 1

], I3 =

1 0 00 1 00 0 1

, I4 =

1 0 0 00 1 0 00 0 1 00 0 0 1

, and so on.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 21 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.1)

Let A = [aij ] be 2× 3 matrix. Find I2A and AI3.

Solution

A =

[a11 a12 a13a21 a22 a23

]

I2A =

[1 00 1

] [a11 a12 a13a21 a22 a23

]=

[a11 + 0 a12 + 0 a13 + 00 + a21 0 + a22 0 + a23

]

=

[a11 a12 a13a21 a22 a23

]= A #

AI3 =

[a11 a12 a13a21 a22 a23

] 1 0 00 1 00 0 1

=

[a11 + 0 + 0 0 + a12 + 0 0 + 0 + a13a21 + 0 + 0 0 + a22 + 0 0 + 0 + a23

]

=

[a11 a12 a13a21 a22 a23

]= A #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 22 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.1)

Let A = [aij ] be 2× 3 matrix. Find I2A and AI3.

Solution

A =

[a11 a12 a13a21 a22 a23

]

I2A =

[1 00 1

] [a11 a12 a13a21 a22 a23

]=

[a11 + 0 a12 + 0 a13 + 00 + a21 0 + a22 0 + a23

]

=

[a11 a12 a13a21 a22 a23

]= A #

AI3 =

[a11 a12 a13a21 a22 a23

] 1 0 00 1 00 0 1

=

[a11 + 0 + 0 0 + a12 + 0 0 + 0 + a13a21 + 0 + 0 0 + a22 + 0 0 + 0 + a23

]

=

[a11 a12 a13a21 a22 a23

]= A #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 22 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.1)

Let A = [aij ] be 2× 3 matrix. Find I2A and AI3.

Solution

A =

[a11 a12 a13a21 a22 a23

]

I2A =

[1 00 1

] [a11 a12 a13a21 a22 a23

]

=

[a11 + 0 a12 + 0 a13 + 00 + a21 0 + a22 0 + a23

]

=

[a11 a12 a13a21 a22 a23

]= A #

AI3 =

[a11 a12 a13a21 a22 a23

] 1 0 00 1 00 0 1

=

[a11 + 0 + 0 0 + a12 + 0 0 + 0 + a13a21 + 0 + 0 0 + a22 + 0 0 + 0 + a23

]

=

[a11 a12 a13a21 a22 a23

]= A #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 22 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.1)

Let A = [aij ] be 2× 3 matrix. Find I2A and AI3.

Solution

A =

[a11 a12 a13a21 a22 a23

]

I2A =

[1 00 1

] [a11 a12 a13a21 a22 a23

]=

[a11 + 0 a12 + 0 a13 + 00 + a21 0 + a22 0 + a23

]

=

[a11 a12 a13a21 a22 a23

]= A #

AI3 =

[a11 a12 a13a21 a22 a23

] 1 0 00 1 00 0 1

=

[a11 + 0 + 0 0 + a12 + 0 0 + 0 + a13a21 + 0 + 0 0 + a22 + 0 0 + 0 + a23

]

=

[a11 a12 a13a21 a22 a23

]= A #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 22 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.1)

Let A = [aij ] be 2× 3 matrix. Find I2A and AI3.

Solution

A =

[a11 a12 a13a21 a22 a23

]

I2A =

[1 00 1

] [a11 a12 a13a21 a22 a23

]=

[a11 + 0 a12 + 0 a13 + 00 + a21 0 + a22 0 + a23

]

=

[a11 a12 a13a21 a22 a23

]

= A #

AI3 =

[a11 a12 a13a21 a22 a23

] 1 0 00 1 00 0 1

=

[a11 + 0 + 0 0 + a12 + 0 0 + 0 + a13a21 + 0 + 0 0 + a22 + 0 0 + 0 + a23

]

=

[a11 a12 a13a21 a22 a23

]= A #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 22 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.1)

Let A = [aij ] be 2× 3 matrix. Find I2A and AI3.

Solution

A =

[a11 a12 a13a21 a22 a23

]

I2A =

[1 00 1

] [a11 a12 a13a21 a22 a23

]=

[a11 + 0 a12 + 0 a13 + 00 + a21 0 + a22 0 + a23

]

=

[a11 a12 a13a21 a22 a23

]= A #

AI3 =

[a11 a12 a13a21 a22 a23

] 1 0 00 1 00 0 1

=

[a11 + 0 + 0 0 + a12 + 0 0 + 0 + a13a21 + 0 + 0 0 + a22 + 0 0 + 0 + a23

]

=

[a11 a12 a13a21 a22 a23

]= A #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 22 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.1)

Let A = [aij ] be 2× 3 matrix. Find I2A and AI3.

Solution

A =

[a11 a12 a13a21 a22 a23

]

I2A =

[1 00 1

] [a11 a12 a13a21 a22 a23

]=

[a11 + 0 a12 + 0 a13 + 00 + a21 0 + a22 0 + a23

]

=

[a11 a12 a13a21 a22 a23

]= A #

AI3 =

[a11 a12 a13a21 a22 a23

] 1 0 00 1 00 0 1

=

[a11 + 0 + 0 0 + a12 + 0 0 + 0 + a13a21 + 0 + 0 0 + a22 + 0 0 + 0 + a23

]

=

[a11 a12 a13a21 a22 a23

]= A #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 22 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.1)

Let A = [aij ] be 2× 3 matrix. Find I2A and AI3.

Solution

A =

[a11 a12 a13a21 a22 a23

]

I2A =

[1 00 1

] [a11 a12 a13a21 a22 a23

]=

[a11 + 0 a12 + 0 a13 + 00 + a21 0 + a22 0 + a23

]

=

[a11 a12 a13a21 a22 a23

]= A #

AI3 =

[a11 a12 a13a21 a22 a23

] 1 0 00 1 00 0 1

=

[a11 + 0 + 0 0 + a12 + 0 0 + 0 + a13a21 + 0 + 0 0 + a22 + 0 0 + 0 + a23

]

=

[a11 a12 a13a21 a22 a23

]= A #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 22 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.1)

Let A = [aij ] be 2× 3 matrix. Find I2A and AI3.

Solution

A =

[a11 a12 a13a21 a22 a23

]

I2A =

[1 00 1

] [a11 a12 a13a21 a22 a23

]=

[a11 + 0 a12 + 0 a13 + 00 + a21 0 + a22 0 + a23

]

=

[a11 a12 a13a21 a22 a23

]= A #

AI3 =

[a11 a12 a13a21 a22 a23

] 1 0 00 1 00 0 1

=

[a11 + 0 + 0 0 + a12 + 0 0 + 0 + a13a21 + 0 + 0 0 + a22 + 0 0 + 0 + a23

]

=

[a11 a12 a13a21 a22 a23

]

= A #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 22 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.1)

Let A = [aij ] be 2× 3 matrix. Find I2A and AI3.

Solution

A =

[a11 a12 a13a21 a22 a23

]

I2A =

[1 00 1

] [a11 a12 a13a21 a22 a23

]=

[a11 + 0 a12 + 0 a13 + 00 + a21 0 + a22 0 + a23

]

=

[a11 a12 a13a21 a22 a23

]= A #

AI3 =

[a11 a12 a13a21 a22 a23

] 1 0 00 1 00 0 1

=

[a11 + 0 + 0 0 + a12 + 0 0 + 0 + a13a21 + 0 + 0 0 + a22 + 0 0 + 0 + a23

]

=

[a11 a12 a13a21 a22 a23

]= A #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 22 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Invertible Matrix

Definition (2.2.2)

Let A be a square matrix. If a matrix B of the same size to A can be foundsuch that

AB = I = BA,

then A is said to be invertible and B is called an inverse of A. If no such

matrix B can be found, then A is said to be singular .

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 23 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.2)

Show that B is an inverse of A.

A =

[3 51 2

]and B =

[2 −5−1 3

]

Proof .

AB =

[3 51 2

] [2 −5−1 3

]=

[6− 5 15− 152− 2 −5 + 6

]=

[1 00 1

]= I

BA =

[2 −5−1 3

] [3 51 2

]=

[6− 5 10− 10−3 + 3 −5 + 6

]=

[1 00 1

]= I

∴ AB = I = BA. Thus, B is an inverse of A.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 24 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.2)

Show that B is an inverse of A.

A =

[3 51 2

]and B =

[2 −5−1 3

]

Proof .

AB =

[3 51 2

] [2 −5−1 3

]

=

[6− 5 15− 152− 2 −5 + 6

]=

[1 00 1

]= I

BA =

[2 −5−1 3

] [3 51 2

]=

[6− 5 10− 10−3 + 3 −5 + 6

]=

[1 00 1

]= I

∴ AB = I = BA. Thus, B is an inverse of A.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 24 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.2)

Show that B is an inverse of A.

A =

[3 51 2

]and B =

[2 −5−1 3

]

Proof .

AB =

[3 51 2

] [2 −5−1 3

]=

[6− 5 15− 152− 2 −5 + 6

]

=

[1 00 1

]= I

BA =

[2 −5−1 3

] [3 51 2

]=

[6− 5 10− 10−3 + 3 −5 + 6

]=

[1 00 1

]= I

∴ AB = I = BA. Thus, B is an inverse of A.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 24 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.2)

Show that B is an inverse of A.

A =

[3 51 2

]and B =

[2 −5−1 3

]

Proof .

AB =

[3 51 2

] [2 −5−1 3

]=

[6− 5 15− 152− 2 −5 + 6

]=

[1 00 1

]= I

BA =

[2 −5−1 3

] [3 51 2

]=

[6− 5 10− 10−3 + 3 −5 + 6

]=

[1 00 1

]= I

∴ AB = I = BA. Thus, B is an inverse of A.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 24 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.2)

Show that B is an inverse of A.

A =

[3 51 2

]and B =

[2 −5−1 3

]

Proof .

AB =

[3 51 2

] [2 −5−1 3

]=

[6− 5 15− 152− 2 −5 + 6

]=

[1 00 1

]= I

BA =

[2 −5−1 3

] [3 51 2

]

=

[6− 5 10− 10−3 + 3 −5 + 6

]=

[1 00 1

]= I

∴ AB = I = BA. Thus, B is an inverse of A.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 24 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.2)

Show that B is an inverse of A.

A =

[3 51 2

]and B =

[2 −5−1 3

]

Proof .

AB =

[3 51 2

] [2 −5−1 3

]=

[6− 5 15− 152− 2 −5 + 6

]=

[1 00 1

]= I

BA =

[2 −5−1 3

] [3 51 2

]=

[6− 5 10− 10−3 + 3 −5 + 6

]

=

[1 00 1

]= I

∴ AB = I = BA. Thus, B is an inverse of A.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 24 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.2)

Show that B is an inverse of A.

A =

[3 51 2

]and B =

[2 −5−1 3

]

Proof .

AB =

[3 51 2

] [2 −5−1 3

]=

[6− 5 15− 152− 2 −5 + 6

]=

[1 00 1

]= I

BA =

[2 −5−1 3

] [3 51 2

]=

[6− 5 10− 10−3 + 3 −5 + 6

]=

[1 00 1

]= I

∴ AB = I = BA. Thus, B is an inverse of A.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 24 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.2)

Show that B is an inverse of A.

A =

[3 51 2

]and B =

[2 −5−1 3

]

Proof .

AB =

[3 51 2

] [2 −5−1 3

]=

[6− 5 15− 152− 2 −5 + 6

]=

[1 00 1

]= I

BA =

[2 −5−1 3

] [3 51 2

]=

[6− 5 10− 10−3 + 3 −5 + 6

]=

[1 00 1

]= I

∴ AB = I = BA. Thus, B is an inverse of A.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 24 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Uniqueness of Inverse

Theorem (2.2.1)

If a matrix is invertible, then it has a unique inverse.

Proof .

Let B1 and B2 be inverses of A. Then AB1 = I = B1A and AB2 = I = B2A. We obtain

B2(AB1) = B2(I)

(B2A)B1 = B2

(I)B1 = B2

B1 = B2

We can say of the inverse of an invertible matrix A denoted by A−1 ; that is

A−1A = I = AA−1

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 25 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Uniqueness of Inverse

Theorem (2.2.1)

If a matrix is invertible, then it has a unique inverse.

Proof .

Let B1 and B2 be inverses of A. Then AB1 = I = B1A and AB2 = I = B2A. We obtain

B2(AB1) = B2(I)

(B2A)B1 = B2

(I)B1 = B2

B1 = B2

We can say of the inverse of an invertible matrix A denoted by A−1 ; that is

A−1A = I = AA−1

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 25 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Uniqueness of Inverse

Theorem (2.2.1)

If a matrix is invertible, then it has a unique inverse.

Proof .

Let B1 and B2 be inverses of A. Then AB1 = I = B1A and AB2 = I = B2A. We obtain

B2(AB1) = B2(I)

(B2A)B1 = B2

(I)B1 = B2

B1 = B2

We can say of the inverse of an invertible matrix A denoted by A−1 ; that is

A−1A = I = AA−1

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 25 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Inverse of 2× 2 Matrix

Theorem (2.2.2)

The matrix

A =

[a bc d

]is invertible if ad− bc ̸= 0, in which case the inverse is given by the formula

A−1 =1

ad− bc

[d −b−c a

]

Proof .

AA−1 =

[a bc d

]1

ad− bc

[d −b−c a

]=

1

ad− bc

[ad− bc −ab+ abcd− cd −cb+ ad

]=

[1 00 1

]A−1A =

1

ad− bc

[d −b−c a

] [a bc d

]=

1

ad− bc

[ad− bc bd− bd−ac+ ac −bc+ ad

]=

[1 00 1

]∴ AA−1 = I = A−1A. Thus, A−1 is an inverse of A.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 26 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Inverse of 2× 2 Matrix

Theorem (2.2.2)

The matrix

A =

[a bc d

]is invertible if ad− bc ̸= 0, in which case the inverse is given by the formula

A−1 =1

ad− bc

[d −b−c a

]Proof .

AA−1 =

[a bc d

]1

ad− bc

[d −b−c a

]=

1

ad− bc

[ad− bc −ab+ abcd− cd −cb+ ad

]=

[1 00 1

]A−1A =

1

ad− bc

[d −b−c a

] [a bc d

]=

1

ad− bc

[ad− bc bd− bd−ac+ ac −bc+ ad

]=

[1 00 1

]

∴ AA−1 = I = A−1A. Thus, A−1 is an inverse of A.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 26 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Inverse of 2× 2 Matrix

Theorem (2.2.2)

The matrix

A =

[a bc d

]is invertible if ad− bc ̸= 0, in which case the inverse is given by the formula

A−1 =1

ad− bc

[d −b−c a

]Proof .

AA−1 =

[a bc d

]1

ad− bc

[d −b−c a

]=

1

ad− bc

[ad− bc −ab+ abcd− cd −cb+ ad

]=

[1 00 1

]A−1A =

1

ad− bc

[d −b−c a

] [a bc d

]=

1

ad− bc

[ad− bc bd− bd−ac+ ac −bc+ ad

]=

[1 00 1

]∴ AA−1 = I = A−1A. Thus, A−1 is an inverse of A.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 26 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.3)

Find A−1, B−1, A−1B−1, B−1A−1 and (AB)−1.

A =

[1 42 7

]and B =

[−3 −51 2

]

Solution

A−1 = 17(1)−4(2)

[7 −4−2 1

]= (−1)

[7 −4−2 1

]=

[−7 42 −1

]#

B−1 = 12(−3)−1(−5)

[2 −(−5)−1 −3

]= (−1)

[2 5−1 −3

]=

[−2 −51 3

]#

A−1B−1=

[−7 42 −1

] [−2 −51 3

]=

[14 + 4 35 + 12−4− 1 −10− 3

]=

[18 47−5 −13

]#

B−1A−1=

[−2 −51 3

] [−7 42 −1

]=

[14− 10 −8 + 5−7 + 6 4− 3

]=

[4 −3−1 1

]#

AB =

[1 42 7

] [−3 −51 2

]=

[−3 + 4 −5 + 8−6 + 7 −10 + 14

]=

[1 31 4

]

(AB)−1 = 11(4)−(−1)(−3)

[1 −3−1 4

]= (1)

[4 −3−1 1

]=

[4 −3−1 1

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 27 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.3)

Find A−1, B−1, A−1B−1, B−1A−1 and (AB)−1.

A =

[1 42 7

]and B =

[−3 −51 2

]Solution

A−1 = 17(1)−4(2)

[7 −4−2 1

]=

(−1)

[7 −4−2 1

]=

[−7 42 −1

]#

B−1 = 12(−3)−1(−5)

[2 −(−5)−1 −3

]= (−1)

[2 5−1 −3

]=

[−2 −51 3

]#

A−1B−1=

[−7 42 −1

] [−2 −51 3

]=

[14 + 4 35 + 12−4− 1 −10− 3

]=

[18 47−5 −13

]#

B−1A−1=

[−2 −51 3

] [−7 42 −1

]=

[14− 10 −8 + 5−7 + 6 4− 3

]=

[4 −3−1 1

]#

AB =

[1 42 7

] [−3 −51 2

]=

[−3 + 4 −5 + 8−6 + 7 −10 + 14

]=

[1 31 4

]

(AB)−1 = 11(4)−(−1)(−3)

[1 −3−1 4

]= (1)

[4 −3−1 1

]=

[4 −3−1 1

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 27 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.3)

Find A−1, B−1, A−1B−1, B−1A−1 and (AB)−1.

A =

[1 42 7

]and B =

[−3 −51 2

]Solution

A−1 = 17(1)−4(2)

[7 −4−2 1

]= (−1)

[7 −4−2 1

]=

[−7 42 −1

]#

B−1 = 12(−3)−1(−5)

[2 −(−5)−1 −3

]= (−1)

[2 5−1 −3

]=

[−2 −51 3

]#

A−1B−1=

[−7 42 −1

] [−2 −51 3

]=

[14 + 4 35 + 12−4− 1 −10− 3

]=

[18 47−5 −13

]#

B−1A−1=

[−2 −51 3

] [−7 42 −1

]=

[14− 10 −8 + 5−7 + 6 4− 3

]=

[4 −3−1 1

]#

AB =

[1 42 7

] [−3 −51 2

]=

[−3 + 4 −5 + 8−6 + 7 −10 + 14

]=

[1 31 4

]

(AB)−1 = 11(4)−(−1)(−3)

[1 −3−1 4

]= (1)

[4 −3−1 1

]=

[4 −3−1 1

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 27 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.3)

Find A−1, B−1, A−1B−1, B−1A−1 and (AB)−1.

A =

[1 42 7

]and B =

[−3 −51 2

]Solution

A−1 = 17(1)−4(2)

[7 −4−2 1

]= (−1)

[7 −4−2 1

]=

[−7 42 −1

]#

B−1 = 12(−3)−1(−5)

[2 −(−5)−1 −3

]

= (−1)

[2 5−1 −3

]=

[−2 −51 3

]#

A−1B−1=

[−7 42 −1

] [−2 −51 3

]=

[14 + 4 35 + 12−4− 1 −10− 3

]=

[18 47−5 −13

]#

B−1A−1=

[−2 −51 3

] [−7 42 −1

]=

[14− 10 −8 + 5−7 + 6 4− 3

]=

[4 −3−1 1

]#

AB =

[1 42 7

] [−3 −51 2

]=

[−3 + 4 −5 + 8−6 + 7 −10 + 14

]=

[1 31 4

]

(AB)−1 = 11(4)−(−1)(−3)

[1 −3−1 4

]= (1)

[4 −3−1 1

]=

[4 −3−1 1

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 27 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.3)

Find A−1, B−1, A−1B−1, B−1A−1 and (AB)−1.

A =

[1 42 7

]and B =

[−3 −51 2

]Solution

A−1 = 17(1)−4(2)

[7 −4−2 1

]= (−1)

[7 −4−2 1

]=

[−7 42 −1

]#

B−1 = 12(−3)−1(−5)

[2 −(−5)−1 −3

]= (−1)

[2 5−1 −3

]=

[−2 −51 3

]#

A−1B−1=

[−7 42 −1

] [−2 −51 3

]=

[14 + 4 35 + 12−4− 1 −10− 3

]=

[18 47−5 −13

]#

B−1A−1=

[−2 −51 3

] [−7 42 −1

]=

[14− 10 −8 + 5−7 + 6 4− 3

]=

[4 −3−1 1

]#

AB =

[1 42 7

] [−3 −51 2

]=

[−3 + 4 −5 + 8−6 + 7 −10 + 14

]=

[1 31 4

]

(AB)−1 = 11(4)−(−1)(−3)

[1 −3−1 4

]= (1)

[4 −3−1 1

]=

[4 −3−1 1

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 27 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.3)

Find A−1, B−1, A−1B−1, B−1A−1 and (AB)−1.

A =

[1 42 7

]and B =

[−3 −51 2

]Solution

A−1 = 17(1)−4(2)

[7 −4−2 1

]= (−1)

[7 −4−2 1

]=

[−7 42 −1

]#

B−1 = 12(−3)−1(−5)

[2 −(−5)−1 −3

]= (−1)

[2 5−1 −3

]=

[−2 −51 3

]#

A−1B−1=

[−7 42 −1

] [−2 −51 3

]

=

[14 + 4 35 + 12−4− 1 −10− 3

]=

[18 47−5 −13

]#

B−1A−1=

[−2 −51 3

] [−7 42 −1

]=

[14− 10 −8 + 5−7 + 6 4− 3

]=

[4 −3−1 1

]#

AB =

[1 42 7

] [−3 −51 2

]=

[−3 + 4 −5 + 8−6 + 7 −10 + 14

]=

[1 31 4

]

(AB)−1 = 11(4)−(−1)(−3)

[1 −3−1 4

]= (1)

[4 −3−1 1

]=

[4 −3−1 1

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 27 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.3)

Find A−1, B−1, A−1B−1, B−1A−1 and (AB)−1.

A =

[1 42 7

]and B =

[−3 −51 2

]Solution

A−1 = 17(1)−4(2)

[7 −4−2 1

]= (−1)

[7 −4−2 1

]=

[−7 42 −1

]#

B−1 = 12(−3)−1(−5)

[2 −(−5)−1 −3

]= (−1)

[2 5−1 −3

]=

[−2 −51 3

]#

A−1B−1=

[−7 42 −1

] [−2 −51 3

]=

[14 + 4 35 + 12−4− 1 −10− 3

]=

[18 47−5 −13

]#

B−1A−1=

[−2 −51 3

] [−7 42 −1

]=

[14− 10 −8 + 5−7 + 6 4− 3

]=

[4 −3−1 1

]#

AB =

[1 42 7

] [−3 −51 2

]=

[−3 + 4 −5 + 8−6 + 7 −10 + 14

]=

[1 31 4

]

(AB)−1 = 11(4)−(−1)(−3)

[1 −3−1 4

]= (1)

[4 −3−1 1

]=

[4 −3−1 1

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 27 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.3)

Find A−1, B−1, A−1B−1, B−1A−1 and (AB)−1.

A =

[1 42 7

]and B =

[−3 −51 2

]Solution

A−1 = 17(1)−4(2)

[7 −4−2 1

]= (−1)

[7 −4−2 1

]=

[−7 42 −1

]#

B−1 = 12(−3)−1(−5)

[2 −(−5)−1 −3

]= (−1)

[2 5−1 −3

]=

[−2 −51 3

]#

A−1B−1=

[−7 42 −1

] [−2 −51 3

]=

[14 + 4 35 + 12−4− 1 −10− 3

]=

[18 47−5 −13

]#

B−1A−1=

[−2 −51 3

] [−7 42 −1

]

=

[14− 10 −8 + 5−7 + 6 4− 3

]=

[4 −3−1 1

]#

AB =

[1 42 7

] [−3 −51 2

]=

[−3 + 4 −5 + 8−6 + 7 −10 + 14

]=

[1 31 4

]

(AB)−1 = 11(4)−(−1)(−3)

[1 −3−1 4

]= (1)

[4 −3−1 1

]=

[4 −3−1 1

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 27 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.3)

Find A−1, B−1, A−1B−1, B−1A−1 and (AB)−1.

A =

[1 42 7

]and B =

[−3 −51 2

]Solution

A−1 = 17(1)−4(2)

[7 −4−2 1

]= (−1)

[7 −4−2 1

]=

[−7 42 −1

]#

B−1 = 12(−3)−1(−5)

[2 −(−5)−1 −3

]= (−1)

[2 5−1 −3

]=

[−2 −51 3

]#

A−1B−1=

[−7 42 −1

] [−2 −51 3

]=

[14 + 4 35 + 12−4− 1 −10− 3

]=

[18 47−5 −13

]#

B−1A−1=

[−2 −51 3

] [−7 42 −1

]=

[14− 10 −8 + 5−7 + 6 4− 3

]=

[4 −3−1 1

]#

AB =

[1 42 7

] [−3 −51 2

]=

[−3 + 4 −5 + 8−6 + 7 −10 + 14

]=

[1 31 4

]

(AB)−1 = 11(4)−(−1)(−3)

[1 −3−1 4

]= (1)

[4 −3−1 1

]=

[4 −3−1 1

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 27 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.3)

Find A−1, B−1, A−1B−1, B−1A−1 and (AB)−1.

A =

[1 42 7

]and B =

[−3 −51 2

]Solution

A−1 = 17(1)−4(2)

[7 −4−2 1

]= (−1)

[7 −4−2 1

]=

[−7 42 −1

]#

B−1 = 12(−3)−1(−5)

[2 −(−5)−1 −3

]= (−1)

[2 5−1 −3

]=

[−2 −51 3

]#

A−1B−1=

[−7 42 −1

] [−2 −51 3

]=

[14 + 4 35 + 12−4− 1 −10− 3

]=

[18 47−5 −13

]#

B−1A−1=

[−2 −51 3

] [−7 42 −1

]=

[14− 10 −8 + 5−7 + 6 4− 3

]=

[4 −3−1 1

]#

AB =

[1 42 7

] [−3 −51 2

]

=

[−3 + 4 −5 + 8−6 + 7 −10 + 14

]=

[1 31 4

]

(AB)−1 = 11(4)−(−1)(−3)

[1 −3−1 4

]= (1)

[4 −3−1 1

]=

[4 −3−1 1

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 27 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.3)

Find A−1, B−1, A−1B−1, B−1A−1 and (AB)−1.

A =

[1 42 7

]and B =

[−3 −51 2

]Solution

A−1 = 17(1)−4(2)

[7 −4−2 1

]= (−1)

[7 −4−2 1

]=

[−7 42 −1

]#

B−1 = 12(−3)−1(−5)

[2 −(−5)−1 −3

]= (−1)

[2 5−1 −3

]=

[−2 −51 3

]#

A−1B−1=

[−7 42 −1

] [−2 −51 3

]=

[14 + 4 35 + 12−4− 1 −10− 3

]=

[18 47−5 −13

]#

B−1A−1=

[−2 −51 3

] [−7 42 −1

]=

[14− 10 −8 + 5−7 + 6 4− 3

]=

[4 −3−1 1

]#

AB =

[1 42 7

] [−3 −51 2

]=

[−3 + 4 −5 + 8−6 + 7 −10 + 14

]=

[1 31 4

]

(AB)−1 = 11(4)−(−1)(−3)

[1 −3−1 4

]= (1)

[4 −3−1 1

]=

[4 −3−1 1

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 27 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.3)

Find A−1, B−1, A−1B−1, B−1A−1 and (AB)−1.

A =

[1 42 7

]and B =

[−3 −51 2

]Solution

A−1 = 17(1)−4(2)

[7 −4−2 1

]= (−1)

[7 −4−2 1

]=

[−7 42 −1

]#

B−1 = 12(−3)−1(−5)

[2 −(−5)−1 −3

]= (−1)

[2 5−1 −3

]=

[−2 −51 3

]#

A−1B−1=

[−7 42 −1

] [−2 −51 3

]=

[14 + 4 35 + 12−4− 1 −10− 3

]=

[18 47−5 −13

]#

B−1A−1=

[−2 −51 3

] [−7 42 −1

]=

[14− 10 −8 + 5−7 + 6 4− 3

]=

[4 −3−1 1

]#

AB =

[1 42 7

] [−3 −51 2

]=

[−3 + 4 −5 + 8−6 + 7 −10 + 14

]=

[1 31 4

]

(AB)−1 = 11(4)−(−1)(−3)

[1 −3−1 4

]=

(1)

[4 −3−1 1

]=

[4 −3−1 1

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 27 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.3)

Find A−1, B−1, A−1B−1, B−1A−1 and (AB)−1.

A =

[1 42 7

]and B =

[−3 −51 2

]Solution

A−1 = 17(1)−4(2)

[7 −4−2 1

]= (−1)

[7 −4−2 1

]=

[−7 42 −1

]#

B−1 = 12(−3)−1(−5)

[2 −(−5)−1 −3

]= (−1)

[2 5−1 −3

]=

[−2 −51 3

]#

A−1B−1=

[−7 42 −1

] [−2 −51 3

]=

[14 + 4 35 + 12−4− 1 −10− 3

]=

[18 47−5 −13

]#

B−1A−1=

[−2 −51 3

] [−7 42 −1

]=

[14− 10 −8 + 5−7 + 6 4− 3

]=

[4 −3−1 1

]#

AB =

[1 42 7

] [−3 −51 2

]=

[−3 + 4 −5 + 8−6 + 7 −10 + 14

]=

[1 31 4

]

(AB)−1 = 11(4)−(−1)(−3)

[1 −3−1 4

]= (1)

[4 −3−1 1

]=

[4 −3−1 1

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 27 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Power of Matrix

Theorem (2.2.3)

Let A and B be square matrices of the same size. If A and B are invertible,then

(AB)−1 = B−1A−1

Proof.

Let A and B be square matrices of the same size. Assume that A and B are invertible. Then

(B−1A−1)(AB) = B−1(A−1A)B = B−1(I)B

= B−1B = I

(AB)(B−1A−1) = A(BB−1)A−1 = A(I)A−1

= AA−1 = I

Thus, B−1A−1 is the inverse of AB. Hence, (AB)−1 = B−1A−1.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 28 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Power of Matrix

Theorem (2.2.3)

Let A and B be square matrices of the same size. If A and B are invertible,then

(AB)−1 = B−1A−1

Proof.

Let A and B be square matrices of the same size. Assume that A and B are invertible.

Then

(B−1A−1)(AB) = B−1(A−1A)B = B−1(I)B

= B−1B = I

(AB)(B−1A−1) = A(BB−1)A−1 = A(I)A−1

= AA−1 = I

Thus, B−1A−1 is the inverse of AB. Hence, (AB)−1 = B−1A−1.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 28 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Power of Matrix

Theorem (2.2.3)

Let A and B be square matrices of the same size. If A and B are invertible,then

(AB)−1 = B−1A−1

Proof.

Let A and B be square matrices of the same size. Assume that A and B are invertible. Then

(B−1A−1)(AB) = B−1(A−1A)B = B−1(I)B

= B−1B = I

(AB)(B−1A−1) = A(BB−1)A−1 = A(I)A−1

= AA−1 = I

Thus, B−1A−1 is the inverse of AB. Hence, (AB)−1 = B−1A−1.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 28 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Power of Matrix

Theorem (2.2.3)

Let A and B be square matrices of the same size. If A and B are invertible,then

(AB)−1 = B−1A−1

Proof.

Let A and B be square matrices of the same size. Assume that A and B are invertible. Then

(B−1A−1)(AB) = B−1(A−1A)B = B−1(I)B

= B−1B = I

(AB)(B−1A−1) = A(BB−1)A−1 = A(I)A−1

= AA−1 = I

Thus, B−1A−1 is the inverse of AB. Hence, (AB)−1 = B−1A−1.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 28 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Power of Matrix

Definition (2.2.3)

Let A be a square matrix. Then we define the nonnegative integer n power of A to be

the nonnegative integer power of A to be

A0 = I and An = AA · · ·A︸ ︷︷ ︸n−factors

for n > 0

if A is invertibleA−n = (A−1)n = A−1A−1 · · ·A−1︸ ︷︷ ︸

n−factors

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 29 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Theorem (2.2.4)

Let A be invertible matrix and n and m be integers. Then

1 AmAn = Am+n

2 (An)m = (Am)n = Anm

Theorem (2.2.5)

Let A be invertible matrix and n be an integer. Then

1 (A−1)−1 = A

2 (An)−1 = (A−1)n

3 (AT )−1 = (A−1)T

4 (kA)−1 = 1kA−1 where k ∈ R and k ̸= 0

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 30 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Theorem (2.2.4)

Let A be invertible matrix and n and m be integers. Then

1 AmAn = Am+n

2 (An)m = (Am)n = Anm

Theorem (2.2.5)

Let A be invertible matrix and n be an integer. Then

1 (A−1)−1 = A

2 (An)−1 = (A−1)n

3 (AT )−1 = (A−1)T

4 (kA)−1 = 1kA−1 where k ∈ R and k ̸= 0

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 30 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.4)

Find A2, (AT )−1, A−3 and (2A)−4 if A =

[1 21 3

]

Solution

A2 = AA =

[1 21 3

] [1 21 3

]=

[1 + 2 2 + 61 + 3 2 + 9

]=

[3 84 11

]#

(AT )−1 =

([1 21 3

]T)−1

=

[1 12 3

]−1

= 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]#

A−1 = 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]A−3 = A−1A−1A−1= A−1

[3 −2−1 1

] [3 −2−1 1

]= A−1

[9 + 2 −6− 2−3− 1 2 + 1

]=

[3 −2−1 1

] [11 −8−4 3

]=

[33 + 8 −24− 6−11− 4 8 + 3

]=

[41 −30−15 11

]#

(2A)−4 = 2−4A−4 = 116

A−1A−3 = 116

[3 −2−1 1

] [41 −30−15 11

]= 1

16

[123 + 30 −90− 22−41− 15 30 + 11

]= 1

16

[153 −112−56 41

]=

[ 15316

−7

− 72

4116

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 31 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.4)

Find A2, (AT )−1, A−3 and (2A)−4 if A =

[1 21 3

]

Solution

A2 = AA =

[1 21 3

] [1 21 3

]

=

[1 + 2 2 + 61 + 3 2 + 9

]=

[3 84 11

]#

(AT )−1 =

([1 21 3

]T)−1

=

[1 12 3

]−1

= 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]#

A−1 = 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]A−3 = A−1A−1A−1= A−1

[3 −2−1 1

] [3 −2−1 1

]= A−1

[9 + 2 −6− 2−3− 1 2 + 1

]=

[3 −2−1 1

] [11 −8−4 3

]=

[33 + 8 −24− 6−11− 4 8 + 3

]=

[41 −30−15 11

]#

(2A)−4 = 2−4A−4 = 116

A−1A−3 = 116

[3 −2−1 1

] [41 −30−15 11

]= 1

16

[123 + 30 −90− 22−41− 15 30 + 11

]= 1

16

[153 −112−56 41

]=

[ 15316

−7

− 72

4116

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 31 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.4)

Find A2, (AT )−1, A−3 and (2A)−4 if A =

[1 21 3

]

Solution

A2 = AA =

[1 21 3

] [1 21 3

]=

[1 + 2 2 + 61 + 3 2 + 9

]

=

[3 84 11

]#

(AT )−1 =

([1 21 3

]T)−1

=

[1 12 3

]−1

= 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]#

A−1 = 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]A−3 = A−1A−1A−1= A−1

[3 −2−1 1

] [3 −2−1 1

]= A−1

[9 + 2 −6− 2−3− 1 2 + 1

]=

[3 −2−1 1

] [11 −8−4 3

]=

[33 + 8 −24− 6−11− 4 8 + 3

]=

[41 −30−15 11

]#

(2A)−4 = 2−4A−4 = 116

A−1A−3 = 116

[3 −2−1 1

] [41 −30−15 11

]= 1

16

[123 + 30 −90− 22−41− 15 30 + 11

]= 1

16

[153 −112−56 41

]=

[ 15316

−7

− 72

4116

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 31 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.4)

Find A2, (AT )−1, A−3 and (2A)−4 if A =

[1 21 3

]

Solution

A2 = AA =

[1 21 3

] [1 21 3

]=

[1 + 2 2 + 61 + 3 2 + 9

]=

[3 84 11

]#

(AT )−1 =

([1 21 3

]T)−1

=

[1 12 3

]−1

= 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]#

A−1 = 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]A−3 = A−1A−1A−1= A−1

[3 −2−1 1

] [3 −2−1 1

]= A−1

[9 + 2 −6− 2−3− 1 2 + 1

]=

[3 −2−1 1

] [11 −8−4 3

]=

[33 + 8 −24− 6−11− 4 8 + 3

]=

[41 −30−15 11

]#

(2A)−4 = 2−4A−4 = 116

A−1A−3 = 116

[3 −2−1 1

] [41 −30−15 11

]= 1

16

[123 + 30 −90− 22−41− 15 30 + 11

]= 1

16

[153 −112−56 41

]=

[ 15316

−7

− 72

4116

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 31 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.4)

Find A2, (AT )−1, A−3 and (2A)−4 if A =

[1 21 3

]

Solution

A2 = AA =

[1 21 3

] [1 21 3

]=

[1 + 2 2 + 61 + 3 2 + 9

]=

[3 84 11

]#

(AT )−1 =

([1 21 3

]T)−1

=

[1 12 3

]−1

= 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]#

A−1 = 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]A−3 = A−1A−1A−1= A−1

[3 −2−1 1

] [3 −2−1 1

]= A−1

[9 + 2 −6− 2−3− 1 2 + 1

]=

[3 −2−1 1

] [11 −8−4 3

]=

[33 + 8 −24− 6−11− 4 8 + 3

]=

[41 −30−15 11

]#

(2A)−4 = 2−4A−4 = 116

A−1A−3 = 116

[3 −2−1 1

] [41 −30−15 11

]= 1

16

[123 + 30 −90− 22−41− 15 30 + 11

]= 1

16

[153 −112−56 41

]=

[ 15316

−7

− 72

4116

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 31 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.4)

Find A2, (AT )−1, A−3 and (2A)−4 if A =

[1 21 3

]

Solution

A2 = AA =

[1 21 3

] [1 21 3

]=

[1 + 2 2 + 61 + 3 2 + 9

]=

[3 84 11

]#

(AT )−1 =

([1 21 3

]T)−1

=

[1 12 3

]−1

= 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]#

A−1 = 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]A−3 = A−1A−1A−1= A−1

[3 −2−1 1

] [3 −2−1 1

]= A−1

[9 + 2 −6− 2−3− 1 2 + 1

]=

[3 −2−1 1

] [11 −8−4 3

]=

[33 + 8 −24− 6−11− 4 8 + 3

]=

[41 −30−15 11

]#

(2A)−4 = 2−4A−4 = 116

A−1A−3 = 116

[3 −2−1 1

] [41 −30−15 11

]= 1

16

[123 + 30 −90− 22−41− 15 30 + 11

]= 1

16

[153 −112−56 41

]=

[ 15316

−7

− 72

4116

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 31 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.4)

Find A2, (AT )−1, A−3 and (2A)−4 if A =

[1 21 3

]

Solution

A2 = AA =

[1 21 3

] [1 21 3

]=

[1 + 2 2 + 61 + 3 2 + 9

]=

[3 84 11

]#

(AT )−1 =

([1 21 3

]T)−1

=

[1 12 3

]−1

= 11(3)−1(2)

[3 −2−1 1

]

=

[3 −2−1 1

]#

A−1 = 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]A−3 = A−1A−1A−1= A−1

[3 −2−1 1

] [3 −2−1 1

]= A−1

[9 + 2 −6− 2−3− 1 2 + 1

]=

[3 −2−1 1

] [11 −8−4 3

]=

[33 + 8 −24− 6−11− 4 8 + 3

]=

[41 −30−15 11

]#

(2A)−4 = 2−4A−4 = 116

A−1A−3 = 116

[3 −2−1 1

] [41 −30−15 11

]= 1

16

[123 + 30 −90− 22−41− 15 30 + 11

]= 1

16

[153 −112−56 41

]=

[ 15316

−7

− 72

4116

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 31 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.4)

Find A2, (AT )−1, A−3 and (2A)−4 if A =

[1 21 3

]

Solution

A2 = AA =

[1 21 3

] [1 21 3

]=

[1 + 2 2 + 61 + 3 2 + 9

]=

[3 84 11

]#

(AT )−1 =

([1 21 3

]T)−1

=

[1 12 3

]−1

= 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]#

A−1 = 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]A−3 = A−1A−1A−1= A−1

[3 −2−1 1

] [3 −2−1 1

]= A−1

[9 + 2 −6− 2−3− 1 2 + 1

]=

[3 −2−1 1

] [11 −8−4 3

]=

[33 + 8 −24− 6−11− 4 8 + 3

]=

[41 −30−15 11

]#

(2A)−4 = 2−4A−4 = 116

A−1A−3 = 116

[3 −2−1 1

] [41 −30−15 11

]= 1

16

[123 + 30 −90− 22−41− 15 30 + 11

]= 1

16

[153 −112−56 41

]=

[ 15316

−7

− 72

4116

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 31 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.4)

Find A2, (AT )−1, A−3 and (2A)−4 if A =

[1 21 3

]

Solution

A2 = AA =

[1 21 3

] [1 21 3

]=

[1 + 2 2 + 61 + 3 2 + 9

]=

[3 84 11

]#

(AT )−1 =

([1 21 3

]T)−1

=

[1 12 3

]−1

= 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]#

A−1 = 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]

A−3 = A−1A−1A−1= A−1

[3 −2−1 1

] [3 −2−1 1

]= A−1

[9 + 2 −6− 2−3− 1 2 + 1

]=

[3 −2−1 1

] [11 −8−4 3

]=

[33 + 8 −24− 6−11− 4 8 + 3

]=

[41 −30−15 11

]#

(2A)−4 = 2−4A−4 = 116

A−1A−3 = 116

[3 −2−1 1

] [41 −30−15 11

]= 1

16

[123 + 30 −90− 22−41− 15 30 + 11

]= 1

16

[153 −112−56 41

]=

[ 15316

−7

− 72

4116

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 31 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.4)

Find A2, (AT )−1, A−3 and (2A)−4 if A =

[1 21 3

]

Solution

A2 = AA =

[1 21 3

] [1 21 3

]=

[1 + 2 2 + 61 + 3 2 + 9

]=

[3 84 11

]#

(AT )−1 =

([1 21 3

]T)−1

=

[1 12 3

]−1

= 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]#

A−1 = 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]A−3 = A−1A−1A−1

= A−1

[3 −2−1 1

] [3 −2−1 1

]= A−1

[9 + 2 −6− 2−3− 1 2 + 1

]=

[3 −2−1 1

] [11 −8−4 3

]=

[33 + 8 −24− 6−11− 4 8 + 3

]=

[41 −30−15 11

]#

(2A)−4 = 2−4A−4 = 116

A−1A−3 = 116

[3 −2−1 1

] [41 −30−15 11

]= 1

16

[123 + 30 −90− 22−41− 15 30 + 11

]= 1

16

[153 −112−56 41

]=

[ 15316

−7

− 72

4116

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 31 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.4)

Find A2, (AT )−1, A−3 and (2A)−4 if A =

[1 21 3

]

Solution

A2 = AA =

[1 21 3

] [1 21 3

]=

[1 + 2 2 + 61 + 3 2 + 9

]=

[3 84 11

]#

(AT )−1 =

([1 21 3

]T)−1

=

[1 12 3

]−1

= 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]#

A−1 = 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]A−3 = A−1A−1A−1= A−1

[3 −2−1 1

]

[3 −2−1 1

]= A−1

[9 + 2 −6− 2−3− 1 2 + 1

]=

[3 −2−1 1

] [11 −8−4 3

]=

[33 + 8 −24− 6−11− 4 8 + 3

]=

[41 −30−15 11

]#

(2A)−4 = 2−4A−4 = 116

A−1A−3 = 116

[3 −2−1 1

] [41 −30−15 11

]= 1

16

[123 + 30 −90− 22−41− 15 30 + 11

]= 1

16

[153 −112−56 41

]=

[ 15316

−7

− 72

4116

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 31 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.4)

Find A2, (AT )−1, A−3 and (2A)−4 if A =

[1 21 3

]

Solution

A2 = AA =

[1 21 3

] [1 21 3

]=

[1 + 2 2 + 61 + 3 2 + 9

]=

[3 84 11

]#

(AT )−1 =

([1 21 3

]T)−1

=

[1 12 3

]−1

= 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]#

A−1 = 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]A−3 = A−1A−1A−1= A−1

[3 −2−1 1

] [3 −2−1 1

]

= A−1

[9 + 2 −6− 2−3− 1 2 + 1

]=

[3 −2−1 1

] [11 −8−4 3

]=

[33 + 8 −24− 6−11− 4 8 + 3

]=

[41 −30−15 11

]#

(2A)−4 = 2−4A−4 = 116

A−1A−3 = 116

[3 −2−1 1

] [41 −30−15 11

]= 1

16

[123 + 30 −90− 22−41− 15 30 + 11

]= 1

16

[153 −112−56 41

]=

[ 15316

−7

− 72

4116

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 31 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.4)

Find A2, (AT )−1, A−3 and (2A)−4 if A =

[1 21 3

]

Solution

A2 = AA =

[1 21 3

] [1 21 3

]=

[1 + 2 2 + 61 + 3 2 + 9

]=

[3 84 11

]#

(AT )−1 =

([1 21 3

]T)−1

=

[1 12 3

]−1

= 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]#

A−1 = 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]A−3 = A−1A−1A−1= A−1

[3 −2−1 1

] [3 −2−1 1

]= A−1

[9 + 2 −6− 2−3− 1 2 + 1

]

=

[3 −2−1 1

] [11 −8−4 3

]=

[33 + 8 −24− 6−11− 4 8 + 3

]=

[41 −30−15 11

]#

(2A)−4 = 2−4A−4 = 116

A−1A−3 = 116

[3 −2−1 1

] [41 −30−15 11

]= 1

16

[123 + 30 −90− 22−41− 15 30 + 11

]= 1

16

[153 −112−56 41

]=

[ 15316

−7

− 72

4116

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 31 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.4)

Find A2, (AT )−1, A−3 and (2A)−4 if A =

[1 21 3

]

Solution

A2 = AA =

[1 21 3

] [1 21 3

]=

[1 + 2 2 + 61 + 3 2 + 9

]=

[3 84 11

]#

(AT )−1 =

([1 21 3

]T)−1

=

[1 12 3

]−1

= 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]#

A−1 = 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]A−3 = A−1A−1A−1= A−1

[3 −2−1 1

] [3 −2−1 1

]= A−1

[9 + 2 −6− 2−3− 1 2 + 1

]=

[3 −2−1 1

] [11 −8−4 3

]

=

[33 + 8 −24− 6−11− 4 8 + 3

]=

[41 −30−15 11

]#

(2A)−4 = 2−4A−4 = 116

A−1A−3 = 116

[3 −2−1 1

] [41 −30−15 11

]= 1

16

[123 + 30 −90− 22−41− 15 30 + 11

]= 1

16

[153 −112−56 41

]=

[ 15316

−7

− 72

4116

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 31 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.4)

Find A2, (AT )−1, A−3 and (2A)−4 if A =

[1 21 3

]

Solution

A2 = AA =

[1 21 3

] [1 21 3

]=

[1 + 2 2 + 61 + 3 2 + 9

]=

[3 84 11

]#

(AT )−1 =

([1 21 3

]T)−1

=

[1 12 3

]−1

= 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]#

A−1 = 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]A−3 = A−1A−1A−1= A−1

[3 −2−1 1

] [3 −2−1 1

]= A−1

[9 + 2 −6− 2−3− 1 2 + 1

]=

[3 −2−1 1

] [11 −8−4 3

]=

[33 + 8 −24− 6−11− 4 8 + 3

]

=

[41 −30−15 11

]#

(2A)−4 = 2−4A−4 = 116

A−1A−3 = 116

[3 −2−1 1

] [41 −30−15 11

]= 1

16

[123 + 30 −90− 22−41− 15 30 + 11

]= 1

16

[153 −112−56 41

]=

[ 15316

−7

− 72

4116

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 31 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.4)

Find A2, (AT )−1, A−3 and (2A)−4 if A =

[1 21 3

]

Solution

A2 = AA =

[1 21 3

] [1 21 3

]=

[1 + 2 2 + 61 + 3 2 + 9

]=

[3 84 11

]#

(AT )−1 =

([1 21 3

]T)−1

=

[1 12 3

]−1

= 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]#

A−1 = 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]A−3 = A−1A−1A−1= A−1

[3 −2−1 1

] [3 −2−1 1

]= A−1

[9 + 2 −6− 2−3− 1 2 + 1

]=

[3 −2−1 1

] [11 −8−4 3

]=

[33 + 8 −24− 6−11− 4 8 + 3

]=

[41 −30−15 11

]#

(2A)−4 = 2−4A−4 = 116

A−1A−3 = 116

[3 −2−1 1

] [41 −30−15 11

]= 1

16

[123 + 30 −90− 22−41− 15 30 + 11

]= 1

16

[153 −112−56 41

]=

[ 15316

−7

− 72

4116

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 31 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.4)

Find A2, (AT )−1, A−3 and (2A)−4 if A =

[1 21 3

]

Solution

A2 = AA =

[1 21 3

] [1 21 3

]=

[1 + 2 2 + 61 + 3 2 + 9

]=

[3 84 11

]#

(AT )−1 =

([1 21 3

]T)−1

=

[1 12 3

]−1

= 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]#

A−1 = 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]A−3 = A−1A−1A−1= A−1

[3 −2−1 1

] [3 −2−1 1

]= A−1

[9 + 2 −6− 2−3− 1 2 + 1

]=

[3 −2−1 1

] [11 −8−4 3

]=

[33 + 8 −24− 6−11− 4 8 + 3

]=

[41 −30−15 11

]#

(2A)−4 = 2−4A−4

= 116

A−1A−3 = 116

[3 −2−1 1

] [41 −30−15 11

]= 1

16

[123 + 30 −90− 22−41− 15 30 + 11

]= 1

16

[153 −112−56 41

]=

[ 15316

−7

− 72

4116

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 31 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.4)

Find A2, (AT )−1, A−3 and (2A)−4 if A =

[1 21 3

]

Solution

A2 = AA =

[1 21 3

] [1 21 3

]=

[1 + 2 2 + 61 + 3 2 + 9

]=

[3 84 11

]#

(AT )−1 =

([1 21 3

]T)−1

=

[1 12 3

]−1

= 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]#

A−1 = 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]A−3 = A−1A−1A−1= A−1

[3 −2−1 1

] [3 −2−1 1

]= A−1

[9 + 2 −6− 2−3− 1 2 + 1

]=

[3 −2−1 1

] [11 −8−4 3

]=

[33 + 8 −24− 6−11− 4 8 + 3

]=

[41 −30−15 11

]#

(2A)−4 = 2−4A−4 = 116

A−1A−3

= 116

[3 −2−1 1

] [41 −30−15 11

]= 1

16

[123 + 30 −90− 22−41− 15 30 + 11

]= 1

16

[153 −112−56 41

]=

[ 15316

−7

− 72

4116

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 31 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.4)

Find A2, (AT )−1, A−3 and (2A)−4 if A =

[1 21 3

]

Solution

A2 = AA =

[1 21 3

] [1 21 3

]=

[1 + 2 2 + 61 + 3 2 + 9

]=

[3 84 11

]#

(AT )−1 =

([1 21 3

]T)−1

=

[1 12 3

]−1

= 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]#

A−1 = 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]A−3 = A−1A−1A−1= A−1

[3 −2−1 1

] [3 −2−1 1

]= A−1

[9 + 2 −6− 2−3− 1 2 + 1

]=

[3 −2−1 1

] [11 −8−4 3

]=

[33 + 8 −24− 6−11− 4 8 + 3

]=

[41 −30−15 11

]#

(2A)−4 = 2−4A−4 = 116

A−1A−3 = 116

[3 −2−1 1

] [41 −30−15 11

]

= 116

[123 + 30 −90− 22−41− 15 30 + 11

]= 1

16

[153 −112−56 41

]=

[ 15316

−7

− 72

4116

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 31 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.4)

Find A2, (AT )−1, A−3 and (2A)−4 if A =

[1 21 3

]

Solution

A2 = AA =

[1 21 3

] [1 21 3

]=

[1 + 2 2 + 61 + 3 2 + 9

]=

[3 84 11

]#

(AT )−1 =

([1 21 3

]T)−1

=

[1 12 3

]−1

= 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]#

A−1 = 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]A−3 = A−1A−1A−1= A−1

[3 −2−1 1

] [3 −2−1 1

]= A−1

[9 + 2 −6− 2−3− 1 2 + 1

]=

[3 −2−1 1

] [11 −8−4 3

]=

[33 + 8 −24− 6−11− 4 8 + 3

]=

[41 −30−15 11

]#

(2A)−4 = 2−4A−4 = 116

A−1A−3 = 116

[3 −2−1 1

] [41 −30−15 11

]= 1

16

[123 + 30 −90− 22−41− 15 30 + 11

]

= 116

[153 −112−56 41

]=

[ 15316

−7

− 72

4116

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 31 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.4)

Find A2, (AT )−1, A−3 and (2A)−4 if A =

[1 21 3

]

Solution

A2 = AA =

[1 21 3

] [1 21 3

]=

[1 + 2 2 + 61 + 3 2 + 9

]=

[3 84 11

]#

(AT )−1 =

([1 21 3

]T)−1

=

[1 12 3

]−1

= 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]#

A−1 = 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]A−3 = A−1A−1A−1= A−1

[3 −2−1 1

] [3 −2−1 1

]= A−1

[9 + 2 −6− 2−3− 1 2 + 1

]=

[3 −2−1 1

] [11 −8−4 3

]=

[33 + 8 −24− 6−11− 4 8 + 3

]=

[41 −30−15 11

]#

(2A)−4 = 2−4A−4 = 116

A−1A−3 = 116

[3 −2−1 1

] [41 −30−15 11

]= 1

16

[123 + 30 −90− 22−41− 15 30 + 11

]= 1

16

[153 −112−56 41

]

=

[ 15316

−7

− 72

4116

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 31 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.4)

Find A2, (AT )−1, A−3 and (2A)−4 if A =

[1 21 3

]

Solution

A2 = AA =

[1 21 3

] [1 21 3

]=

[1 + 2 2 + 61 + 3 2 + 9

]=

[3 84 11

]#

(AT )−1 =

([1 21 3

]T)−1

=

[1 12 3

]−1

= 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]#

A−1 = 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]A−3 = A−1A−1A−1= A−1

[3 −2−1 1

] [3 −2−1 1

]= A−1

[9 + 2 −6− 2−3− 1 2 + 1

]=

[3 −2−1 1

] [11 −8−4 3

]=

[33 + 8 −24− 6−11− 4 8 + 3

]=

[41 −30−15 11

]#

(2A)−4 = 2−4A−4 = 116

A−1A−3 = 116

[3 −2−1 1

] [41 −30−15 11

]= 1

16

[123 + 30 −90− 22−41− 15 30 + 11

]= 1

16

[153 −112−56 41

]=

[ 15316

−7

− 72

4116

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 31 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Polynomial Matrix

Definition (2.2.4)

Let A be a square matrix. If

p(x) = a0 + a1x+ a2x2 + · · ·+ anx

n

is any polynomial, the we define

p(A) = a0I + a1A+ a2A2 + · · ·+ anA

n.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 32 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Polynomial Matrix

Definition (2.2.4)

Let A be a square matrix. If

p(x) = a0 + a1x+ a2x2 + · · ·+ anx

n

is any polynomial, the we define

p(A) = a0I + a1A+ a2A2 + · · ·+ anA

n.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 32 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.5)

Let p(x) = 2x2 − 3x+ 4 and A =

[−1 20 3

]. Find p(A).

Solution

p(A) = 2A2 − 3A+ 4I

= 2

[−1 20 3

]2− 3

[−1 20 3

]+ 4

[1 00 1

]= 2

[−1 20 3

] [−1 20 3

]+

[3 −60 −9

]+

[4 00 4

]= 2

[1 + 0 −2 + 60 + 0 0 + 9

]+

[7 −60 −5

]= 2

[1 40 9

]+

[7 −60 −5

]=

[2 80 18

]+

[7 −60 −5

]=

[9 20 13

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 33 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Take a BreakFor 10 Minutes

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 34 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Elementary Matrix

Definition (2.2.5)

An n× n matrix is called an elementary matrix if it can be obtained from then× n identity matrix In by performing a single elementary row operation.

Example (2.2.6)

Listed below are elementary matrices. What is a single ERO produce them ?

1.

[1 00 2

]I2 =

[1 00 1

]2R2−−−→

[1 00 2

]

2.

1 0 00 1 00 −5 1

I3 =

1 0 00 1 00 0 1

R3−5R2−−−−−−−→

1 0 00 1 00 −5 1

3.

1 0 00 1 00 0 1

I3 =

1 0 00 1 00 0 1

(1)R1−−−−−→

1 0 00 1 00 0 1

4.

0 0 0 10 1 0 00 0 1 01 0 0 0

I4 =

1 0 0 00 1 0 00 0 1 00 0 0 1

R14−−−→

0 0 0 10 1 0 00 0 1 01 0 0 0

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 35 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Elementary Matrix

Definition (2.2.5)

An n× n matrix is called an elementary matrix if it can be obtained from then× n identity matrix In by performing a single elementary row operation.

Example (2.2.6)

Listed below are elementary matrices. What is a single ERO produce them ?

1.

[1 00 2

]

I2 =

[1 00 1

]2R2−−−→

[1 00 2

]

2.

1 0 00 1 00 −5 1

I3 =

1 0 00 1 00 0 1

R3−5R2−−−−−−−→

1 0 00 1 00 −5 1

3.

1 0 00 1 00 0 1

I3 =

1 0 00 1 00 0 1

(1)R1−−−−−→

1 0 00 1 00 0 1

4.

0 0 0 10 1 0 00 0 1 01 0 0 0

I4 =

1 0 0 00 1 0 00 0 1 00 0 0 1

R14−−−→

0 0 0 10 1 0 00 0 1 01 0 0 0

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 35 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Elementary Matrix

Definition (2.2.5)

An n× n matrix is called an elementary matrix if it can be obtained from then× n identity matrix In by performing a single elementary row operation.

Example (2.2.6)

Listed below are elementary matrices. What is a single ERO produce them ?

1.

[1 00 2

]I2 =

[1 00 1

]2R2−−−→

[1 00 2

]

2.

1 0 00 1 00 −5 1

I3 =

1 0 00 1 00 0 1

R3−5R2−−−−−−−→

1 0 00 1 00 −5 1

3.

1 0 00 1 00 0 1

I3 =

1 0 00 1 00 0 1

(1)R1−−−−−→

1 0 00 1 00 0 1

4.

0 0 0 10 1 0 00 0 1 01 0 0 0

I4 =

1 0 0 00 1 0 00 0 1 00 0 0 1

R14−−−→

0 0 0 10 1 0 00 0 1 01 0 0 0

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 35 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Elementary Matrix

Definition (2.2.5)

An n× n matrix is called an elementary matrix if it can be obtained from then× n identity matrix In by performing a single elementary row operation.

Example (2.2.6)

Listed below are elementary matrices. What is a single ERO produce them ?

1.

[1 00 2

]I2 =

[1 00 1

]2R2−−−→

[1 00 2

]

2.

1 0 00 1 00 −5 1

I3 =

1 0 00 1 00 0 1

R3−5R2−−−−−−−→

1 0 00 1 00 −5 1

3.

1 0 00 1 00 0 1

I3 =

1 0 00 1 00 0 1

(1)R1−−−−−→

1 0 00 1 00 0 1

4.

0 0 0 10 1 0 00 0 1 01 0 0 0

I4 =

1 0 0 00 1 0 00 0 1 00 0 0 1

R14−−−→

0 0 0 10 1 0 00 0 1 01 0 0 0

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 35 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Elementary Matrix

Definition (2.2.5)

An n× n matrix is called an elementary matrix if it can be obtained from then× n identity matrix In by performing a single elementary row operation.

Example (2.2.6)

Listed below are elementary matrices. What is a single ERO produce them ?

1.

[1 00 2

]I2 =

[1 00 1

]2R2−−−→

[1 00 2

]

2.

1 0 00 1 00 −5 1

I3 =

1 0 00 1 00 0 1

R3−5R2−−−−−−−→

1 0 00 1 00 −5 1

3.

1 0 00 1 00 0 1

I3 =

1 0 00 1 00 0 1

(1)R1−−−−−→

1 0 00 1 00 0 1

4.

0 0 0 10 1 0 00 0 1 01 0 0 0

I4 =

1 0 0 00 1 0 00 0 1 00 0 0 1

R14−−−→

0 0 0 10 1 0 00 0 1 01 0 0 0

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 35 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Elementary Matrix

Definition (2.2.5)

An n× n matrix is called an elementary matrix if it can be obtained from then× n identity matrix In by performing a single elementary row operation.

Example (2.2.6)

Listed below are elementary matrices. What is a single ERO produce them ?

1.

[1 00 2

]I2 =

[1 00 1

]2R2−−−→

[1 00 2

]

2.

1 0 00 1 00 −5 1

I3 =

1 0 00 1 00 0 1

R3−5R2−−−−−−−→

1 0 00 1 00 −5 1

3.

1 0 00 1 00 0 1

I3 =

1 0 00 1 00 0 1

(1)R1−−−−−→

1 0 00 1 00 0 1

4.

0 0 0 10 1 0 00 0 1 01 0 0 0

I4 =

1 0 0 00 1 0 00 0 1 00 0 0 1

R14−−−→

0 0 0 10 1 0 00 0 1 01 0 0 0

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 35 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Elementary Matrix

Definition (2.2.5)

An n× n matrix is called an elementary matrix if it can be obtained from then× n identity matrix In by performing a single elementary row operation.

Example (2.2.6)

Listed below are elementary matrices. What is a single ERO produce them ?

1.

[1 00 2

]I2 =

[1 00 1

]2R2−−−→

[1 00 2

]

2.

1 0 00 1 00 −5 1

I3 =

1 0 00 1 00 0 1

R3−5R2−−−−−−−→

1 0 00 1 00 −5 1

3.

1 0 00 1 00 0 1

I3 =

1 0 00 1 00 0 1

(1)R1−−−−−→

1 0 00 1 00 0 1

4.

0 0 0 10 1 0 00 0 1 01 0 0 0

I4 =

1 0 0 00 1 0 00 0 1 00 0 0 1

R14−−−→

0 0 0 10 1 0 00 0 1 01 0 0 0

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 35 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Elementary Matrix

Definition (2.2.5)

An n× n matrix is called an elementary matrix if it can be obtained from then× n identity matrix In by performing a single elementary row operation.

Example (2.2.6)

Listed below are elementary matrices. What is a single ERO produce them ?

1.

[1 00 2

]I2 =

[1 00 1

]2R2−−−→

[1 00 2

]

2.

1 0 00 1 00 −5 1

I3 =

1 0 00 1 00 0 1

R3−5R2−−−−−−−→

1 0 00 1 00 −5 1

3.

1 0 00 1 00 0 1

I3 =

1 0 00 1 00 0 1

(1)R1−−−−−→

1 0 00 1 00 0 1

4.

0 0 0 10 1 0 00 0 1 01 0 0 0

I4 =

1 0 0 00 1 0 00 0 1 00 0 0 1

R14−−−→

0 0 0 10 1 0 00 0 1 01 0 0 0

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 35 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Elementary Matrix

Definition (2.2.5)

An n× n matrix is called an elementary matrix if it can be obtained from then× n identity matrix In by performing a single elementary row operation.

Example (2.2.6)

Listed below are elementary matrices. What is a single ERO produce them ?

1.

[1 00 2

]I2 =

[1 00 1

]2R2−−−→

[1 00 2

]

2.

1 0 00 1 00 −5 1

I3 =

1 0 00 1 00 0 1

R3−5R2−−−−−−−→

1 0 00 1 00 −5 1

3.

1 0 00 1 00 0 1

I3 =

1 0 00 1 00 0 1

(1)R1−−−−−→

1 0 00 1 00 0 1

4.

0 0 0 10 1 0 00 0 1 01 0 0 0

I4 =

1 0 0 00 1 0 00 0 1 00 0 0 1

R14−−−→

0 0 0 10 1 0 00 0 1 01 0 0 0

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 35 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.7)

For matrices E =

1 0 00 1 02 0 1

and A =

1 1 2 32 −1 3 51 3 7 0

Compute EA.

Solution

EA =

1 0 00 1 02 0 1

1 1 2 32 −1 3 51 3 7 0

=

1 1 2 32 −1 3 5

2(1) + 1 2(1) + 3 2(2) + 7 2(3) + 0

=

1 1 2 32 −1 3 53 5 11 6

I3 =

1 0 00 1 00 0 1

R3+2R1−−−−−−→

1 0 00 1 02 0 1

= E

A =

1 1 2 32 −1 3 51 3 7 0

R3+2R1−−−−−−→

1 1 2 32 −1 3 53 5 11 6

= EA

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 36 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.7)

For matrices E =

1 0 00 1 02 0 1

and A =

1 1 2 32 −1 3 51 3 7 0

Compute EA.

Solution

EA =

1 0 00 1 02 0 1

1 1 2 32 −1 3 51 3 7 0

=

1 1 2 32 −1 3 5

2(1) + 1 2(1) + 3 2(2) + 7 2(3) + 0

=

1 1 2 32 −1 3 53 5 11 6

I3 =

1 0 00 1 00 0 1

R3+2R1−−−−−−→

1 0 00 1 02 0 1

= E

A =

1 1 2 32 −1 3 51 3 7 0

R3+2R1−−−−−−→

1 1 2 32 −1 3 53 5 11 6

= EA

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 36 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.7)

For matrices E =

1 0 00 1 02 0 1

and A =

1 1 2 32 −1 3 51 3 7 0

Compute EA.

Solution

EA =

1 0 00 1 02 0 1

1 1 2 32 −1 3 51 3 7 0

=

1 1 2 32 −1 3 5

2(1) + 1 2(1) + 3 2(2) + 7 2(3) + 0

=

1 1 2 32 −1 3 53 5 11 6

I3 =

1 0 00 1 00 0 1

R3+2R1−−−−−−→

1 0 00 1 02 0 1

= E

A =

1 1 2 32 −1 3 51 3 7 0

R3+2R1−−−−−−→

1 1 2 32 −1 3 53 5 11 6

= EA

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 36 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.7)

For matrices E =

1 0 00 1 02 0 1

and A =

1 1 2 32 −1 3 51 3 7 0

Compute EA.

Solution

EA =

1 0 00 1 02 0 1

1 1 2 32 −1 3 51 3 7 0

=

1 1 2 32 −1 3 5

2(1) + 1 2(1) + 3 2(2) + 7 2(3) + 0

=

1 1 2 32 −1 3 53 5 11 6

I3 =

1 0 00 1 00 0 1

R3+2R1−−−−−−→

1 0 00 1 02 0 1

= E

A =

1 1 2 32 −1 3 51 3 7 0

R3+2R1−−−−−−→

1 1 2 32 −1 3 53 5 11 6

= EA

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 36 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Theorem (2.2.6)

If the elementary matrix E results from performing a certain row operation on Imand if A is an m× n matrix, then the product EA is the matrix that results whenthis same row operation is performing on A.

If an ERO is applied to an identity matrix to produce an elementary matrix E, thenthere is a second row operation that, when applied to E, produces I back again.

Row operation on I that produce E Row operation on E that reproduce I

Multiply row i by c ̸= 0 Multiply row i by 1c

Interchang row i and j Interchang row i and j

Add c times row i to row j Add −c times row i to row j

[1 00 1

]5R2−−→

[1 00 5

]15R2−−−→

[1 00 1

][1 00 1

]R12−−→

[0 11 0

]R12−−→

[1 00 1

][1 00 1

]R1+7R2−−−−−→

[1 70 1

]R1−7R2−−−−−→

[1 00 1

]

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 37 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Theorem (2.2.6)

If the elementary matrix E results from performing a certain row operation on Imand if A is an m× n matrix, then the product EA is the matrix that results whenthis same row operation is performing on A.

If an ERO is applied to an identity matrix to produce an elementary matrix E, thenthere is a second row operation that, when applied to E, produces I back again.

Row operation on I that produce E Row operation on E that reproduce I

Multiply row i by c ̸= 0 Multiply row i by 1c

Interchang row i and j Interchang row i and j

Add c times row i to row j Add −c times row i to row j

[1 00 1

]5R2−−→

[1 00 5

]15R2−−−→

[1 00 1

][1 00 1

]R12−−→

[0 11 0

]R12−−→

[1 00 1

][1 00 1

]R1+7R2−−−−−→

[1 70 1

]R1−7R2−−−−−→

[1 00 1

]

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 37 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Theorem (2.2.6)

If the elementary matrix E results from performing a certain row operation on Imand if A is an m× n matrix, then the product EA is the matrix that results whenthis same row operation is performing on A.

If an ERO is applied to an identity matrix to produce an elementary matrix E, thenthere is a second row operation that, when applied to E, produces I back again.

Row operation on I that produce E Row operation on E that reproduce I

Multiply row i by c ̸= 0 Multiply row i by 1c

Interchang row i and j Interchang row i and j

Add c times row i to row j Add −c times row i to row j

[1 00 1

]5R2−−→

[1 00 5

]15R2−−−→

[1 00 1

]

[1 00 1

]R12−−→

[0 11 0

]R12−−→

[1 00 1

][1 00 1

]R1+7R2−−−−−→

[1 70 1

]R1−7R2−−−−−→

[1 00 1

]

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 37 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Theorem (2.2.6)

If the elementary matrix E results from performing a certain row operation on Imand if A is an m× n matrix, then the product EA is the matrix that results whenthis same row operation is performing on A.

If an ERO is applied to an identity matrix to produce an elementary matrix E, thenthere is a second row operation that, when applied to E, produces I back again.

Row operation on I that produce E Row operation on E that reproduce I

Multiply row i by c ̸= 0 Multiply row i by 1c

Interchang row i and j Interchang row i and j

Add c times row i to row j Add −c times row i to row j

[1 00 1

]5R2−−→

[1 00 5

]15R2−−−→

[1 00 1

][1 00 1

]R12−−→

[0 11 0

]R12−−→

[1 00 1

]

[1 00 1

]R1+7R2−−−−−→

[1 70 1

]R1−7R2−−−−−→

[1 00 1

]

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 37 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Theorem (2.2.6)

If the elementary matrix E results from performing a certain row operation on Imand if A is an m× n matrix, then the product EA is the matrix that results whenthis same row operation is performing on A.

If an ERO is applied to an identity matrix to produce an elementary matrix E, thenthere is a second row operation that, when applied to E, produces I back again.

Row operation on I that produce E Row operation on E that reproduce I

Multiply row i by c ̸= 0 Multiply row i by 1c

Interchang row i and j Interchang row i and j

Add c times row i to row j Add −c times row i to row j

[1 00 1

]5R2−−→

[1 00 5

]15R2−−−→

[1 00 1

][1 00 1

]R12−−→

[0 11 0

]R12−−→

[1 00 1

][1 00 1

]R1+7R2−−−−−→

[1 70 1

]R1−7R2−−−−−→

[1 00 1

]Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 37 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Theorem (2.2.7)

Every elementary matrix is invertible, and the inverse is also an elementary matrix.

Theorem (2.2.8)

Let A be an n× n matrix. Then the following statements are equivalent.

1 A is invertible.

2 The RREF of A from A is In.

3 A is expressible as a product of elementary matrices.

We estabish a method for determining the inverse of an n× n invertible matrix A. We can findelementary matrices E1, E2, .., Ek such that

Ek · · ·E2E1A = In.

Multiplying this equation on the right by A−1 yields

A−1 = Ek · · ·E2E1In

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 38 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Theorem (2.2.7)

Every elementary matrix is invertible, and the inverse is also an elementary matrix.

Theorem (2.2.8)

Let A be an n× n matrix. Then the following statements are equivalent.

1 A is invertible.

2 The RREF of A from A is In.

3 A is expressible as a product of elementary matrices.

We estabish a method for determining the inverse of an n× n invertible matrix A. We can findelementary matrices E1, E2, .., Ek such that

Ek · · ·E2E1A = In.

Multiplying this equation on the right by A−1 yields

A−1 = Ek · · ·E2E1In

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 38 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Theorem (2.2.7)

Every elementary matrix is invertible, and the inverse is also an elementary matrix.

Theorem (2.2.8)

Let A be an n× n matrix. Then the following statements are equivalent.

1 A is invertible.

2 The RREF of A from A is In.

3 A is expressible as a product of elementary matrices.

We estabish a method for determining the inverse of an n× n invertible matrix A. We can findelementary matrices E1, E2, .., Ek such that

Ek · · ·E2E1A = In.

Multiplying this equation on the right by A−1 yields

A−1 = Ek · · ·E2E1In

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 38 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Theorem (2.2.7)

Every elementary matrix is invertible, and the inverse is also an elementary matrix.

Theorem (2.2.8)

Let A be an n× n matrix. Then the following statements are equivalent.

1 A is invertible.

2 The RREF of A from A is In.

3 A is expressible as a product of elementary matrices.

We estabish a method for determining the inverse of an n× n invertible matrix A. We can findelementary matrices E1, E2, .., Ek such that

Ek · · ·E2E1A = In.

Multiplying this equation on the right by A−1 yields

A−1 = Ek · · ·E2E1In

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 38 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Theorem (2.2.7)

Every elementary matrix is invertible, and the inverse is also an elementary matrix.

Theorem (2.2.8)

Let A be an n× n matrix. Then the following statements are equivalent.

1 A is invertible.

2 The RREF of A from A is In.

3 A is expressible as a product of elementary matrices.

We estabish a method for determining the inverse of an n× n invertible matrix A. We can findelementary matrices E1, E2, .., Ek such that

Ek · · ·E2E1A = In.

Multiplying this equation on the right by A−1 yields

A−1 = Ek · · ·E2E1In

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 38 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.8)

Find inverse of A =

1 2 32 5 31 0 8

Solution

[A|I] =

1 2 3 1 0 02 5 3 0 1 01 0 8 0 0 1

R2−2R1−−−−−−→R3−R1

1 2 3 1 0 00 1 −3 −2 1 00 −2 5 −1 0 1

−→

1 2 3 1 0 00 1 −3 −2 1 00 −2 5 −1 0 1

R1−2R2−−−−−−→R3+2R2

1 0 9 5 −2 00 1 −3 −2 1 00 0 −1 −5 2 1

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 39 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.8)

Find inverse of A =

1 2 32 5 31 0 8

Solution

[A|I] =

1 2 3 1 0 02 5 3 0 1 01 0 8 0 0 1

R2−2R1−−−−−−→R3−R1

1 2 3 1 0 00 1 −3 −2 1 00 −2 5 −1 0 1

−→

1 2 3 1 0 00 1 −3 −2 1 00 −2 5 −1 0 1

R1−2R2−−−−−−→R3+2R2

1 0 9 5 −2 00 1 −3 −2 1 00 0 −1 −5 2 1

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 39 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.8)

Find inverse of A =

1 2 32 5 31 0 8

Solution

[A|I] =

1 2 3 1 0 02 5 3 0 1 01 0 8 0 0 1

R2−2R1−−−−−−→R3−R1

1 2 3 1 0 00 1 −3 −2 1 00 −2 5 −1 0 1

−→

1 2 3 1 0 00 1 −3 −2 1 00 −2 5 −1 0 1

R1−2R2−−−−−−→R3+2R2

1 0 9 5 −2 00 1 −3 −2 1 00 0 −1 −5 2 1

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 39 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.8)

Find inverse of A =

1 2 32 5 31 0 8

Solution

[A|I] =

1 2 3 1 0 02 5 3 0 1 01 0 8 0 0 1

R2−2R1−−−−−−→R3−R1

1 2 3 1 0 00 1 −3 −2 1 00 −2 5 −1 0 1

−→

1 2 3 1 0 00 1 −3 −2 1 00 −2 5 −1 0 1

R1−2R2−−−−−−→R3+2R2

1 0 9 5 −2 00 1 −3 −2 1 00 0 −1 −5 2 1

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 39 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.8)

Find inverse of A =

1 2 32 5 31 0 8

Solution

[A|I] =

1 2 3 1 0 02 5 3 0 1 01 0 8 0 0 1

R2−2R1−−−−−−→R3−R1

1 2 3 1 0 00 1 −3 −2 1 00 −2 5 −1 0 1

−→

1 2 3 1 0 00 1 −3 −2 1 00 −2 5 −1 0 1

R1−2R2−−−−−−→R3+2R2

1 0 9 5 −2 00 1 −3 −2 1 00 0 −1 −5 2 1

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 39 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Solution

−→

1 0 9 5 −2 00 1 −3 −2 1 00 0 −1 −5 2 1

(−1)R3−−−−−→

1 0 9 5 −2 00 1 −3 −2 1 00 0 1 5 −2 −1

R1−9R3−−−−−−→R2+3R3

1 0 0 −40 16 90 1 0 13 −5 −30 0 1 5 −2 −1

Thus,

A−1 =

−40 16 913 −5 −35 −2 −1

#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 40 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Solution

−→

1 0 9 5 −2 00 1 −3 −2 1 00 0 −1 −5 2 1

(−1)R3−−−−−→

1 0 9 5 −2 00 1 −3 −2 1 00 0 1 5 −2 −1

R1−9R3−−−−−−→R2+3R3

1 0 0 −40 16 90 1 0 13 −5 −30 0 1 5 −2 −1

Thus,

A−1 =

−40 16 913 −5 −35 −2 −1

#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 40 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Solution

−→

1 0 9 5 −2 00 1 −3 −2 1 00 0 −1 −5 2 1

(−1)R3−−−−−→

1 0 9 5 −2 00 1 −3 −2 1 00 0 1 5 −2 −1

R1−9R3−−−−−−→R2+3R3

1 0 0 −40 16 90 1 0 13 −5 −30 0 1 5 −2 −1

Thus,

A−1 =

−40 16 913 −5 −35 −2 −1

#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 40 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Solution

−→

1 0 9 5 −2 00 1 −3 −2 1 00 0 −1 −5 2 1

(−1)R3−−−−−→

1 0 9 5 −2 00 1 −3 −2 1 00 0 1 5 −2 −1

R1−9R3−−−−−−→R2+3R3

1 0 0 −40 16 90 1 0 13 −5 −30 0 1 5 −2 −1

Thus,

A−1 =

−40 16 913 −5 −35 −2 −1

#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 40 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Recheck

AA−1 =

1 2 32 5 31 0 8

−40 16 913 −5 −35 −2 −1

=

−40 + 26 + 15 16− 10− 6 9− 6− 3−80 + 65 + 15 32− 25− 6 18− 15− 3−40 + 0 + 40 16 + 0− 16 9 + 0− 8

=

1 0 00 1 00 0 1

A−1A =

−40 16 913 −5 −35 −2 −1

1 2 32 5 31 0 8

=

−40 + 32 + 9 −80 + 80 + 0 −120 + 48 + 7213− 10− 3 26− 25 + 0 39− 15− 245− 4− 1 10− 10 + 0 15− 6− 8

=

1 0 00 1 00 0 1

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 41 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.9)

Find inverse of A =

1 2 3 00 1 −4 52 0 2 00 4 0 1

Homework

A−1 =1

60

−38 −4 −49 20−8 −4 4 2038 4 −19 −2032 16 −16 −20

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 42 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.10)

Find inverse of A =

1 0 0 01 1 0 01 2 1 01 3 2 1

Solution

1 0 0 0 1 0 0 01 1 0 0 0 1 0 01 2 1 0 0 0 1 01 3 2 1 0 0 0 1

R3−R1,R2−R1−−−−−−−−−−−−→R4−R1

1 0 0 0 1 0 0 00 1 0 0 −1 1 0 00 2 1 0 −1 0 1 00 3 2 1 −1 0 0 1

R3−2R1−−−−−−−→R4−3R2

1 0 0 0 1 0 0 00 1 0 0 −1 1 0 00 0 1 0 1 −2 1 00 0 2 1 2 −3 0 1

R4−2R3−−−−−−−→

1 0 0 0 1 0 0 00 1 0 0 −1 1 0 00 0 1 0 1 −2 1 00 0 0 1 0 1 −2 1

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 43 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.10)

Find inverse of A =

1 0 0 01 1 0 01 2 1 01 3 2 1

Solution

1 0 0 0 1 0 0 01 1 0 0 0 1 0 01 2 1 0 0 0 1 01 3 2 1 0 0 0 1

R3−R1,R2−R1−−−−−−−−−−−−→R4−R1

1 0 0 0 1 0 0 00 1 0 0 −1 1 0 00 2 1 0 −1 0 1 00 3 2 1 −1 0 0 1

R3−2R1−−−−−−−→R4−3R2

1 0 0 0 1 0 0 00 1 0 0 −1 1 0 00 0 1 0 1 −2 1 00 0 2 1 2 −3 0 1

R4−2R3−−−−−−−→

1 0 0 0 1 0 0 00 1 0 0 −1 1 0 00 0 1 0 1 −2 1 00 0 0 1 0 1 −2 1

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 43 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.10)

Find inverse of A =

1 0 0 01 1 0 01 2 1 01 3 2 1

Solution

1 0 0 0 1 0 0 01 1 0 0 0 1 0 01 2 1 0 0 0 1 01 3 2 1 0 0 0 1

R3−R1,R2−R1−−−−−−−−−−−−→R4−R1

1 0 0 0 1 0 0 00 1 0 0 −1 1 0 00 2 1 0 −1 0 1 00 3 2 1 −1 0 0 1

R3−2R1−−−−−−−→R4−3R2

1 0 0 0 1 0 0 00 1 0 0 −1 1 0 00 0 1 0 1 −2 1 00 0 2 1 2 −3 0 1

R4−2R3−−−−−−−→

1 0 0 0 1 0 0 00 1 0 0 −1 1 0 00 0 1 0 1 −2 1 00 0 0 1 0 1 −2 1

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 43 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.10)

Find inverse of A =

1 0 0 01 1 0 01 2 1 01 3 2 1

Solution

1 0 0 0 1 0 0 01 1 0 0 0 1 0 01 2 1 0 0 0 1 01 3 2 1 0 0 0 1

R3−R1,R2−R1−−−−−−−−−−−−→R4−R1

1 0 0 0 1 0 0 00 1 0 0 −1 1 0 00 2 1 0 −1 0 1 00 3 2 1 −1 0 0 1

R3−2R1−−−−−−−→R4−3R2

1 0 0 0 1 0 0 00 1 0 0 −1 1 0 00 0 1 0 1 −2 1 00 0 2 1 2 −3 0 1

R4−2R3−−−−−−−→

1 0 0 0 1 0 0 00 1 0 0 −1 1 0 00 0 1 0 1 −2 1 00 0 0 1 0 1 −2 1

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 43 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.10)

Find inverse of A =

1 0 0 01 1 0 01 2 1 01 3 2 1

Solution

1 0 0 0 1 0 0 01 1 0 0 0 1 0 01 2 1 0 0 0 1 01 3 2 1 0 0 0 1

R3−R1,R2−R1−−−−−−−−−−−−→R4−R1

1 0 0 0 1 0 0 00 1 0 0 −1 1 0 00 2 1 0 −1 0 1 00 3 2 1 −1 0 0 1

R3−2R1−−−−−−−→R4−3R2

1 0 0 0 1 0 0 00 1 0 0 −1 1 0 00 0 1 0 1 −2 1 00 0 2 1 2 −3 0 1

R4−2R3−−−−−−−→

1 0 0 0 1 0 0 00 1 0 0 −1 1 0 00 0 1 0 1 −2 1 00 0 0 1 0 1 −2 1

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 43 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.11)

Find inverse of A =

1 2 −3 00 1 5 06 0 1 00 0 0 1

Homework

A−1 =1

79

1 −2 13 030 19 −5 0−6 12 1 00 0 0 79

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 44 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.12)

Show that matrix A is not invertible (singular) A =

1 6 42 4 −1−1 2 5

Solution 1 6 4 1 0 02 4 −1 0 1 0−1 2 5 0 0 1

R2−2R1−−−−−−→R3+R1

1 6 4 1 0 00 −8 −9 −2 1 00 8 9 1 0 1

R3+R2−−−−−→

1 6 4 1 0 00 −8 −9 −2 1 00 0 0 −1 1 1

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 45 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.12)

Show that matrix A is not invertible (singular) A =

1 6 42 4 −1−1 2 5

Solution 1 6 4 1 0 0

2 4 −1 0 1 0−1 2 5 0 0 1

R2−2R1−−−−−−→R3+R1

1 6 4 1 0 00 −8 −9 −2 1 00 8 9 1 0 1

R3+R2−−−−−→

1 6 4 1 0 00 −8 −9 −2 1 00 0 0 −1 1 1

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 45 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.12)

Show that matrix A is not invertible (singular) A =

1 6 42 4 −1−1 2 5

Solution 1 6 4 1 0 0

2 4 −1 0 1 0−1 2 5 0 0 1

R2−2R1−−−−−−→R3+R1

1 6 4 1 0 00 −8 −9 −2 1 00 8 9 1 0 1

R3+R2−−−−−→

1 6 4 1 0 00 −8 −9 −2 1 00 0 0 −1 1 1

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 45 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.12)

Show that matrix A is not invertible (singular) A =

1 6 42 4 −1−1 2 5

Solution 1 6 4 1 0 0

2 4 −1 0 1 0−1 2 5 0 0 1

R2−2R1−−−−−−→R3+R1

1 6 4 1 0 00 −8 −9 −2 1 00 8 9 1 0 1

R3+R2−−−−−→

1 6 4 1 0 00 −8 −9 −2 1 00 0 0 −1 1 1

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 45 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

2.3 Linear Systems with Invertibility

Marix multiplication has an important application to system of linearequations. Consider any linear system of m linear equation in n unknowns.

a11x1 + a12x2 + ...+ a12xn = b1

a21x1 + a22x2 + ...+ a2nxn = b2

...am1x1 + am2x2 + ...+ amnxn = bm

We can replace the m equations in this system by product matrices.a11 a12 ... a12a21 a22 ... a2n

......

...am1 am2 ... amn

x1

x2

...xn

=

b1b2...bm

If we designate matrices by A, x and b, respectively, the original systembecomes to

Ax = b

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 46 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

2.3 Linear Systems with Invertibility

Marix multiplication has an important application to system of linearequations. Consider any linear system of m linear equation in n unknowns.

a11x1 + a12x2 + ...+ a12xn = b1

a21x1 + a22x2 + ...+ a2nxn = b2

...am1x1 + am2x2 + ...+ amnxn = bm

We can replace the m equations in this system by product matrices.a11 a12 ... a12a21 a22 ... a2n

......

...am1 am2 ... amn

x1

x2

...xn

=

b1b2...bm

If we designate matrices by A, x and b, respectively, the original systembecomes to

Ax = b

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 46 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

2.3 Linear Systems with Invertibility

Marix multiplication has an important application to system of linearequations. Consider any linear system of m linear equation in n unknowns.

a11x1 + a12x2 + ...+ a12xn = b1

a21x1 + a22x2 + ...+ a2nxn = b2

...am1x1 + am2x2 + ...+ amnxn = bm

We can replace the m equations in this system by product matrices.a11 a12 ... a12a21 a22 ... a2n

......

...am1 am2 ... amn

x1

x2

...xn

=

b1b2...bm

If we designate matrices by A, x and b, respectively, the original systembecomes to

Ax = bThanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 46 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

The matrix A is called the cofficient matrix of the system. The argumentedmatrix for the system is obatined by

[A | b ] =

a11 a12 · · · a1n b1a21 a22 · · · a2n b2

......

......

am1 am2 · · · amn bm

Theorem (2.3.1)

Every system of linear equations has either no solutions, exactly one solution,or infinitely many solutions.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 47 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

The matrix A is called the cofficient matrix of the system. The argumentedmatrix for the system is obatined by

[A | b ] =

a11 a12 · · · a1n b1a21 a22 · · · a2n b2

......

......

am1 am2 · · · amn bm

Theorem (2.3.1)

Every system of linear equations has either no solutions, exactly one solution,or infinitely many solutions.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 47 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Theorem (2.3.2)

Let A be an n× n matrix and let b be an n× 1 matrix. If the linear equationsAx = b has exactly one solution, then, namely,

x = A−1b

Example (2.3.1)

Use theorem 2.3.2 to find the system of linear equations

(a)

{3x1 + 2x2 = 5

7x1 + 5x2 = 3and (b)

x1 + 2x2 + 3x3 = 5

2x1 + 5x2 + 3x3 = 3

x1 + 8x3 = 11

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 48 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Theorem (2.3.2)

Let A be an n× n matrix and let b be an n× 1 matrix. If the linear equationsAx = b has exactly one solution, then, namely,

x = A−1b

Example (2.3.1)

Use theorem 2.3.2 to find the system of linear equations

(a)

{3x1 + 2x2 = 5

7x1 + 5x2 = 3and (b)

x1 + 2x2 + 3x3 = 5

2x1 + 5x2 + 3x3 = 3

x1 + 8x3 = 11

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 48 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Solution

(a)

{3x1 + 2x2 = 5

7x1 + 5x2 = 3↔

[3 27 5

] [x1

x2

]=

[53

]

Then,

[x1

x2

]=

[3 27 5

]−1 [53

]=

1

1

[5 −2−7 3

] [53

]=

[25− 6−35 + 9

]=

[19−26

]Hence, x1 = 19, x2 = −26 #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 49 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Solution

(a)

{3x1 + 2x2 = 5

7x1 + 5x2 = 3↔

[3 27 5

] [x1

x2

]=

[53

]Then,

[x1

x2

]=

[3 27 5

]−1 [53

]=

1

1

[5 −2−7 3

] [53

]=

[25− 6−35 + 9

]=

[19−26

]

Hence, x1 = 19, x2 = −26 #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 49 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Solution

(a)

{3x1 + 2x2 = 5

7x1 + 5x2 = 3↔

[3 27 5

] [x1

x2

]=

[53

]Then,

[x1

x2

]=

[3 27 5

]−1 [53

]=

1

1

[5 −2−7 3

] [53

]=

[25− 6−35 + 9

]=

[19−26

]Hence, x1 = 19, x2 = −26 #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 49 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Solution

(b)

x1 + 2x2 + 3x3 = 5

2x1 + 5x2 + 3x3 = 3

x1 + 8x3 = 11

1 2 32 5 31 0 8

x1

x2

x3

=

5311

Then,

x1

x2

x3

=

1 2 32 5 31 0 8

−1 5311

=

−40 16 913 −5 −35 −2 −1

5311

=

−200 + 48 + 9965− 15− 3325− 6− 11

=

−53178

Hence, x1 = −53, x2 = 17, x3 = 8 #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 50 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Solution

(b)

x1 + 2x2 + 3x3 = 5

2x1 + 5x2 + 3x3 = 3

x1 + 8x3 = 11

1 2 32 5 31 0 8

x1

x2

x3

=

5311

Then,

x1

x2

x3

=

1 2 32 5 31 0 8

−1 5311

=

−40 16 913 −5 −35 −2 −1

5311

=

−200 + 48 + 9965− 15− 3325− 6− 11

=

−53178

Hence, x1 = −53, x2 = 17, x3 = 8 #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 50 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Solution

(b)

x1 + 2x2 + 3x3 = 5

2x1 + 5x2 + 3x3 = 3

x1 + 8x3 = 11

1 2 32 5 31 0 8

x1

x2

x3

=

5311

Then,

x1

x2

x3

=

1 2 32 5 31 0 8

−1 5311

=

−40 16 913 −5 −35 −2 −1

5311

=

−200 + 48 + 9965− 15− 3325− 6− 11

=

−53178

Hence, x1 = −53, x2 = 17, x3 = 8 #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 50 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Linear systems with a common coefficient matrix: One is concerned withsolving a seguence of systems

Ax = b1, Ax = b2, Ax = b3, ..., Ax = bk

If A is invertible, then the solutions

x1 = A−1b1, x2 = A−1b2, x3 = A−1b3, ..., xk = A−1bk

can be obtained with one matrix inversion and k matrix multiplications. Amore effient method is to form the matrix (argumented matrix)

[ A | b1 | b2 | · · · | bk ]

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 51 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Linear systems with a common coefficient matrix: One is concerned withsolving a seguence of systems

Ax = b1, Ax = b2, Ax = b3, ..., Ax = bk

If A is invertible, then the solutions

x1 = A−1b1, x2 = A−1b2, x3 = A−1b3, ..., xk = A−1bk

can be obtained with one matrix inversion and k matrix multiplications. Amore effient method is to form the matrix (argumented matrix)

[ A | b1 | b2 | · · · | bk ]

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 51 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Linear systems with a common coefficient matrix: One is concerned withsolving a seguence of systems

Ax = b1, Ax = b2, Ax = b3, ..., Ax = bk

If A is invertible, then the solutions

x1 = A−1b1, x2 = A−1b2, x3 = A−1b3, ..., xk = A−1bk

can be obtained with one matrix inversion and k matrix multiplications. Amore effient method is to form the matrix (argumented matrix)

[ A | b1 | b2 | · · · | bk ]

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 51 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Example (2.3.2)

Use Gauss-Jodan elimination to find two systems of linear equations

(a)

x1 + 2x2 + 3x3 = 4

2x1 + 5x2 + 3x3 = 5

x1 + 8x3 = 6

(b)

x1 + 2x2 + 3x3 = 1

2x1 + 5x2 + 3x3 = 6

x1 + 8x3 = −6

1 2 3 4 12 5 3 5 61 0 8 6 −6

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 52 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Example (2.3.2)

Use Gauss-Jodan elimination to find two systems of linear equations

(a)

x1 + 2x2 + 3x3 = 4

2x1 + 5x2 + 3x3 = 5

x1 + 8x3 = 6

(b)

x1 + 2x2 + 3x3 = 1

2x1 + 5x2 + 3x3 = 6

x1 + 8x3 = −6

1 2 3 4 12 5 3 5 61 0 8 6 −6

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 52 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Solution 1 2 3 4 12 5 3 5 61 0 8 6 −6

R2−2R1−−−−−−→R3−R1

1 2 3 4 10 1 −3 −3 40 −2 5 2 −7

−→

1 2 3 4 10 1 −3 −3 40 −2 5 2 −7

R1−2R2−−−−−−→R3+2R2

1 0 9 10 −70 1 −3 −3 40 0 −1 −4 1

(−1)R3−−−−−→

1 0 9 10 −70 1 −3 −3 40 0 1 4 −1

R1−9R3−−−−−−→R2+3R3

1 0 0 −26 20 1 0 9 10 0 1 4 −1

Thus, x1 = −26, x2 = 9, x3 = 4 is the solution of (a) and x1 = 2, x2 = 1, x3 = −1 is thesolution of (b). #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 53 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Solution 1 2 3 4 12 5 3 5 61 0 8 6 −6

R2−2R1−−−−−−→R3−R1

1 2 3 4 10 1 −3 −3 40 −2 5 2 −7

−→

1 2 3 4 10 1 −3 −3 40 −2 5 2 −7

R1−2R2−−−−−−→R3+2R2

1 0 9 10 −70 1 −3 −3 40 0 −1 −4 1

(−1)R3−−−−−→

1 0 9 10 −70 1 −3 −3 40 0 1 4 −1

R1−9R3−−−−−−→R2+3R3

1 0 0 −26 20 1 0 9 10 0 1 4 −1

Thus, x1 = −26, x2 = 9, x3 = 4 is the solution of (a) and x1 = 2, x2 = 1, x3 = −1 is thesolution of (b). #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 53 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Solution 1 2 3 4 12 5 3 5 61 0 8 6 −6

R2−2R1−−−−−−→R3−R1

1 2 3 4 10 1 −3 −3 40 −2 5 2 −7

−→

1 2 3 4 10 1 −3 −3 40 −2 5 2 −7

R1−2R2−−−−−−→R3+2R2

1 0 9 10 −70 1 −3 −3 40 0 −1 −4 1

(−1)R3−−−−−→

1 0 9 10 −70 1 −3 −3 40 0 1 4 −1

R1−9R3−−−−−−→R2+3R3

1 0 0 −26 20 1 0 9 10 0 1 4 −1

Thus, x1 = −26, x2 = 9, x3 = 4 is the solution of (a) and x1 = 2, x2 = 1, x3 = −1 is thesolution of (b). #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 53 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Solution 1 2 3 4 12 5 3 5 61 0 8 6 −6

R2−2R1−−−−−−→R3−R1

1 2 3 4 10 1 −3 −3 40 −2 5 2 −7

−→

1 2 3 4 10 1 −3 −3 40 −2 5 2 −7

R1−2R2−−−−−−→R3+2R2

1 0 9 10 −70 1 −3 −3 40 0 −1 −4 1

(−1)R3−−−−−→

1 0 9 10 −70 1 −3 −3 40 0 1 4 −1

R1−9R3−−−−−−→R2+3R3

1 0 0 −26 20 1 0 9 10 0 1 4 −1

Thus, x1 = −26, x2 = 9, x3 = 4 is the solution of (a) and x1 = 2, x2 = 1, x3 = −1 is thesolution of (b). #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 53 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Solution 1 2 3 4 12 5 3 5 61 0 8 6 −6

R2−2R1−−−−−−→R3−R1

1 2 3 4 10 1 −3 −3 40 −2 5 2 −7

−→

1 2 3 4 10 1 −3 −3 40 −2 5 2 −7

R1−2R2−−−−−−→R3+2R2

1 0 9 10 −70 1 −3 −3 40 0 −1 −4 1

(−1)R3−−−−−→

1 0 9 10 −70 1 −3 −3 40 0 1 4 −1

R1−9R3−−−−−−→R2+3R3

1 0 0 −26 20 1 0 9 10 0 1 4 −1

Thus, x1 = −26, x2 = 9, x3 = 4 is the solution of (a) and x1 = 2, x2 = 1, x3 = −1 is thesolution of (b). #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 53 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Solution 1 2 3 4 12 5 3 5 61 0 8 6 −6

R2−2R1−−−−−−→R3−R1

1 2 3 4 10 1 −3 −3 40 −2 5 2 −7

−→

1 2 3 4 10 1 −3 −3 40 −2 5 2 −7

R1−2R2−−−−−−→R3+2R2

1 0 9 10 −70 1 −3 −3 40 0 −1 −4 1

(−1)R3−−−−−→

1 0 9 10 −70 1 −3 −3 40 0 1 4 −1

R1−9R3−−−−−−→R2+3R3

1 0 0 −26 20 1 0 9 10 0 1 4 −1

Thus, x1 = −26, x2 = 9, x3 = 4 is the solution of (a) and x1 = 2, x2 = 1, x3 = −1 is thesolution of (b). #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 53 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Solution 1 2 3 4 12 5 3 5 61 0 8 6 −6

R2−2R1−−−−−−→R3−R1

1 2 3 4 10 1 −3 −3 40 −2 5 2 −7

−→

1 2 3 4 10 1 −3 −3 40 −2 5 2 −7

R1−2R2−−−−−−→R3+2R2

1 0 9 10 −70 1 −3 −3 40 0 −1 −4 1

(−1)R3−−−−−→

1 0 9 10 −70 1 −3 −3 40 0 1 4 −1

R1−9R3−−−−−−→R2+3R3

1 0 0 −26 20 1 0 9 10 0 1 4 −1

Thus, x1 = −26, x2 = 9, x3 = 4 is the solution of (a) and x1 = 2, x2 = 1, x3 = −1 is thesolution of (b). #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 53 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Theorem (2.3.3)

Let A be a square matrix.

1 If B is a square matrix satisfying BA = I, then B = A−1.

2 If B is a square matrix satisfying AB = I, then B = A−1.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 54 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Theorem (2.3.4)

Let A be an n× n matrix. Then TFAE.

1 A is invertible.

2 Ax = 0 has only trivial solution.

3 The RREF of A is In.

4 A is expressible as a product of elementary matrices.

5 Ax = b is consistent for every n× 1 matrix b.

6 Ax = b has exactly one solution for every n× 1 matrix b.

Theorem (2.3.5)

Let A and B be square matrices of the same size. If AB is invertible, then Aand B must also be invertible.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 55 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Theorem (2.3.4)

Let A be an n× n matrix. Then TFAE.

1 A is invertible.

2 Ax = 0 has only trivial solution.

3 The RREF of A is In.

4 A is expressible as a product of elementary matrices.

5 Ax = b is consistent for every n× 1 matrix b.

6 Ax = b has exactly one solution for every n× 1 matrix b.

Theorem (2.3.5)

Let A and B be square matrices of the same size. If AB is invertible, then Aand B must also be invertible.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 55 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Example (2.3.3)

What conditions must a, b and c satisfy in order for the system of equationsx1 + x2 + 2x3 = a

x1 + x3 = b

2x1 + x2 + 3x3 = c

to be consistent ?

1 1 2 a1 0 1 b2 1 3 c

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 56 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Example (2.3.3)

What conditions must a, b and c satisfy in order for the system of equationsx1 + x2 + 2x3 = a

x1 + x3 = b

2x1 + x2 + 3x3 = c

to be consistent ?

1 1 2 a1 0 1 b2 1 3 c

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 56 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Solution 1 1 2 a1 0 1 b2 1 3 c

R2−R1−−−−−−→R3−2R1

1 1 2 a0 −1 −1 b− a0 −1 −1 c− 2a

(−1)R2−−−−−→

1 1 2 a0 1 1 a− b0 −1 −1 c− 2a

R3+R2−−−−−→

1 1 2 a0 1 1 a− b0 0 0 c− a− b

Thus, the linear system is consistent if c− a− b = 0 or c = a+ b. #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 57 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Solution 1 1 2 a1 0 1 b2 1 3 c

R2−R1−−−−−−→R3−2R1

1 1 2 a0 −1 −1 b− a0 −1 −1 c− 2a

(−1)R2−−−−−→

1 1 2 a0 1 1 a− b0 −1 −1 c− 2a

R3+R2−−−−−→

1 1 2 a0 1 1 a− b0 0 0 c− a− b

Thus, the linear system is consistent if c− a− b = 0 or c = a+ b. #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 57 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Solution 1 1 2 a1 0 1 b2 1 3 c

R2−R1−−−−−−→R3−2R1

1 1 2 a0 −1 −1 b− a0 −1 −1 c− 2a

(−1)R2−−−−−→

1 1 2 a0 1 1 a− b0 −1 −1 c− 2a

R3+R2−−−−−→

1 1 2 a0 1 1 a− b0 0 0 c− a− b

Thus, the linear system is consistent if c− a− b = 0 or c = a+ b. #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 57 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Solution 1 1 2 a1 0 1 b2 1 3 c

R2−R1−−−−−−→R3−2R1

1 1 2 a0 −1 −1 b− a0 −1 −1 c− 2a

(−1)R2−−−−−→

1 1 2 a0 1 1 a− b0 −1 −1 c− 2a

R3+R2−−−−−→

1 1 2 a0 1 1 a− b0 0 0 c− a− b

Thus, the linear system is consistent if c− a− b = 0 or c = a+ b. #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 57 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Solution 1 1 2 a1 0 1 b2 1 3 c

R2−R1−−−−−−→R3−2R1

1 1 2 a0 −1 −1 b− a0 −1 −1 c− 2a

(−1)R2−−−−−→

1 1 2 a0 1 1 a− b0 −1 −1 c− 2a

R3+R2−−−−−→

1 1 2 a0 1 1 a− b0 0 0 c− a− b

Thus, the linear system is consistent if c− a− b = 0 or c = a+ b. #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 57 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Example (2.3.4)

What conditions must a, b and c satisfy in order for the system of equationsx1 + 2x2 + 3x3 = a

2x1 + 5x2 + 3x3 = b

x1 + 8x3 = c

to be consistent ?

1 2 3 a2 5 3 b1 0 8 c

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 58 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Example (2.3.4)

What conditions must a, b and c satisfy in order for the system of equationsx1 + 2x2 + 3x3 = a

2x1 + 5x2 + 3x3 = b

x1 + 8x3 = c

to be consistent ?

1 2 3 a2 5 3 b1 0 8 c

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 58 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Solution 1 2 3 a2 5 3 b1 0 8 c

R2−2R1−−−−−−→R3−R1

1 2 3 a0 1 −3 b− 2a0 −2 5 c− a

−→

1 2 3 a0 1 −3 b− 2a0 −2 5 c− a

R1−2R2−−−−−−→R3+2R2

1 0 9 5a− 2b0 1 −3 b− 2a0 0 −1 c+ 2b− 5a

(−1)R3−−−−−→

1 0 9 5a− 2b0 1 −3 b− 2a0 0 1 5a− 2b− c

R1−9R3−−−−−−→R2+3R3

1 0 0 −40a+ 16b+ 9c0 1 0 13a− 5b− 3c0 0 1 5a− 2b− c

Thus, x1 = −40a+ 16b+ 9c, x2 = 13a− 5b− 3c, x3 = 5a− 2b− c is the solution wherea, b, c ∈ R. #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 59 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Solution 1 2 3 a2 5 3 b1 0 8 c

R2−2R1−−−−−−→R3−R1

1 2 3 a0 1 −3 b− 2a0 −2 5 c− a

−→

1 2 3 a0 1 −3 b− 2a0 −2 5 c− a

R1−2R2−−−−−−→R3+2R2

1 0 9 5a− 2b0 1 −3 b− 2a0 0 −1 c+ 2b− 5a

(−1)R3−−−−−→

1 0 9 5a− 2b0 1 −3 b− 2a0 0 1 5a− 2b− c

R1−9R3−−−−−−→R2+3R3

1 0 0 −40a+ 16b+ 9c0 1 0 13a− 5b− 3c0 0 1 5a− 2b− c

Thus, x1 = −40a+ 16b+ 9c, x2 = 13a− 5b− 3c, x3 = 5a− 2b− c is the solution wherea, b, c ∈ R. #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 59 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Solution 1 2 3 a2 5 3 b1 0 8 c

R2−2R1−−−−−−→R3−R1

1 2 3 a0 1 −3 b− 2a0 −2 5 c− a

−→

1 2 3 a0 1 −3 b− 2a0 −2 5 c− a

R1−2R2−−−−−−→R3+2R2

1 0 9 5a− 2b0 1 −3 b− 2a0 0 −1 c+ 2b− 5a

(−1)R3−−−−−→

1 0 9 5a− 2b0 1 −3 b− 2a0 0 1 5a− 2b− c

R1−9R3−−−−−−→R2+3R3

1 0 0 −40a+ 16b+ 9c0 1 0 13a− 5b− 3c0 0 1 5a− 2b− c

Thus, x1 = −40a+ 16b+ 9c, x2 = 13a− 5b− 3c, x3 = 5a− 2b− c is the solution wherea, b, c ∈ R. #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 59 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Solution 1 2 3 a2 5 3 b1 0 8 c

R2−2R1−−−−−−→R3−R1

1 2 3 a0 1 −3 b− 2a0 −2 5 c− a

−→

1 2 3 a0 1 −3 b− 2a0 −2 5 c− a

R1−2R2−−−−−−→R3+2R2

1 0 9 5a− 2b0 1 −3 b− 2a0 0 −1 c+ 2b− 5a

(−1)R3−−−−−→

1 0 9 5a− 2b0 1 −3 b− 2a0 0 1 5a− 2b− c

R1−9R3−−−−−−→R2+3R3

1 0 0 −40a+ 16b+ 9c0 1 0 13a− 5b− 3c0 0 1 5a− 2b− c

Thus, x1 = −40a+ 16b+ 9c, x2 = 13a− 5b− 3c, x3 = 5a− 2b− c is the solution wherea, b, c ∈ R. #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 59 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Solution 1 2 3 a2 5 3 b1 0 8 c

R2−2R1−−−−−−→R3−R1

1 2 3 a0 1 −3 b− 2a0 −2 5 c− a

−→

1 2 3 a0 1 −3 b− 2a0 −2 5 c− a

R1−2R2−−−−−−→R3+2R2

1 0 9 5a− 2b0 1 −3 b− 2a0 0 −1 c+ 2b− 5a

(−1)R3−−−−−→

1 0 9 5a− 2b0 1 −3 b− 2a0 0 1 5a− 2b− c

R1−9R3−−−−−−→R2+3R3

1 0 0 −40a+ 16b+ 9c0 1 0 13a− 5b− 3c0 0 1 5a− 2b− c

Thus, x1 = −40a+ 16b+ 9c, x2 = 13a− 5b− 3c, x3 = 5a− 2b− c is the solution wherea, b, c ∈ R. #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 59 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Solution 1 2 3 a2 5 3 b1 0 8 c

R2−2R1−−−−−−→R3−R1

1 2 3 a0 1 −3 b− 2a0 −2 5 c− a

−→

1 2 3 a0 1 −3 b− 2a0 −2 5 c− a

R1−2R2−−−−−−→R3+2R2

1 0 9 5a− 2b0 1 −3 b− 2a0 0 −1 c+ 2b− 5a

(−1)R3−−−−−→

1 0 9 5a− 2b0 1 −3 b− 2a0 0 1 5a− 2b− c

R1−9R3−−−−−−→R2+3R3

1 0 0 −40a+ 16b+ 9c0 1 0 13a− 5b− 3c0 0 1 5a− 2b− c

Thus, x1 = −40a+ 16b+ 9c, x2 = 13a− 5b− 3c, x3 = 5a− 2b− c is the solution wherea, b, c ∈ R. #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 59 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Solution 1 2 3 a2 5 3 b1 0 8 c

R2−2R1−−−−−−→R3−R1

1 2 3 a0 1 −3 b− 2a0 −2 5 c− a

−→

1 2 3 a0 1 −3 b− 2a0 −2 5 c− a

R1−2R2−−−−−−→R3+2R2

1 0 9 5a− 2b0 1 −3 b− 2a0 0 −1 c+ 2b− 5a

(−1)R3−−−−−→

1 0 9 5a− 2b0 1 −3 b− 2a0 0 1 5a− 2b− c

R1−9R3−−−−−−→R2+3R3

1 0 0 −40a+ 16b+ 9c0 1 0 13a− 5b− 3c0 0 1 5a− 2b− c

Thus, x1 = −40a+ 16b+ 9c, x2 = 13a− 5b− 3c, x3 = 5a− 2b− c is the solution wherea, b, c ∈ R. #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 59 / 60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Assignment 2

1. In each part use the information to find A

(a) (EVEN) (5AT + 2I)−1 =

[8 55 3

](b) (ODD) (A+ 3I)−1 =

[9 −295 −16

]T

2. Solve the linear system by x = A−1b.

(a) (EVEN)

x1 + 2x2 + 3x3 = 1

x2 + 4x3 = 2

5x1 + 6x2 = 3

(b) (ODD)

x2 + 7x3 = 1

x1 + 3x2 + 3x3 = 2

−2x1 − 5x2 = 3

3. (EVEN and ODD) What conditions must a, b and c satisfy in order for the system ofequations

2x1 + x2 + 3x3 + x4 = a

x1 + x3 + 2x4 = b

x1 + x2 + 2x3 + 4x4 = c

to be consistent ?

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 60 / 60

Recommended