Modal Testing Lectures 1-10

Preview:

Citation preview

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 1/178

Modal Testing(Lecture 1)

Dr. Hamid AhmadianSchool of Mechanical Engineering

Iran University of Science and Technology

ahmadian@iust.ac.ir

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 2/178

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 3/178

Dr H Ahmadian,Modal Testing Lab,IUSTOverview of Modal Testing

Introduction to Modal Testing

Experimental Structural Dynamics To understand and to control the many vibration

phenomenon in practice Structural integrity (Turbine blades- Suspension Bridges)

Performance ( malfunction, disturbance, discomfort)

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 4/178

Dr H Ahmadian,Modal Testing Lab,IUSTOverview of Modal Testing

Introduction to Modal Testing (continued)

Necessities for experimentalobservations

Nature and extend of vibration in operation

 Verifying theoretical models

Material properties under dynamic loading

(damping capacity, friction,…)

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 5/178

Dr H Ahmadian,Modal Testing Lab,IUSTOverview of Modal Testing

Introduction to Modal Testing (continued)

Test types corresponding to objectives: Operational Force/Response measurements

Response measurement of PZL Mielec Skytruck ModeShapes (3.17 Hz, 1.62 %), (8.39 Hz, 1.93 %)

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 6/178

Dr H Ahmadian,Modal Testing Lab,IUSTOverview of Modal Testing

Introduction to Modal Testing (continued)

Modal Testing in acontrolled environment/Resonance Testing/Mechanical ImpedanceMethod

Testing a component ora structure with theobjective of obtainingmathematical model of

dynamical/vibrationbehavior

Structural Analysis ofULTRA Mirror

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 7/178

Dr H Ahmadian,Modal Testing Lab,IUSTOverview of Modal Testing

Introduction to Modal Testing (continued)

Milestones in the development: Kennedy and Pancu (1947)

Natural frequencies and damping of aircrafts

Bishop and Gladwell (1962)

Theory of resonance testing

ISMA (bi-annual since 1975) IMAC (annual since 1982)

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 8/178

Dr H Ahmadian,Modal Testing Lab,IUSTOverview of Modal Testing

 Applications of Modal Testing

Model Validation/Correlation: Producing major test modes validates the model

Natural frequencies

Mode shapes

Damping information are not available in FE models

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 9/178

Dr H Ahmadian,Modal Testing Lab,IUSTOverview of Modal Testing

 Applications of Modal Testing (continued)

Model Updating Correlation of experimental/analytical

model

 Adjust/correct the analytical model

Optimization procedures are used for

updating.

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 10/178

Dr H Ahmadian,Modal Testing Lab,IUSTOverview of Modal Testing

 Applications of Modal Testing (continued)

Component ModelIdentification

Substructure process

The component modelis incorporated into thestructural assembly

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 11/178

Dr H Ahmadian,Modal Testing Lab,IUSTOverview of Modal Testing

 Applications of Modal Testing (continued)

Force Determination Knowledge of dynamic force is required

Direct force measurement is not possible

Measurement of response + Analytical Modelresults the external force

[ ] [ ]{ } { } f  x M K    =−

  2

ω 

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 12/178

Dr H Ahmadian,Modal Testing Lab,IUSTOverview of Modal Testing

Philosophy of Modal Testing Integration of three components:

Theory of vibration  Accurate vibration measurement Realistic and detailed data analysis

Examples: Quality and suitability of data for process Excitation type Understanding of forms and trends of plots Choice of curve fitting  Averaging

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 13/178

Dr H Ahmadian,Modal Testing Lab,IUSTOverview of Modal Testing

Summary of Theory (SDOF)

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 14/178

Dr H Ahmadian,Modal Testing Lab,IUSTOverview of Modal Testing

Summary of Theory (MDOF)

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 15/178

Dr H Ahmadian,Modal Testing Lab,IUSTOverview of Modal Testing

Summary of Theory

Definition of FRF:[ ] [ ] [ ]( )

.)(

)(

)(

)(

122

12

∑=

−==

+−=

 N 

r    r 

kr  jr 

 j

 jk   f 

 x

h

 Di M K  H 

ω ω 

φ φ 

ω 

ω 

ω 

ω ω 

Curve-fitting the

measured FRF: Modal Model is obtained

Spatial Model is obtained

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 16/178

Dr H Ahmadian,Modal Testing Lab,IUSTOverview of Modal Testing

Summary of Measurement

Methods

Basic measurement system: Single point excitation

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 17/178

Dr H Ahmadian,Modal Testing Lab,IUSTOverview of Modal Testing

Summary of Modal Analysis

Processes

 Analysis of measured FRF data  Appropriate type of model (SDOF,MDOF,…)

 Appropriate parameters for chosen model

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 18/178

Dr H Ahmadian,Modal Testing Lab,IUSTOverview of Modal Testing

Review of Test Procedures

and Levels

The procedure consists of: FRF measurement

Curve-Fitting

Construct the required model

Different level of details and accuracy in

above procedure is required dependingon the application.

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 19/178

Dr H Ahmadian,Modal Testing Lab,IUSTOverview of Modal Testing

Review of Test Procedures

and Levels

Levels according to Dynamic Testing Agency:Updating

Out of rangeresidues

Usable forvalidation

Mode ShapesDamping

ratioNaturalFreq

Level

0

Only in fewpoints

1

2

3

4

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 20/178

Dr H Ahmadian,Modal Testing Lab,IUSTOverview of Modal Testing

Text Books

Ewins, D.J. , 2000, “Modal Testing; theory,practice and application”, 2nd edition,Research studies press Ltd.

McConnell, K.G., 1995, “ Vibration testing;theory and practice”, John Wiley & Sons.

Maia, et. al. , 1997, “Theoretical andExperimental Modal Analysis”, Researchstudies press Ltd.

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 21/178

Dr H Ahmadian,Modal Testing Lab,IUSTOverview of Modal Testing

Evaluation Scheme

Home Works (20%) Mid-term Exam (20%)

Course Project (30%) Final Exam (30%)

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 22/178

Modal Testing(Lecture 10)

Dr. Hamid AhmadianSchool of Mechanical Engineering

Iran University of Science and Technology

ahmadian@iust.ac.ir

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 23/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

 Theoretical Basis

 Analysis of weakly nonlinear structures Approximate analysis of nonlinear

structures

Cubic stiffness nonlinearity

Coulomb friction nonlinearity

Other nonlinearities and otherdescriptions

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 24/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

 Analysis of weakly nonlinear

structures

The whole bases of modal testing assumeslinearity:

Response linearly related to the excitation

Response to simultaneous application of severalforces can be obtained by superposition ofresponses to individual forces

 An introduction to characteristics of weaklynonlinear systems is given to detect if anynonlinearity is involved during modal test.

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 25/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

Cubic stiffness nonlinearity

)sin()3sin(4

1)sin(

4

3

)sin()cos()sin(

)sin()(sin)sin()cos()sin(

)sin()(

)sin(

3

3

2

33

3

2

33

φ ω ω ω 

ω ω ω ω ω 

φ ω ω ω ω ω ω ω 

ω 

φ ω 

−=⎟ ⎠

 ⎞⎜⎝ 

⎛ −

+++−⇒

−=+++−⇒

=⇒−=+++

t F t t  X k 

t kX t  X ct  X m

t F t  X k t kX t  X ct  X m

t  X t  x

t F  xk kx xc xm  &&&

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 26/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

Cubic stiffness nonlinearity

⎪⎩

⎪⎨⎧

−=

=++−⇒

=⎟ ⎠

 ⎞⎜⎝ 

⎛ −

+++−

)sin(

)cos(4

3

)sin()cos()cos()sin(

)3sin(4

1)sin(

4

3

)sin()cos()sin(

3

3

2

3

3

2

φ ω 

φ ω 

φ ω φ ω 

ω ω 

ω ω ω ω ω 

F  X c

F  X k kX  X m

t F t F 

t t  X k 

t kX t  X ct  X m

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 27/178

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 28/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

Cubic stiffness nonlinearity

Softening effect Hardening effect

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 29/178

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 30/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

Softening-stiffness effect

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 31/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

Softening-stiffness effect

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 32/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

Softening-stiffness effect

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 33/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

Coulomb friction nonlinearity

( )

 ⎠

 ⎞⎜

⎝ 

⎛ ++−

=

=

Δ

=⇒=Δ

+=

 X 

ccimk 

F  X 

 X 

c

dt t  x

 E c X c E 

t  x

t  x

ct  xct  f 

F eqF 

F d 

πω 

ω ω 

πω ω π 

41

44

)(

)(

)()(

2

/2

0

2&

&

&

&

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 34/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

Coulomb friction nonlinearity

X increasing

⎟ ⎠ ⎞⎜

⎝ ⎛  ++−

=

 X 

ccimk F 

 X 

πω ω ω    4

1

2

Othe nonlinea ities and othe

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 35/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

Other nonlinearities and other

descriptions

Backlash Bilinear Stiffness

Microslip friction damping Quadratic (and other power law

damping)

…..

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 36/178

Modal Testing(Lecture 2)

Dr. Hamid AhmadianSchool of Mechanical Engineering

Iran University of Science and Technology

ahmadian@iust.ac.ir

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 37/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

MODAL ANALYSIS THEORY  Understanding of how the structural

parameters of mass, damping, and stiffnessrelate to

the impulse response function (time domain), the frequency response function (Fourier, or

frequency domain), and

the transfer function (Laplace domain) for single and multiple degree of freedom

systems.

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 38/178

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 39/178

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 40/178

Frequency Domain:

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 41/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

Frequency Domain:

Frequency Response Function

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 42/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

 Alternative Forms of FRF Receptance

Inverse is “DynamicStiffness”

Mobility Inverse is “Dynamic

Impedance”

Inertance Inverse is “ Apparent

mass”

)(

)(

ω 

ω 

 X 

)()(

)()(

ω 

ω ω 

ω 

ω 

 X iF 

V  =

)()(

)()(   2

ω 

ω ω 

ω 

ω 

 X 

 A −=

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 43/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

Graphical Display of FRF

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 44/178

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 45/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

Stiffness and Mass Lines

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 46/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

Reciprocal Plots The “inverse” or

“reciprocal” plots

Real part

Imaginary part  ⎪

⎪⎪⎨

=

−=

⇒ω 

ω 

ω 

ω 

ω 

ω 

c X 

mk  X 

))(

)(Im(

))(

)(

Re(

  2

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 47/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

Nyquist Plot For viscous damping the Mobility plot is a

circle.

For structural damping the Receptance andInertance plots are circles.

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 48/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

3D FRF Plot (SDOF)

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 49/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

Properties of SDOF FRF Plots Nyquist Mobility for viscose damping

( )( )

2

22222

222222

222

2

222

2

2

2

1

)()(4

)()(

)Im(,

2

1)Re(

)()(

)(

)Im()()()Re(

)(

⎟ ⎠

 ⎞⎜⎝ 

⎛ =

+−

+−=+

=⎟

 ⎠

 ⎞⎜

⎝ 

⎛ −=

+−

=+−=

+−=

ccmk c

cmk V U 

Y V c

Y U 

cmk 

mk 

Y cmk 

c

icmk 

iY 

ω ω 

ω ω 

ω ω 

ω ω 

ω ω 

ω 

ω ω 

ω 

ω 

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 50/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

Properties of SDOF FRF Plots Nyquist Receptance for structural damping

( )( )

( )( ) ( )

22

2

222222

2

222

2

2

2

1

2

1

,

1)(

⎟ ⎠

 ⎞⎜⎝ 

⎛ =⎟

 ⎠

 ⎞⎜⎝ 

⎛ ++

+−=

+−

−=

+−

−−=

−+=

d d V U 

d mk 

d V 

d mk 

mk U 

d mk 

id mk 

mid k  H 

ω ω 

ω 

ω 

ω 

ω 

ω 

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 51/178

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 52/178

Modal Testing(Lecture 3)

Dr. Hamid AhmadianSchool of Mechanical Engineering

Iran University of Science and Technologyahmadian@iust.ac.ir

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 53/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

 Theoretical Basis Undamped MDOF Systems

MDOF Systems with ProportionalDamping

MDOF Systems with General StructuralDamping

General Force Vector

Undamped Normal Mode

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 54/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

Undamped MDOF Systems The equation of motion:

The modal model:

The orthogonality:

Forced response solution:

[ ]{ }   [ ]{ } { })()()(   t  f t  xK t  x M    =+&&

[ ]   ),,,(,   22

2

2

1   N diag   ω ω ω    K=ΓΦ

[ ] [ ][ ] [ ] [ ] [ ][ ] [ ].,   Γ=ΦΦ=ΦΦ   K  I  M   T T 

[ ] [ ]{ } { }   t it ieF e X  M K 

  ω ω ω    =−   2

{ }   [ ] [ ]( )   { } { }   [ ]{ }F  X F  M K  X    )(

12

ω α ω    =⇒−=

  −

Undamped MDOF Systems

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 55/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

Undamped MDOF Systems(continued)

Response Model

[ ] [ ]( )   [ ]

[ ] [ ] [ ]( )[ ] [ ] [ ] [ ][ ] [ ]( )   [ ] [ ] [ ]

[ ] [ ] [ ] [ ]( )[ ]

[ ] [ ] [ ] [ ]( )   [ ]

T T 

 I 

 I 

 I 

 M K 

 M K 

Φ−ΓΦ=

Φ−ΓΦ=

ΦΦ=−ΓΦΦ=Φ−Φ

=−

−−−

12

121

12

12

12

)(

)(

)(

)(

)(

ω ω α 

ω ω α 

ω α ω 

ω α ω 

ω α ω 

Undamped MDOF Systems

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 56/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

Undamped MDOF Systems(continued)

The receptance matrix is symmetric.

∑∑ ==   −=−=

===

 N 

r    r 

 jk r  N 

r    r 

kr  jr 

 jk 

 j

kjk 

 j

 jk 

 A

 X 

 X 

122

122)(

,

ω ω ω ω 

φ φ 

ω α 

α α Modal Constant/Modal Residue

Single Input

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 57/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

Example:

[ ] [ ]

[ ]   [ ]

.64.2118

62.1

62

05

54

5.0)(

11

11

2

1

62

54

/2.18.0

8.02.1

1

1

42

2

2211

2

ω ω 

ω 

ω ω ω α 

ω 

+−

−=

−+

−=

⎥⎦

⎢⎣

⎥⎦

⎢⎣

⎡=

⎥⎦

⎤⎢⎣

−=⎥

⎤⎢⎣

⎡=

ee

e

ee

e

e

m MN K kg M 

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 58/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

.64.2118

62.1

62

05

54

5.0)(

42

2

2211ω ω 

ω 

ω ω ω α 

+−

−=

−+

−=

ee

e

ee

Poles

Example (continued):

Zero

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 59/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

Example (continued):

.64.2118

48

62

05

54

5.0)(

422212ω ω ω ω 

ω α +−

=−

−−

=ee

e

ee

MDOF Systems with

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 60/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

Proportional Damping  A proportionally damped matrix is

diagonalized by normal modes of thecorresponding undamped system

[ ] [ ][ ]   ),,,( 21   N 

d d d diag D   L=ΦΦ Special cases:

[ ] [ ][ ] [ ]

[ ] [ ] [ ].

,,

 M K  D

 M  DK  D

δ  β 

δ  β 

+=

==

MDOF Systems with Structurally

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 61/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

y y

Proportional Damping

Response Model

[ ] [ ] [ ]( )   [ ]

[ ] [ ] [ ] [ ]( )[ ] [ ] [ ] [ ]

[ ]   [ ]( )   [ ] [ ] [ ][ ] [ ]   [ ]   [ ]( )[ ]

[ ] [ ] [ ]   [ ]( )   [ ]

∑=

−−−

−+=

Φ−+Φ=

Φ−+Φ=

ΦΦ=−+

ΦΦ=Φ−+Φ

=−+

 N 

r    r r 

kr  jr 

 jk 

T r r 

r r 

T r r 

T T 

i

 I i

 I i

 I i

 M  DiK 

 M  DiK 

1

222

1222

12221

1222

12

12

)1(

)(

)1()(

)1()(

)()1(

)(

)(

ω η ω 

φ φ ω α 

ω η ω ω α 

ω η ω ω α 

ω α ω η ω 

ω α ω 

ω α ω 

Real Residue

Complex Pole

MDOF Systems with Viscously

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 62/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

Proportional Damping Response Model

[ ] [ ] [ ]( )   [ ]

[ ] [ ] [ ] [ ]( )[ ] [ ] [ ] [ ]

[ ]   [ ] [ ]( )   [ ] [ ] [ ]

[ ] [ ]   [ ]   [ ] [ ]( )[ ]

[ ] [ ] [ ]   [ ] [ ]( )   [ ]

∑=

−−−

+−

=

Φ−+Φ=

Φ−+Φ=

ΦΦ=−+

ΦΦ=Φ−+Φ

=−+

 N 

r    r r r 

kr  jr 

 jk 

T r r r 

r r r 

r r r 

T T 

 I i

 I i

 I i

 M C iK 

 M C iK 

1

22

122

1221

122

12

12

2

)(

2)(

2)(

)(2

)(

)(

ω ω ζ ω ω 

φ φ ω α 

ω ω ζ ω ω ω α 

ω ω ζ ω ω ω α 

ω α ω ω ζ ω ω 

ω α ω ω 

ω α ω ω 

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 63/178

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 64/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

Example:

[ ]⎥⎥⎥

⎢⎢⎢

−−

⎥⎥⎥

⎢⎢⎢

==

===

142.0493.0635.0

318.0782.0536.0

318.1218.0464.0

,

6698

3352

950

6,...,1,/31

5.1,1,5.0

1

321

Undamped 

 jm N ek 

kgmkgmkgm

 Model

 j

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 65/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

Example:[ ] [ ]

[ ]

[ ]

⎥⎥

⎢⎢

−−

⎥⎥

⎢⎢

+

+

+

===−

⎥⎥⎥

⎢⎢⎢

−−

⎥⎥⎥

⎢⎢⎢

+=Γ

=

)1.3(142.0)3.1(492.0)0.1(636.0

)7.6(318.0)181(784.0)0.0(537.0

)181(318.1)173(217.0)5.5(463.0

,

)078.01(6690

)042.01(3354

)067.01(957

6,...,2,0.0,3.0Pr 

142.0493.0635.0

318.0782.0536.0

318.1218.0464.0

,

6698

3352

950

)05.01(

05.0

Pr 

11

ooo

ooo

ooo

i

i

i

 jd k d oportional Non

i

K  D

oportional

 j

 Almost real modes

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 66/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

Example:

[ ]

[ ] [ ]

[ ]⎥⎥⎥

⎢⎢⎢

−−

⎥⎥⎥

⎢⎢⎢

+=Γ

=

⎥⎥⎥

⎢⎢⎢

−−

=Φ⎥⎥⎥

⎢⎢⎢

==

===

207.0752.0587.0

827.0215.0567.0

552.0602.0577.0

,

4124

3892

999

)05.01(

,05.0

Pr 

207.0752.0587.0

827.0215.0567.0

552.0602.0577.0

,

4124

3892

999

6,...,1,/31

05.1,95.0,1

2

321

i

K  D

oportional

Undamped 

 jm N ek 

kgmkgmkgm

 Model

 j

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 67/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

Example:

[ ]

⎥⎥

⎢⎢

⎥⎥

⎢⎢

+

+

+

===

)50(560.0)12(848.0)2(588.0

)176(019.1)101(570.0)2(569.0

)40(685.0)162(851.0)4(578.0

,

)019.01(4067

)031.01(3942

)1.01(10066,...,2,0.0,3.0

Pr 

11

ooo

ooo

ooo

i

i

i

 jd k d 

oportional Non

 j

Heavily complex modes

MDOF Systems with General

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 68/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

Structural Damping[ ] [ ] [ ]( )   [ ]

[ ] [ ] [ ] [ ]( )[ ] [ ] [ ] [ ]

[ ]   [ ]( )   [ ] [ ] [ ]

[ ] [ ]   [ ]   [ ]( )[ ]

[ ] [ ] [ ]   [ ]( )   [ ]

∑=

−−−

−+=

Φ−+Φ=

Φ−+Φ=

ΦΦ=−+

ΦΦ=Φ−+Φ

=−+

 N 

r    r r 

kr  jr 

 jk 

r r 

r r 

r r 

T T 

i

 I i

 I i

 I i

 M  DiK 

 M  DiK 

1222

1222

12221

1222

12

12

)1()(

)1()(

)1()(

)()1(

)(

)(

ω η ω 

φ φ ω α 

ω η ω ω α 

ω η ω ω α 

ω α ω η ω 

ω α ω 

ω α ω 

Complex Residues

Complex Poles

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 69/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

General Force Vector In many situations

the system isexcited at severalpoints.

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 70/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

General Force Vector (continued)

The response is governed by:

The solution:

 All forces have the same frequency butmay vary in magnitude and phase.

[ ] [ ]( ){ } { }   t it ieF e X  M iDK 

  ω ω ω    =−+   2

{ }   { } { }{ }∑=   −+

= N 

r   r r 

r T r 

i

F  X 

1222 )1(   ω η ω 

φ φ 

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 71/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

General Force Vector (continued)

The response vector is referred to:

Forced Vibration Mode

or Operating Deflection Shape (ODS)

When the excitation frequency is closeto the natural frequency:

ODS reflects the shape of nearby mode But not identical due to contributions of

other modes.

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 72/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

General Force Vector (continued)

Damped system normal mode:

By carefully tuning the force vector theresponse can be controlled by a single

mode. The is attained if 

Depending upon damping condition theforce vector entries may well be complex(they have different phases)

{ } { }   rss

r   F    δ φ    =

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 73/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

Undamped Normal Mode Special Case of interest:

Harmonic excitation of mono-phased forces

Same frequency

Same phase Magnitudes may vary

Is it possible to obtain mono-phasedresponse?

Undamped Normal Mode

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 74/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

p(continued)

The real force response amplitudes:

Real and imaginary parts:

The 2nd equation is an eigen-value problem;its solutions leads to real

{ }

{ }   { }   )(ˆ)(

ˆ)(

θ ω 

ω 

−=

=t i

t i

e X t  x

eF t  f [ ] [ ]( )   t it i eF e X  M iDK 

  ω ω ω    ˆˆ2 =−+

[ ] [ ]( )   [ ]( ){ {

[ ] [ ]( )   [ ]( ){ }   { }0ˆ

cossin

ˆˆsincos

2

2

=+−

=+−

 X  D M K 

F  X  D M K 

θ θ ω 

θ θ ω 

F ˆ

N solutions

Undamped Normal Mode

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 75/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

p(continued)

 At a frequency that the phase lagbetween all forces and all responses is90 degree then

Results

Undamped normal modes Natural frequencies of undamped system

[ ] [ ]( )   [ ]( )   { }0ˆcossin2 =+−   X  D M K    θ θ ω 

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 76/178

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 77/178

Modal Testing(Lecture 4)

Dr. Hamid AhmadianSchool of Mechanical Engineering

Iran University of Science and Technologyahmadian@iust.ac.ir

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 78/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

 Theoretical Basis General Force Vector

Undamped Normal Mode

MDOF System with General Viscous

Damping

Force Response Solution/ General

 Viscous Damping

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 79/178

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 80/178

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 81/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

General Force Vector (continued)

The response is governed by:

 All forces have the same frequency but

may vary in magnitude and phase.

The solution:

[ ] [ ]{ } { }   t it ieF e X  M iDK 

  ω ω ω    =−+   2

{ }   { } { }{ }∑=   −+

= N 

r    r r 

iF  X 

1222 )1(   ω η ω 

φ φ 

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 82/178

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 83/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

General Force Vector (continued)

Damped system normal mode:

By carefully tuning the force vector theresponse can be controlled by a single

mode. This is attained if 

Depending upon damping condition the

force vector entries may well be complex(they have different phases)

{ } { }   rss

r   F    δ φ    =

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 84/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

Undamped Normal Mode Special Case of interest:

Harmonic excitation of mono-phased forces

Same frequency

Same phase Magnitudes may vary

Is it possible to obtain mono-phasedresponse?

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 85/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

Undamped Normal Mode

512 channel

37 Shakers

Undamped Normal Mode

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 86/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

(continued)

The real force response amplitudes:

Real and imaginary parts:

The 2nd equation is an eigen-value problem;its solutions leads to real

{ }{ }   { }   )(ˆ)(

ˆ)(

θ ω 

ω 

−=

=t i

t i

e X t  x

eF t  f [ ] [ ]( )   t it i

eF e X  M iDK    ω θ ω ω    ˆˆ   )(2 =−+   −

[ ] [ ]( )   [ ]( ){ {

[ ] [ ]( )   [ ]( ){ }   { }0ˆ

cossin

ˆˆsincos

2

2

=+−

=+−

 X  D M K 

F  X  D M K 

θ θ ω 

θ θ ω 

F ˆ

N solutions

Undamped Normal Mode( i d)

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 87/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

(continued)

 At a frequency that the phase lag

between all forces and all responses is90 degree then

Results

Undamped normal modes Natural frequencies of undamped system

[ ] [ ]( )   [ ]( )   { }[ ] [ ]( ){ }   { }0ˆ

0ˆcossin2

2

=−⇒

=+−

 X  M K 

 X  D M K 

ω 

θ θ ω 

Undamped Normal Mode( ti d)

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 88/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

(continued)

The base for multi-

shaker test procedures. Modal Analysis of Large

Structures: MultipleExciter Systems By:M. Phil. K. Zaveri

MDOF System with General

Vi D i

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 89/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

 Viscous Damping[ ]{ }   [ ]{ }   [ ]{ } { }

{ } { } { } { }

{ }   [ ] [ ] [ ]( )   { }F C i M K  X 

e X t  xeF t  f 

 f  xK  xC  x M  M O E 

t it i

12

)()(

...

+−=

=⇒=

=++⇒

ω ω 

ω ω 

&&&

Next the orthogonality properties of thesystem in 2N space is used for force responsesolution.

F R S l ti

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 90/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

Force Response Solution

{ } { } { }

{ } { }

).,,,(0

0,

0

00

0

0

0

0

0

0

.

00

0

0

221   N 

T T 

r r 

sssdiagU  M 

K U  I U 

 M 

 M C U 

u M 

 M 

 M C ssolution Eigen

u M 

K u

 M 

 M C VibFree

 f 

 x

 x

 M 

 x

 x

 M 

 M C  EOM 

L

&

&&&

&

=⎥⎦

⎤⎢⎣

−=⎥

⎤⎢⎣

⎡⇒

=⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ ⎥⎦

⎤⎢⎣

−+⎥

⎤⎢⎣

⎡⇒−

=⎥

⎤⎢

−+⎥

⎤⎢

⎡⇒

⎭⎬

⎩⎨

⎧=

⎭⎬

⎩⎨

⎥⎦

⎢⎣

−+

⎭⎬

⎩⎨

⎥⎦

⎢⎣

⎡⇒

F R S l ti

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 91/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

Force Response Solution

*1

2

1

000

 H 

r  N 

r    r 

r  N 

r    r 

si

u

u

si

u

u

si

u

u

 X i

 X 

−⎭⎬

⎩⎨

+−⎭⎬

⎩⎨

=−⎭⎬

⎩⎨

=⎭⎬⎫

⎩⎨⎧

==∑∑

ω ω ω ω 

The above simplification is due to the factthat eigen-values and eigen-vectors occur incomplex conjugate pairs.

F R S l ti

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 92/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

Force Response Solution Single point excitation:

∗∗

=   −+−= ∑ r 

kr  jr  N 

r    r 

kr  jr 

 jk  si

uu

si

uu

ω ω ω α 1

)(

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 93/178

Modal Testing(Lecture 5)

Dr. Hamid AhmadianSchool of Mechanical Engineering

Iran University of Science and Technologyahmadian@iust.ac.ir

 Modal Analysis of Rotating

St t

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 94/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

Structures Non-symmetry in system

matrices Modes of undamped rotating

system

Symmetric Stator Non-Symmetric Stator

FRF’s of rotating system

Out-of-balance excitation Synchronous excitation

Non-Synchronous excitation

Non-symmetry in System

Matrices

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 95/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

Matrices The rotating structures are subject to

additional forces: Gyroscopic forces

Rotor-stator rub forces

Electrodynamic forces

Unsteady aerodynamic forces

Time varying fluid forces These forces can destroy the symmetry of the

system matrices.

Non-rotating system

properties

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 96/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

properties  A rigid disc mounted on

the free end of a rigidshaft of length L,

The other end of iseffectively pin-jointed.

Modes of Undamped Rotating

System

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 97/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

System

.0

0

0

0

0/

/0

/0

0/

0

0

⎭⎬

⎩⎨

=⎭⎬

⎩⎨

⎥⎦

⎢⎣

+⎭⎬

⎩⎨

⎥⎦

⎢⎣

Ω−

Ω

+⎭⎬

⎩⎨

⎥⎦

⎢⎣

 y

 x

 Lk 

 Lk 

 y

 x

 L J 

 L J 

 y

 x

 L I 

 L I 

 y

 x

 z

 z

&

&

&&

&&

Symmetric stator

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 98/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

Symmetric stator

( ) ( )( ) ( )

.02

,0

0

//

//

,

,

,

2

0

22

2

00

24

2

0

22

220

2

=⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ +⎟⎟

 ⎠

 ⎞⎜⎜

⎝ 

⎛ ⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛   Ω+−

⎭⎬⎫

⎩⎨⎧=

⎭⎬⎫

⎩⎨⎧⎥⎦

⎤⎢⎣

⎡−Ω−

Ω−

=

=

==

 I 

kL

 I 

 J 

 I 

kL

 X 

 L I k  L J i

 L J i L I k 

Ye y

 Xe x

k k k 

 z

 z

 z

t i

t i

 y x

ω ω 

ω ω 

ω ω 

ω 

ω 

Support is symmetric

Simple harmonic motion

Natural Frequencies

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 99/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

Natural Frequencies

⎪⎪⎨

==

Ω+Ω±Ω+=⇒

=⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ +

⎟⎟

 ⎠

 ⎞

⎜⎜

⎝ 

⎛ 

⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛   Ω+−

00

22

0

222

0

222

0

2

2,1

2

0

22

2

00

24

,

42

.02

 I 

 J 

 I 

kL

 I 

kL

 I 

 J 

 I 

kL  z

γ ω 

γ ω γ 

γ ω ω 

ω ω 

Mode Shapes

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 100/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

Mode Shapes( ) ( )

( ) ( )

( ) ( )

( ) ( )

  .

0

0

1//

//,

0

01

//

//2

0

2

2

2

2

2

2

2

0

2

2

2

0

2

1

2

1

2

1

2

0

2

1

⎬⎫

⎨⎧

=

⎬⎫

⎨⎧⎥

⎤⎢

−Ω−

Ω−

⎬⎫

⎨⎧

=

⎬⎫

⎨⎧⎥

⎤⎢

−Ω−

Ω−   i

 L I k  L J i

 L J i L I k 

i L I k  L J i

 L J i L I k 

 z

 z

 z

 z

ω ω 

ω ω 

ω ω 

ω ω 

Non symmetric Stator

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 101/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

Non-symmetric Stator y x   k k   ≠

FRF of the Rotating Structure

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 102/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

FRF of the Rotating Structure

,0

0

/

/

/0

0/2

2

2

0

2

0

⎭⎬⎫

⎩⎨⎧

=⎭⎬⎫

⎩⎨⎧⎥⎦

⎤⎢⎣

⎡+

⎭⎬⎫

⎩⎨⎧⎥⎦

⎤⎢⎣

Ω−

Ω+

⎭⎬⎫

⎩⎨⎧⎥⎦

⎤⎢⎣

 y

 x

 z

 z

 f 

 f 

 y

 x

 y

 x

c L J 

 L J c

 y

 x

 L I 

 L I 

&

&

&&

&&

[ ]  ( ) ( )

( ) ( )

⎩⎨⎧

−=

=⇒

⎥⎦

⎤⎢⎣

+−Ω−

Ω+−=

)()(

)()(

//

//)(

1

2

0

22

22

0

2

ω α ω α 

ω α ω α 

ω ω ω 

ω ω ω ω α 

 yx xy

 yy xx

 z

 z

ic L I k  L J i

 L J iic L I k 

Loss of Reciprocity

External Damping

Coupling Effect

FRF of the Rotating Structure

with External Damping

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 103/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

with External Damping

Complex ModeShapes

due to significantimaginary part

Out-of-balance excitation

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 104/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

Out-of-balance excitation Response analysis for the particular

case of excitation provided by out-of-balance forces is investigated: When the force results from an out-of-

balance mass on the rotor, it is of asynchronous nature

When the force results from an out-of-balance mass on a co/counter rotatingshaft, it is of a non-synchronous nature

Synchronous OOB Excitation

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 105/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

Synchronous OOB Excitation

{ }

( ))1(

:

1

)sin(

)cos(

22

00

2

2

γ ω    −Ω−=

⎭⎬⎫

⎩⎨⎧

−=

⎭⎬⎫

⎩⎨⎧

⎭⎬

⎩⎨

−=

⎭⎬

⎩⎨

Ω

ΩΩ=

ΩΩ

Ω

 I 

 L A

eiA

 AF e

 X 

Stator Symmetric

eiF t 

mr F 

t i

OOB

t i

t i

OOB

Synchronous OOB Excitation

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 106/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

Synchronous OOB Excitation

Non-Synchronous OOB

Excitation

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 107/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

Excitation Force is generated by another rotor at

different speed

( ))(2200

2

γ  β  β ω 

 β 

 β  β 

−Ω−=

⎭⎬⎫

⎩⎨⎧

−=⎭⎬⎫

⎩⎨⎧

Ω⇒

ΩΩ

 I 

 L

 A

eiA

 AF e

 X 

 Excitation

t iOOB

t i

The essential results are the same as for

synchronous case.

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 108/178

Modal Testing(Lecture 6)

Dr. Hamid AhmadianSchool of Mechanical Engineering

Iran University of Science and Technologyahmadian@iust.ac.ir

Theoretical Basis

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 109/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

 Theoretical Basis Analysis using rotating frame

Damping in rotating and stationaryframes

Dynamic analysis of general rotor-statorsystems Linear Time Invariant Rotor-Stator

Systems LTI Rotor-Stator Viscous Damp System

LTI Systems Eigen-Properties

Analysis using rotating frame

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 110/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

 Analysis using rotating frame

⎭⎬⎫

⎩⎨⎧⎥⎦⎤⎢

⎣⎡ ΩΩ

Ω−Ω=

⎭⎬⎫

⎩⎨⎧

 y x

t t t t 

 y x

)cos()sin()sin()cos(

⎭⎬⎫

⎩⎨⎧⎥⎦

⎤⎢⎣

ΩΩ−

ΩΩ=

⎭⎬⎫

⎩⎨⎧

 y

 x

t t 

t t 

 y

 x

)cos()sin(

)sin()cos(

 Y 

X

 Yr

Xr

t Ω

Analysis using rotating frame

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 111/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

 Analysis using rotating frame

[ ]

[ ] [ ]

[ ] [ ] [ ]⎭⎬⎫

⎩⎨⎧

Ω+⎭⎬⎫

⎩⎨⎧

Ω+⎭⎬⎫

⎩⎨⎧

=⎭

⎬⎫

⎨⎧⎥

⎤⎢

ΩΩ−

ΩΩΩ−

⎬⎫

⎨⎧⎥

⎤⎢

Ω−Ω−

ΩΩ−Ω+

⎬⎫

⎨⎧⎥

⎤⎢

ΩΩ−

ΩΩ=

⎬⎫

⎨⎧

⎭⎬⎫

⎩⎨⎧

Ω+

⎭⎬⎫

⎩⎨⎧

=

⎭⎬⎫

⎩⎨⎧

⎥⎦

⎢⎣

Ω−Ω−

ΩΩ−Ω+

⎭⎬⎫

⎩⎨⎧

⎥⎦

⎢⎣

ΩΩ−

ΩΩ=

⎭⎬⎫

⎩⎨⎧

⎭⎬⎫

⎩⎨⎧

=⎭⎬⎫

⎩⎨⎧⎥⎦

⎤⎢⎣

ΩΩ−

ΩΩ

=⎭⎬⎫

⎩⎨⎧

 x

 xT 

 y

 xT 

 y

 xT 

 y

 x

t t 

t t 

 y

 x

t t 

t t 

 y

 x

t t 

t t 

 y

 x

 y

 xT 

 y

 xT 

 y

 x

t t 

t t 

 y

 x

t t 

t t 

 y

 x

 y

 xT 

 y

 x

t t 

t t 

 y

 x

1

2

21

2

21

1

2

)cos()sin(

)sin()cos(

)sin()cos(

)cos()sin(2

)cos()sin(

)sin()cos(

,)sin()cos(

)cos()sin(

)cos()sin(

)sin()cos(

,)cos()sin(

)sin()cos(

&

&

&&

&&

&

&

&&

&&

&&

&&

&

&

&

&

&

&

Transformation Matrices

Analysis using rotating frame

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 112/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

 Analysis using rotating frame

 z z z z z z   Ω−Ω+Ω+=Ω+Ω−Ω+=   2/)2/(2/)2/(   22

02

22

01   γ γ ω ω γ γ ω ω 

.00

//)()(//

0//2

//20

/0

0/

22222

0

2

22222

0

2

22

0

22

0

2

0

2

0

⎭⎬⎫

⎩⎨⎧=

⎭⎬⎫

⎩⎨⎧⎥⎦⎤⎢

⎣⎡

++Ω+Ω−−−++Ω+Ω−+

⎭⎬⎫

⎩⎨⎧⎥⎦

⎤⎢⎣

Ω−Ω

Ω+Ω−+

⎭⎬⎫

⎩⎨⎧⎥⎦

⎤⎢⎣

 y x z z x y

 x y y x z z

 z z

 z z

 y x

sk ck  L J  L I k k csk k cssk ck  L J  L I 

 y

 x

 L J  L I 

 L J  L I 

 y

 x

 L I 

 L I 

&

&

&&

&&

Equation of Motion in Stationary Coordinates

Equation of Motion in Rotating Coordinates

2/)2/(2/)2/(

,0

0

0

0

0/

/0

/0

0/

22

02

22

01

2

2

2

0

2

0

 z z z z

 y

 x

 z

 z

 y

 x

 y

 x

 L J 

 L J 

 y

 x

 L I 

 L I 

Ω+Ω+=Ω−Ω+=

⎭⎬

⎩⎨

=⎭⎬

⎩⎨

⎥⎦

⎢⎣

+⎭⎬

⎩⎨

⎥⎦

⎢⎣

Ω−

Ω

+⎭⎬

⎩⎨

⎥⎦

⎢⎣

γ γ ω ω γ γ ω ω 

&

&

&&

&&

Note: Eigenvectors remain unchanged

Analysis using rotating frame

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 113/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

 Analysis using rotating frame

⎭⎬⎫

⎩⎨⎧

Ω++Ω−

Ω++Ω−=

⎭⎬⎫

⎩⎨⎧⎥⎦

⎤⎢⎣

ΩΩ−

ΩΩ=

⎭⎬⎫

⎩⎨⎧

⎭⎬

⎩⎨

⎥⎦

⎢⎣

ΩΩ−

ΩΩ=

⎭⎬

⎩⎨

t t 

t t F 

t F 

t t 

t t 

t t 

t t 

 yr 

 xr 

 y

 x

 yr 

 xr 

)sin()sin(

)cos()cos(

2

)cos(0)cos()sin(

)sin()cos(

.)cos()sin(

)sin()cos(

0

0

ω ω 

ω ω 

ω 

For Example: Response harmonies notpresent in the excitation

Internal Damping in rotating

and stationary frames

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 114/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

and stationary frames

.00

//00//

//2

//2

/0

0/

222

0

2

222

0

2

22

0

22

0

2

0

2

0

⎭⎬⎫

⎩⎨⎧=

⎭⎬⎫

⎩⎨⎧⎥⎦⎤⎢

⎣⎡

+Ω+Ω−+Ω+Ω−+

⎭⎬⎫

⎩⎨⎧⎥⎦

⎤⎢⎣

Ω−Ω

Ω+Ω−+

⎭⎬⎫

⎩⎨⎧⎥⎦

⎤⎢⎣

 z z

 z z

 I  z z

 z z I 

 y x

k  L J  L I k  L J  L I 

 y

 x

c L J  L I 

 L J  L I c

 y

 x

 L I 

 L I 

&

&

&&

&&

,0

0

/

/

/0

0/2

2

2

0

2

0

⎭⎬⎫

⎩⎨⎧

=⎭⎬⎫

⎩⎨⎧⎥⎦

⎤⎢⎣

Ω−

Ω+

⎭⎬⎫

⎩⎨⎧⎥⎦

⎤⎢⎣

Ω−

Ω+

⎭⎬⎫

⎩⎨⎧⎥⎦

⎤⎢⎣

 y

 x

k c

ck 

 y

 x

c L J 

 L J c

 y

 x

 L I 

 L I 

 y I  z

 I  z x

 I  z

 z I 

&

&

&&

&&

Equation of Motion in Rotating Coordinates

Equation of Motion in Stationary Coordinates

Internal/External Damping in

2DOF System

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 115/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

2DOF System

,

0

0

//

/00/

2

2

2

0

2

0

⎬⎫

⎨⎧

=

⎬⎫

⎨⎧⎥

⎤⎢

Ω−

Ω+

⎭⎬⎫

⎩⎨⎧⎥⎦⎤⎢

⎣⎡

+Ω−Ω++

⎭⎬⎫

⎩⎨⎧⎥⎦⎤⎢

⎣⎡

 y

 x

k c

ck 

 y x

cc L J  L J cc

 y x

 L I  L I 

 y I  z

 I  z x

 I  E  z

 z I  E 

&&

&&&&

 At super critical speeds the real parts ofeigen-values may become positive,i.e. unstable system

Dynamic Analysis of General

Rotor-Stator Systems

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 116/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

Rotor Stator Systems The rotating machines and their modal

testing is much more complex Non-symmetric bearing support

Fixed/Rotating observation frame

Non-axisymmetric rotors Internal/External damping

These lead to:

Time-varying modal properties

Response harmonies not present in the excitation

Instabilites (negative modal damping)

Dynamic Analysis of General

Rotor-Stator Systems

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 117/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

y Equation of motion of rotating systems

are prone: to lose the symmetry

to generate complex eigen-values/vectorsfrom velocity/displacement related non-symmetry

to include time varying coefficients asappose to conventional Linear TimeInvariant (LTI) systems

Dynamic Analysis of General

Rotor-Stator Systems

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 118/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

yRotating Coord.Stationary Coord.System Type

LTILTIR-symm;S-symm

L(t)LTIR-symm;S-nonsymm

LTIL(t)R-nonsymm;S-symm

L(t)L(t)R-nonsymm;S-nonsymm

LTI: Linear Time InvariantL(t): Linear Time Dependent

Linear Time Invariant Rotor-

Stator Systems[ ]{ } [ ] [ ]( ){ }

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 119/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

y[ ]{ }   [ ] [ ]( ){ }

[ ] [ ] [ ]( ){ } { }

[ ] [ ] [ ] [ ][ ] [ ]   .)(,)(

.,,,

)()(

)(

symmSkew E G

Symm DK C  M 

t  f  x E  DiK 

 xGC  x M 

−⇒ΩΩ⇒

=Ω++

+Ω++   &&&

Solution of equations will follow differentrouts depending upon the specific features.

LTI Rotor-Stator Systems

(Viscous Damping Only)[ ]{ } [ ]{ } { }

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 120/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

( p g y)[ ]{ }   [ ]{ } { }

[ ]

[ ]

{ }⎭⎬⎫

⎩⎨⎧

=

⎥⎦

⎤⎢⎣

⎡   Ω+=

⎥⎦

⎤⎢⎣

⎡−

Ω+=

=+

 x

 xu

 M 

 E K  B

 M 

 M GC  A

u Bu A

&

&

0

0)(

0

)(

,0

The system matricesare non-symmetric

Complex eigenvals

Two eigenvect sets:

RH; mode shapes LH; normal excitation

shapes

LTI Rotor-Stator Systems

(Viscous Damping Only)

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 121/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

( p g y) Symmetric Rotor/ Non-symmetric Support

Backwards Whirl

Forwards Whirl

FRF of LTI Rotor-Stator

Systems[ ] [ ] ( )[ ] [ ]H1

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 122/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

y[ ] [ ] ( )[ ] [ ] H 

 LH r  RH    V iV   1

)(  −

−=   ω λ ω α 

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 123/178

LTI Systems Eigen-Propertiesλ

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 124/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

y g p

-1.001-0.75+1.85i0.0-1.05+0.08i1-0.68+1.88i0.1

-1.08+0.28i1

-0.52+1.94i0.3

-1.03+0.49i1-0.37+1.99i0.5

-0.90+0.63i1-0.23+2.04i0.7

-0.76+0.71i1-0.07+2.08i0.9

-0.69+0.73i12.11i1.0

C Δ   1 X 2 X 2λ 

LTI Systems Eigen-Properties

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 125/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

Skew-symmetry in stiffness Matrix

[ ] [ ]

[ ] ⎥

⎤⎢

−Δ−+⎥

⎤⎢

−Δ=

=⎥

⎤⎢

⎡=

31

13)1(

01

10

,0,

1

1

K K K 

C  M 

LTI Systems Eigen-PropertiesXλ

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 126/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

-1.0012.00i0.0-1.1211.90i0.1

-1.581

1.65i0.3

Infinity11.23i0.5

1.58i10.32+1.00i0.7

1.12i10.57+0.79i0.9

i10.70+0.70i1.0

K Δ   1 X 2 X 2λ 

Modal Testing

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 127/178

Modal Testing(Lecture 7)

Dr. Hamid AhmadianSchool of Mechanical Engineering

Iran University of Science and Technology

ahmadian@iust.ac.ir

Complex Measured Modes

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 128/178

Dr H Ahmadian,Modal Testing Lab,IUSTOverview of Modal Testing

Complex Measured Modes

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 129/178

Dr H Ahmadian,Modal Testing Lab,IUSTOverview of Modal Testing

Display of Mode Complexity

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 130/178

Dr H Ahmadian,Modal Testing Lab,IUSTOverview of Modal Testing

 Analytical Real Modes

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 131/178

Dr H Ahmadian,Modal Testing Lab,IUSTOverview of Modal Testing

H Ahmadian GML Gladwell Proceedings of

Extracting real modes from

complex measured modes

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 132/178

Dr H Ahmadian,Modal Testing Lab,IUSTOverview of Modal Testing

H Ahmadian, GML Gladwell - Proceedings of

the 13th International Modal Analysis (1995): The optimum real mode is the one with maximum

correlation with the complex measured one:

Extracting real modesNormalizing the complex measured

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 133/178

Dr H Ahmadian,Modal Testing Lab,IUSTOverview of Modal Testing

Normalizing the complex measured

mode shape:

The problem is rewritten as:

Extracting real modes

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 134/178

Dr H Ahmadian,Modal Testing Lab,IUSTOverview of Modal Testing

Skew-symmetricSymmetric

Rank 2 matrices

Extracting real modes Since V is skew symmetric

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 135/178

Dr H Ahmadian,Modal Testing Lab,IUSTOverview of Modal Testing

Since V is skew symmetric,

Therefore the problem is equivalent to:

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 136/178

Extracting real modes

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 137/178

Dr H Ahmadian,Modal Testing Lab,IUSTOverview of Modal Testing

Extracting real modes

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 138/178

Dr H Ahmadian,Modal Testing Lab,IUSTOverview of Modal Testing

Extracting real modes

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 139/178

Dr H Ahmadian,Modal Testing Lab,IUSTOverview of Modal Testing

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 140/178

Follow-ups: E. Foltete, J. Piranda, “Transforming Complex

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 141/178

Dr H Ahmadian,Modal Testing Lab,IUSTOverview of Modal Testing

o tete, J a da, a s o g Co p e

Eigenmodes into Real Ones Based on an Appropriation Technique”, Journal of Vibrationand Acoustics, JANUARY 2001, Vol. 123

S.D. GARVEY, J.E.T. PENNY, “THERELATIONSHIP BETWEEN THE REAL ANDIMAGINARY PARTS OF COMPLEX MODES”,

Journal of Sound and Vibration

1998,212(1),75-83

Modal Testing

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 142/178

Modal Testing(Lecture 8)

Dr. Hamid AhmadianSchool of Mechanical Engineering

Iran University of Science and Technology

ahmadian@iust.ac.ir

 Theoretical Basis Non-sinusoidal Vibration and FRF

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 143/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

Non sinusoidal Vibration and FRF

Properties: Periodic Vibration

Transient Vibration Random Vibration

 Violation of Dirichlet’s conditions

 Autocorrelation and PSD functions H1 and H2

Incomplete Response Models

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 144/178

Periodic Vibration Excitation is not simply sinusoidal but retain

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 145/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

p y

periodicity. The easiest way of computing the response

is by means of Fourier Series,

t i

n

nk n jk  j

n

t i

n

nk k 

n

n

eF t  x

T eF t  f 

ω 

ω 

ω α 

π ω 

∑∞

=

=

=

==

1

1

)()(

2)(

Periodic Vibration To derive FRF from periodic vibration

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 146/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

p

signals: Determine the Fourier Series components

of the input force and the relevant

response Both series contain components at the

same set of discrete frequencies

The FRF can be defined at the same set offrequency points by computing the ratio ofresponse to input components.

Transient Vibration  Analysis via Fourier Transform

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 147/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

∞+

∞−

+∞

∞−

=

=

=

ω ω ω 

ω ω ω 

π ω 

ω 

ω 

d eF  H t  x

F  H  X 

dt et  f F 

t i

t i

)()()(

)()()(

)(2

1)(

Transient Vibration Response via time domain (superposition)

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 148/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

)()(2

1)(

2

1)()0()(

)()()(

t hd e H t  xThen

F t  f  Let 

d  f t ht  x

t i ==→

=⇒=→

−=

∞+

∞−

+∞

∞−

ω ω π 

π ω δ 

τ τ τ 

ω 

Transient Vibration To derive FRF from transient vibration

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 149/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

signals: Calculation of the Fourier Transforms of

both excitation and response signals

Computing the ratio of both signals at thesame frequency

In practice it is common to compute aDFT of the signals.

Random Vibration Neither excitation nor response signal

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 150/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

can be subject to a valid FourierTransform:

 Violation of Dirichlet Conditions

Finite number of isolated min and max

Finite number of points of finite discontinuity

Here we assume the random signals tobe ergodic

Random Vibrationt  f  )( Time Signal

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 151/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

∫∞+

∞−

∞+

∞−

=

+=

τ τ π ω 

τ τ 

ωτ d e RS 

dt t  f t  f  R

f

i ff  ff 

 ff 

)(2

1)(

)()()(

)( Autocorrelation Function

Power Spectral Density

Random VibrationTi Si l

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 152/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

Time Signal

 Autocorrelation

Power Spectral Density

Random Vibration

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 153/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

Sinusoidal Signal

 Autocorrelation

Power Spectral Density

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 154/178

Random Vibration

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 155/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

 Autocorrelation

Noisy Signal

Random Vibration

The autocorrelation function is real and even:

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 156/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

τ 

τ τ 

τ τ 

+=

−=−=

+=

∫∞+

∞−

+∞

∞−

t u

 Rduu f u f 

dt t  f t  f  R

 ff 

 ff 

)()()(

)()()(

The Auto/Power Spectral Density function isreal and even.

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 157/178

Random Vibration

Time Domain Frequency Domain

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 158/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

)()()()()()(

)()()()()()(

)()()()()()(

*

*

*

ω ω ω τ τ 

ω ω ω τ τ 

ω ω ω τ τ 

 X  X S dt t  xt  x R

F  X S dt t  f t  x R

F F S dt t  f t  f  R

 xx xx

 xf  xf 

 ff  ff 

=⇒+=

=⇒+=

=⇒+=

∞+

∞−

∞+

∞−

+∞

∞−

Random Vibration

To derive FRF from random vibration signals:

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 159/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

)()(

)()()()()(

)()(

)()()()()(

)()()(

*

*

2

*

*

1

ω ω 

ω ω ω ω ω 

ω ω 

ω ω ω ω ω 

ω ω ω 

 ff 

 fx

 xf 

 xx

S S 

F F  X F  H 

S S 

F  X  X  X  H 

F  X  H 

==

==

=

Complete/ Incomplete Models

It is not possible to measure the

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 160/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

response at all DOF or all modes ofstructure (N by N)

Different incomplete models: Reduced size (from N to n) by deleting

some DOFs

Number of modes are a reduced as well(from N to m, usually m<n)

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 161/178

Incomplete Response Models

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 162/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 163/178

 Theoretical Basis

Sensitivity of Models

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 164/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

Modal Sensitivity SDOF eigen sensitivity

MDOF system natural frequency sensitivity

MDOF system mode shape sensitivity

FRF Sensitivity

SDOF FRF sensitivity MDOF FRF sensitivity

Sensitivity of Models

The sensitivity analysis are required:

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 165/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

to help locate errors in models in updating to guide design optimization procedures

they are used in the course of curve fitting

 A short summery on deducingsensitivities from experimental and

analytical models is given.

Modal Sensitivities (SDOF)

k ω  =

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 166/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

.21

21

,2

1

2

1

00

030

0

k mk k 

mm

m

m

ω ω 

ω ω 

==∂∂

−=−=∂

Modal Sensitivities (MDOF)

[ ] [ ]{ } { },02 =− r r   M K  φ ω 

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 167/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

[ ] [ ]{ } { }

[ ] [ ]( ){ } { }

[ ] [ ]( )   { }   [ ] [ ]   [ ] { } { },0

,0

222

2

=⎟⎟ ⎠ ⎞

⎜⎜⎝ ⎛ 

∂∂−

∂∂−

∂∂+

∂∂−

=−∂

r r r r 

r r 

 p

 M  M  p p

 p M K 

 M K  p

φ ω ω φ ω 

φ ω 

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 168/178

Eigenvector Sensitivity(MDOF)

: fromStarting

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 169/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

[ ] [ ]( )   { }   [ ][ ]

  [ ]{ } { }

{ } { }

[ ] [ ]( )   { }   [ ] [ ]   [ ] { } { }0

,0

2

2

1

2

1

22

2

=⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ 

∂−∂

∂−∂

∂+−⇒

=∂

=⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ 

∂−

∂−

∂+

∂−

≠=

≠=

r r r 

 N 

r  j j

 jrjr 

 N 

r  j j

 j jr 

r r r r 

 p M  M 

 p pK  M K 

 ptakingand 

 p

 M  M 

 p p

 p M K 

φ ω ω φ γ ω 

φ γ φ 

φ ω ω φ 

ω 

Eigenvector Sensitivity(MDOF)

[ ] [ ]( )   { }   [ ][ ]

  [ ]{ } { }02

22 =⎟⎟

 ⎞⎜⎜⎛ 

∂−

∂−

∂+− ∑

=r r 

r  N 

 jrjr  p

 M  M 

 p p

K  M K  φ ω 

ω φ γ ω 

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 170/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

{ }   [ ] [ ]( )   { }   { }

  [ ]

[ ]

  [ ]

{ } { }

( )   { }   [ ] [ ] { } { }0

0

222

22

1

2

1

=⎟⎟ ⎠ ⎞⎜⎜

⎝ ⎛ 

∂∂−

∂∂+−⇒

=⎟⎟ ⎠

 ⎞

⎜⎜⎝ 

⎛ 

∂−

∂−

∂+−⇒

 ⎠⎝ 

∑≠=

r r 

srsr s

r r 

r T 

s

 N 

r  j j

 jrjr 

s

r  j j

 p M 

 pK 

 p

 M 

 M  p p

 M K 

φ ω φ γ ω ω 

φ ω 

ω 

φ φ γ ω φ 

Eigenvector Sensitivity(MDOF)

( )   { }  [ ] [ ]

{ }⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ 

∂−

∂+−⇒ r r 

srsr s p

 M 

 p

K  222 φ ω φ γ ω ω 

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 171/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

{ }  [ ] [ ]

{ }

( )

{ }  { }

  [ ] [ ]{ }

( )  { }∑

≠=   −

 ⎠

 ⎞⎜

⎝ 

⎛ 

∂−

=∂

∂⇒

⎟ ⎠

 ⎞⎜⎝ 

⎛ 

∂−

=⇒

 N 

r ss

s

sr 

r r 

s

sr 

r r 

s

rs

 p

 M 

 p

 p

 p

 M 

 p

122

2

22

2

φ ω ω 

φ ω φ φ 

ω ω 

φ ω φ 

γ 

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 172/178

Updating, Redesign,Reanalysis

The change in parameters must be very

ll f t l i

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 173/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

small for accurate analysis When the change in parameters is not

small:

Higher order sensitivity analysis

Iterative linear sensitivity analysis

FRF Sensitivities (SDOF)

2

1)(

mcik  ω ω ω α 

−+=

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 174/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

( )

( )

( )22

2

22

22

)(

)(

1)(

mcik m

mcik 

i

c

mcik k 

ω ω 

ω ω α 

ω ω 

ω ω α 

ω ω 

ω α 

−+=

∂∂

−+

−=∂

−+

−=

FRF Sensitivities (MDOF)

( )[ ] [ ] [ ] [ ] M C iK  Z  ω ω ω  −+= 2 ,

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 175/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

[ ] [ ]( )   [ ] [ ] [ ]( )   [ ][ ]

[ ]   ( )[ ] [ ]   ( )[ ]

( )[ ]   ( )[ ]   ( )[ ]   ( )[ ]   ( )[ ]( ) ( )[ ]

( )[ ]   ( )[ ]   ( )[ ]   ( )[ ]   ( )[ ] A x A x

 A A x x A x

 x A

 Z 

 Z  Z  Z  Z  Z  Z then

 Z  B A Z  Atake

 A B B A A B A

ω α ω ω α ω α ω α 

ω ω ω ω ω ω 

ω ω 

Δ−=−

−−=⇒

⇒+⇒

+−=+⇒

−−−−−

−−−−

11111

1111

,

FRF Sensitivities (MDOF)

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 176/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

( )[ ]   ( )[ ]   ( )[ ]   ( )[ ]   ( )[ ]

( ) ( ){ } ( ){ } ( )[ ]   ( )[ ] A

 j x

 j A x

 A x A x

 Z 

 Z 

ω α ω ω α ω α ω α 

ω α ω ω α ω α ω α 

Δ=−

Δ−=−   ,

FRF Sensitivities (MDOF)

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 177/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

FRF Sensitivities (MDOF)

( )[ ]   ( )[ ]( )[ ]

  ( )[ ]( )[ ]ω 

ω ω 

ω ω α 

∂−=

∂=

∂   −−−

 Z 

p

 Z  Z 

p

 Z 

p

111

8/11/2019 Modal Testing Lectures 1-10

http://slidepdf.com/reader/full/modal-testing-lectures-1-10 178/178

Dr H Ahmadian,Modal Testing Lab,IUSTTheoretical Basis

( )[ ]( )[ ]

  ( )[ ]( )[ ]

( )[ ] ( )[ ]   [ ] [ ] [ ] ( )[ ]ω α ω ω ω α ω α 

ω α 

ω 

ω α 

ω α 

⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ ∂

∂−∂∂+

∂∂−=

∂∂

−=∂

 p

 M 

 p

C i

 p

 p

 p

 Z 

 p

 p p p

2

Recommended