Modified theories of gravity and mechanisms of …...2012/10/02  · ⇒ The Universe is...

Preview:

Citation preview

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Modified theories of gravity and mechanisms ofmass screening

Radouane GANNOUJI

Tokyo University of Science

@ Nagoya Daigaku

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Dark Energy in a nutshell

Chameleon

Symmetron

Vainshtein

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Dark Energy in a nutshell

Chameleon

Symmetron

Vainshtein

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Dark Energy in a nutshell• Friedmann equation

3H2 = ρ

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Dark Energy in a nutshell• Friedmann equation

3H2 = ρ+ Λ

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

ΩDE = 0.72± 0.015, −1.11< wDE = P/ρ < −0.86

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

ΩDE = 0.72± 0.015, −1.11< wDE = P/ρ < −0.86

⇒ The Universe is accelerating

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Dark Energy in a nutshell• Friedmann equation

3H2 = ρ+ Λ

• Cosmological constant problem

ρvac/ρΛ ≈ 1055

• How to modify this equation• Add exotic matter (Dark Energy)

3H2 = ρ+ ρDE

• Modify the spacetime reaction (Modified gravity)

3H2 + H = ρ

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Dark Energy in a nutshell• Friedmann equation

3H2 = ρ+ Λ

• Cosmological constant problem

ρvac/ρΛ ≈ 1055

• How to modify this equation• Add exotic matter (Dark Energy)

3H2 = ρ+ ρDE

• Modify the spacetime reaction (Modified gravity)

3H2 + H = ρ

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Dark Energy in a nutshell• Friedmann equation

3H2 = ρ

• Cosmological constant problem

ρvac/ρΛ ≈ 1055

• How to modify this equation• Add exotic matter (Dark Energy)

3H2 = ρ+ ρDE

• Modify the spacetime reaction (Modified gravity)

3H2 + H = ρ

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Dark Energy in a nutshell• Friedmann equation

3H2 = ρ

• Cosmological constant problem

ρvac/ρΛ ≈ 1055

• How to modify this equation• Add exotic matter (Dark Energy)

3H2 = ρ+ ρDE

• Modify the spacetime reaction (Modified gravity)

3H2 + H = ρ

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Dark Energy in a nutshell• Friedmann equation

3H2 = ρ

• Cosmological constant problem

ρvac/ρΛ ≈ 1055

• How to modify this equation• Add exotic matter (Dark Energy)

3H2 = ρ+ ρDE

• Modify the spacetime reaction (Modified gravity)

3H2 + H = ρ

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Dark Energy in a nutshell• Friedmann equation

3H2 = ρ

• Cosmological constant problem

ρvac/ρΛ ≈ 1055

• How to modify this equation• Add exotic matter (Dark Energy)

3H2 = ρ+ ρDE

• Modify the spacetime reaction (Modified gravity)

3H2 + H = ρ

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Local bounds• Laboratory Bounds

V(r) = −Gm1m2

r

[

1+ α exp−r/λ]

g00 = −1+ 2GMrc2

− 2βPPN(GM

rc2

)2+ · · ·

gij = δij

[

1+ 2γPPNGMrc2

+ · · ·]

• Solar System Bounds

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

• Problem?Solar System and lab experiments rule out any long rangegravitationally coupled fifth force.So the challenge is to modify gravity only at large (cosmic) distances,while keeping it unaltered at short (Solar System) distances.

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

• Problem?Solar System and lab experiments rule out any long rangegravitationally coupled fifth force.So the challenge is to modify gravity only at large (cosmic) distances,while keeping it unaltered at short (Solar System) distances.

• How to modify the theory of gravity?Weinberg’s theorem: A Lorentz-invariant theory of a massless spin-twofield must be equivalent to GR in the low-energy limit.Low-energy modifications of gravity therefore necessarilyinvolveintroducing new degrees of freedom, such as a scalar.Giving the graviton a small mass width turns out to introducea scalar.Theories that invoke a Lorentz violating massive graviton also involve ascalar.

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Three ways to hide

L = −12

Zµν(φ)∂µφ∂νφ− V(φ) + A(φ)T

• The scalar field is weakly coupled to matter

• Quintessence

• The scalar field is massive in vicinity of matter

• Chameleon (Khoury and Weltman: 2004)• Symmetron (Olive and Pospelov: 2008)

• The scalar field is weakly coupled in vicinity of matter• Vainshtein (1972)

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Three ways to hide

L = −12

Zµν(φ)∂µφ∂νφ− V(φ) + A(φ)T

• The scalar field is weakly coupled to matter

• Quintessence

• The scalar field is massive in vicinity of matter

• Chameleon (Khoury and Weltman: 2004)• Symmetron (Olive and Pospelov: 2008)

• The scalar field is weakly coupled in vicinity of matter• Vainshtein (1972)

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Three ways to hide

L = −12

Zµν(φ)∂µφ∂νφ− V(φ) + A(φ)T

• The scalar field is weakly coupled to matter

• QuintessenceL = −1

2gµν∂µφ∂νφ− V(φ) + T

• The scalar field is massive in vicinity of matter

• Chameleon (Khoury and Weltman: 2004)• Symmetron (Olive and Pospelov: 2008)

• The scalar field is weakly coupled in vicinity of matter• Vainshtein (1972)

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Three ways to hide

L = −12

Zµν(φ)∂µφ∂νφ− V(φ) + A(φ)T

• The scalar field is weakly coupled to matter

• QuintessenceL = −1

2gµν∂µφ∂νφ− V(φ) + T

• The scalar field is massive in vicinity of matter

• Chameleon (Khoury and Weltman: 2004)• Symmetron (Olive and Pospelov: 2008)

• The scalar field is weakly coupled in vicinity of matter• Vainshtein (1972)

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Three ways to hide

L = −12

Zµν(φ)∂µφ∂νφ− V(φ) + A(φ)T

• The scalar field is weakly coupled to matter

• QuintessenceL = −1

2gµν∂µφ∂νφ− V(φ) + T

• The scalar field is massive in vicinity of matter

• Chameleon (Khoury and Weltman: 2004)• Symmetron (Olive and Pospelov: 2008)

L = −12

gµν∂µφ∂νφ− V(φ) + A(φ)T

• The scalar field is weakly coupled in vicinity of matter• Vainshtein (1972)

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Three ways to hide

L = −12

Zµν(φ)∂µφ∂νφ− V(φ) + A(φ)T

• The scalar field is weakly coupled to matter

• QuintessenceL = −1

2gµν∂µφ∂νφ− V(φ) + T

• The scalar field is massive in vicinity of matter

• Chameleon (Khoury and Weltman: 2004)• Symmetron (Olive and Pospelov: 2008)

L = −12

gµν∂µφ∂νφ− V(φ) + A(φ)T

• The scalar field is weakly coupled in vicinity of matter• Vainshtein (1972)

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Three ways to hide

L = −12

Zµν(φ)∂µφ∂νφ− V(φ) + A(φ)T

• The scalar field is weakly coupled to matter

• QuintessenceL = −1

2gµν∂µφ∂νφ− V(φ) + T

• The scalar field is massive in vicinity of matter

• Chameleon (Khoury and Weltman: 2004)• Symmetron (Olive and Pospelov: 2008)

L = −12

gµν∂µφ∂νφ− V(φ) + A(φ)T

• The scalar field is weakly coupled in vicinity of matter• Vainshtein (1972)

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Three ways to hide

L = −12

Zµν(φ)∂µφ∂νφ− V(φ) + A(φ)T

• The scalar field is weakly coupled to matter

• QuintessenceL = −1

2gµν∂µφ∂νφ− V(φ) + T

• The scalar field is massive in vicinity of matter

• Chameleon (Khoury and Weltman: 2004)• Symmetron (Olive and Pospelov: 2008)

L = −12

gµν∂µφ∂νφ− V(φ) + A(φ)T

• The scalar field is weakly coupled in vicinity of matter• Vainshtein (1972)

L = −12

Zµν(φ)∂µφ∂νφ+ A(φ)T

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Dark Energy in a nutshell

Chameleon

Symmetron

Vainshtein

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Chameleon

S=

d4x√−g

(

R−12(∂φ)2 − V(φ)

)

+ Sm[ψm;A2(φ)gµν ]

• Equation of motion

• Dynamics governed by effective potential:

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Chameleon

S=

d4x√−g

(

R−12(∂φ)2 − V(φ)

)

+ Sm[ψm;A2(φ)gµν ]

• Equation of motion

φ = V,φ + A,φρ

• Dynamics governed by effective potential:

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Chameleon

S=

d4x√−g

(

R−12(∂φ)2 − V(φ)

)

+ Sm[ψm;A2(φ)gµν ]

• Equation of motion

φ = V,φ + A,φρ

• Dynamics governed by effective potential:

φ = Veff,φ

Veff(φ) ≡ V(φ) + A(φ)ρ

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Dynamics governed by effective potential

φ = Veff,φ, with Veff(φ) ≡ V(φ) + A(φ)ρ

Largeρ Smallρ

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Solution for a compact object

Rc

Mc,Ρc

Ρ¥

d2φ

dr2+

2r

dφdr

= V,φ + A(φ)ρ(r)

The boundary conditions specify that the solution be nonsingular at the

origin:dφdr

= 0 atr = 0

And that the force on a test particle vanishes at infinity:φ→ φ∞ asr → ∞

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

RcΡc

Φ=Φc

VeffHΦL

Φ

VeffHΦL

Φ

Ρ¥

Φ=Φ¥

0 20 40 60 80 10099.90

99.91

99.92

99.93

99.94

99.95

99.96

99.97

r

Φ

φ(r) ≈ −

(

β

4πMpl

)

Mce−m∞(r−Rc)

r+φ∞

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

RcΡc

Φ=Φc

VeffHΦL

Φ

DRcVeffHΦL

Φ

Ρ¥

Φ=Φ¥

0 20 40 60 80 1000

10

20

30

40

50

60

70

r

Φ

φ(r) ≈ −

(

β

4πMpl

)(

3∆Rc

Rc

)

Mce−m∞(r−Rc)

r+φ∞

• Field reaches effective minimum almost everywhere in the body• All field variations confined to small region near body surface

• This region is called a thin-shell∆Rc

Rc≪ 1

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Fifth Force on Body with Thin-Shell

A test massM1 in a static chameleon fieldφ experiences a force−→F φ

−→F φ

M1= − β

Mpl

−→∇φ

⇒ φ is the potential for the chameleon force.

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Fifth Force on Body with Thin-Shell

A test massM1 in a static chameleon fieldφ experiences a force−→F φ

−→F φ

M1= − β

Mpl

−→∇φ

⇒ φ is the potential for the chameleon force.

M1=

GMc

r2(6β2∆Rc

Rce−m∞r)

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Fifth Force on Body with Thin-Shell

A test massM1 in a static chameleon fieldφ experiences a force−→F φ

−→F φ

M1= − β

Mpl

−→∇φ

⇒ φ is the potential for the chameleon force.

M1=

GMc

r2(6β2∆Rc

Rce−m∞r)

⇒ F12 =GNm1m2

r2 (1+ αe−mr)

• deviations from Newton’s law are given byα = 6β2∆Rc

Rc

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

• Thin Shell

deviations from Newton’s law are given byα = 6β2∆Rc

Rcwith

∆Rc

Rc≈

1Newton’s potential

for large objects (sun, earth, moon) , Newton’s potential islarge and athin shell is always present

⇒ Planetary motion unaffected by the chameleon field

• Example (Earth)Modeled as a sphere of radiusRc = 6000Km and densityρc = 10g/cm3.Far away the matter density is approximately that of baryonic gas anddark matter:ρ∞ = 10−24g/cm3

∆Rc

Rc≈ 10−8 ≪ 1

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

• Thin Shell

deviations from Newton’s law are given byα = 6β2∆Rc

Rcwith

∆Rc

Rc≈

1Newton’s potential

for large objects (sun, earth, moon) , Newton’s potential islarge and athin shell is always present

⇒ Planetary motion unaffected by the chameleon field

• Example (Earth)Modeled as a sphere of radiusRc = 6000Km and densityρc = 10g/cm3.Far away the matter density is approximately that of baryonic gas anddark matter:ρ∞ = 10−24g/cm3

∆Rc

Rc≈ 10−8 ≪ 1

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Gravity Test

F12 =GNm1m2

r2(1+ αe−mr)

α = 10−8

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Dark Energy in a nutshell

Chameleon

Symmetron

Vainshtein

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Symmetron

φ = Veff,φ, with Veff(φ) ≡ V(φ) + A(φ)ρ

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Symmetron

φ = Veff,φ, with Veff(φ) ≡ V(φ) + A(φ)ρ

V(φ) = −12µ2φ2 +

14λφ4

A(φ) = 1+φ2

2M2

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Symmetron

φ = Veff,φ, with Veff(φ) ≡ V(φ) + A(φ)ρ

V(φ) = −12µ2φ2 +

14λφ4

A(φ) = 1+φ2

2M2

Veff(φ) =12

( ρ

M2− µ2

)

φ2 +14λφ4

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Symmetron

Veff(φ) =12

( ρ

M2− µ2

)

φ2 +14λφ4

Large density Low density

Coupling to matter≃φ2

M2ρ

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Symmetron

Veff(φ) =12

( ρ

M2− µ2

)

φ2 +14λφ4

Large density Low density

Coupling to matter≃φ2

M2ρ

Fluctuations(δφ) around the local background(φ0) ≃φ0

M2δφρ

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Conclusion

• Strengthens:• Useful for many models:f (R,G)• Fifth force is suppressed locally• Interesting cosmological consequences

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Conclusion

• Strengthens:• Useful for many models:f (R,G)• Fifth force is suppressed locally• Interesting cosmological consequences

• Weaknesses• Singularity problem ?• We do not solve the cosmological constant problem:

mφ < 10−33eV

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Dark Energy in a nutshell

Chameleon

Symmetron

Vainshtein

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Vainshtein

L = −12

Zµν(φ)∂µφ∂νφ− V(φ) + A(φ)T

• At low energyZµν ≈ gµν• At high energyZµν ≫ 1

• The field is strongly coupled to itself and becomes weakly coupled toexternal sources

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Vainshtein

L = −12

Zµν(φ)∂µφ∂νφ− V(φ) + A(φ)T

= −12

Zµν(φ)∂µφ∂νφ+φ

MplT

• At low energyZµν ≈ gµν• At high energyZµν ≫ 1

• The field is strongly coupled to itself and becomes weakly coupled toexternal sources

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Vainshtein

L = −12

Zµν(φ)∂µφ∂νφ− V(φ) + A(φ)T

= −12

Zµν(φ)∂µφ∂νφ+φ

MplT

Zµν ≈ gµν +1Λ3∂µ∂νφ+

1Λ6

(

∂µ∂νφ)2

+ · · ·

• At low energyZµν ≈ gµν• At high energyZµν ≫ 1

• The field is strongly coupled to itself and becomes weakly coupled toexternal sources

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Vainshtein

L = −12

Zµν(φ)∂µφ∂νφ− V(φ) + A(φ)T

= −12

Zµν(φ)∂µφ∂νφ+φ

MplT

Zµν ≈ gµν +1Λ3∂µ∂νφ+

1Λ6

(

∂µ∂νφ)2

+ · · ·

• At low energyZµν ≈ gµν• At high energyZµν ≫ 1

• The field is strongly coupled to itself and becomes weakly coupled toexternal sources

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Vainshtein

L = −12

Zµν(φ)∂µφ∂νφ− V(φ) + A(φ)T

= −12

Zµν(φ)∂µφ∂νφ+φ

MplT

Zµν ≈ gµν +1Λ3∂µ∂νφ+

1Λ6

(

∂µ∂νφ)2

+ · · ·

• At low energyZµν ≈ gµν• At high energyZµν ≫ 1

• The field is strongly coupled to itself and becomes weakly coupled toexternal sources

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Vainshtein

L = −12

Zµν(φ)∂µφ∂νφ− V(φ) + A(φ)T

= −12

Zµν(φ)∂µφ∂νφ+φ

MplT

Zµν ≈ gµν +1Λ3∂µ∂νφ+

1Λ6

(

∂µ∂νφ)2

+ · · ·

• At low energyZµν ≈ gµν• At high energyZµν ≫ 1

−12

Zµν(φ)∂µφ∂νφ = −12

(

∂φ)2, φ =

φ√Z

• The field is strongly coupled to itself and becomes weakly coupled toexternal sources

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Vainshtein

L = −12

Zµν(φ)∂µφ∂νφ− V(φ) + A(φ)T

= −12

Zµν(φ)∂µφ∂νφ+φ

MplT

Zµν ≈ gµν +1Λ3∂µ∂νφ+

1Λ6

(

∂µ∂νφ)2

+ · · ·

• At low energyZµν ≈ gµν• At high energyZµν ≫ 1

−12

Zµν(φ)∂µφ∂νφ = −12

(

∂φ)2, φ =

φ√Z

φ

MplT =

φ√ZMpl

T ≪ 1

• The field is strongly coupled to itself and becomes weakly coupled toexternal sources

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Vainshtein

L = −12

Zµν(φ)∂µφ∂νφ− V(φ) + A(φ)T

= −12

Zµν(φ)∂µφ∂νφ+φ

MplT

Zµν ≈ gµν +1Λ3∂µ∂νφ+

1Λ6

(

∂µ∂νφ)2

+ · · ·

• At low energyZµν ≈ gµν• At high energyZµν ≫ 1

−12

Zµν(φ)∂µφ∂νφ = −12

(

∂φ)2, φ =

φ√Z

φ

MplT =

φ√ZMpl

T ≪ 1

• The field is strongly coupled to itself and becomes weakly coupled toexternal sources

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

DGP• Dvali, Gabadadze, Porrati (2000).

• The 3-brane is embedded in a Minkowski bulk spacetime with infinitelylarge 5th extra dimensions:

• Boundary effective action (Luty,Porrati,Rattazzi: 2003)• ADM decomposition(gµν ,N,Nµ)• GMN = ηMN + hMN

• We focus on the scalar mode (φ)

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

DGP• Dvali, Gabadadze, Porrati (2000).

• The 3-brane is embedded in a Minkowski bulk spacetime with infinitelylarge 5th extra dimensions:

S= M3(5)

d5X√−GR+ M2

pl

d4x√−gR+ Sm

• Boundary effective action (Luty,Porrati,Rattazzi: 2003)• ADM decomposition(gµν ,N,Nµ)• GMN = ηMN + hMN

• We focus on the scalar mode (φ)

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

DGP• Dvali, Gabadadze, Porrati (2000).

• The 3-brane is embedded in a Minkowski bulk spacetime with infinitelylarge 5th extra dimensions:

S= M3(5)

d5X√−GR+ M2

pl

d4x√−gR+ Sm

• Boundary effective action (Luty,Porrati,Rattazzi: 2003)• ADM decomposition(gµν ,N,Nµ)• GMN = ηMN + hMN

• We focus on the scalar mode (φ)

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

DGP• Dvali, Gabadadze, Porrati (2000).

• The 3-brane is embedded in a Minkowski bulk spacetime with infinitelylarge 5th extra dimensions:

S= M3(5)

d5X√−GR+ M2

pl

d4x√−gR+ Sm

• Boundary effective action (Luty,Porrati,Rattazzi: 2003)• ADM decomposition(gµν ,N,Nµ)• GMN = ηMN + hMN

• We focus on the scalar mode (φ)

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

DGP• Dvali, Gabadadze, Porrati (2000).

• The 3-brane is embedded in a Minkowski bulk spacetime with infinitelylarge 5th extra dimensions:

S= M3(5)

d5X√−GR+ M2

pl

d4x√−gR+ Sm

• Boundary effective action (Luty,Porrati,Rattazzi: 2003)• ADM decomposition(gµν ,N,Nµ)• GMN = ηMN + hMN

• We focus on the scalar mode (φ)

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

DGP• Dvali, Gabadadze, Porrati (2000).

• The 3-brane is embedded in a Minkowski bulk spacetime with infinitelylarge 5th extra dimensions:

S= M3(5)

d5X√−GR+ M2

pl

d4x√−gR+ Sm

• Boundary effective action (Luty,Porrati,Rattazzi: 2003)• ADM decomposition(gµν ,N,Nµ)• GMN = ηMN + hMN

• We focus on the scalar mode (φ)

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

DGP• Dvali, Gabadadze, Porrati (2000).

• The 3-brane is embedded in a Minkowski bulk spacetime with infinitelylarge 5th extra dimensions:

S= M3(5)

d5X√−GR+ M2

pl

d4x√−gR+ Sm

• Boundary effective action (Luty,Porrati,Rattazzi: 2003)• ADM decomposition(gµν ,N,Nµ)• GMN = ηMN + hMN

• We focus on the scalar mode (φ)

S=

d4x[

−3(∂φ)2 − 1Λ3

φ(∂φ)2 + 2φ

MplT]

, Λ =M2

(5)

Mpl

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

DGP• Dvali, Gabadadze, Porrati (2000).

• The 3-brane is embedded in a Minkowski bulk spacetime with infinitelylarge 5th extra dimensions:

S= M3(5)

d5X√−GR+ M2

pl

d4x√−gR+ Sm

• Boundary effective action (Luty,Porrati,Rattazzi: 2003)• ADM decomposition(gµν ,N,Nµ)• GMN = ηMN + hMN

• We focus on the scalar mode (φ)

S=

d4x[

−3(∂φ)2 − 1Λ3

φ(∂φ)2 + 2φ

MplT]

, Λ =M2

(5)

Mpl

Zµν = gµν[

6+2Λ3

φ]

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Decoupling limit

Lφ = −3(∂φ)2 − 1Λ3

φ(∂φ)2 + 2φ

MplT

• The effective action is local

• The equation of motion remain second order in derivative

• The equations of motion are invariant under shift and Galilean globaltransformationsφ→ φ+ c+ vµxµ

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Decoupling limit

Lφ = −3(∂φ)2 − 1Λ3

φ(∂φ)2 + 2φ

MplT

• The effective action is local

• The equation of motion remain second order in derivative

• The equations of motion are invariant under shift and Galilean globaltransformationsφ→ φ+ c+ vµxµ

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Decoupling limit

Lφ = −3(∂φ)2 − 1Λ3

φ(∂φ)2 + 2φ

MplT

• The effective action is local

• The equation of motion remain second order in derivative

3φ+1Λ3

(

(φ)2 − (∂µ∂νφ)2)

= −T

Mpl

• The equations of motion are invariant under shift and Galilean globaltransformationsφ→ φ+ c+ vµxµ

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Decoupling limit

Lφ = −3(∂φ)2 − 1Λ3

φ(∂φ)2 + 2φ

MplT

• The effective action is local

• The equation of motion remain second order in derivative

3φ+1Λ3

(

(φ)2 − (∂µ∂νφ)2)

= −T

Mpl

• The equations of motion are invariant under shift and Galilean globaltransformationsφ→ φ+ c+ vµxµ

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Decoupling limit

Lφ = −3(∂φ)2 − 1Λ3

φ(∂φ)2 + 2φ

MplT

• The effective action is local

• The equation of motion remain second order in derivative

3φ+1Λ3

(

(φ)2 − (∂µ∂νφ)2)

= −T

Mpl

• The equations of motion are invariant under shift and Galilean globaltransformationsφ→ φ+ c+ vµxµ

⇒ Galileon models

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Fifth force

3φ+1Λ3

(

(φ)2 − (∂µ∂νφ)2)

= −T

Mpl

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Fifth force

3φ+1Λ3

(

(φ)2 − (∂µ∂νφ)2)

= −T

Mpl

Fφ =34

rΛ3(

−1+

1+r3

v

r3

)

,

r3v =

8M9MplΛ3

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Fifth force

3φ+1Λ3

(

(φ)2 − (∂µ∂νφ)2)

= −T

Mpl

Fφ =34

rΛ3(

−1+

1+r3

v

r3

)

,

r3v =

8M9MplΛ3

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Fifth force

3φ+1Λ3

(

(φ)2 − (∂µ∂νφ)2)

= −T

Mpl

Fφ =34

rΛ3(

−1+

1+r3

v

r3

)

,

r3v =

8M9MplΛ3

⇒ The fifth force is suppressed locally

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Conclusion

• Three ways to hide the additional degrees of freedom• Chameleon• Symmetron• Vainshtein

• Nontrivial interactions between the scalar field and matterallowed

• Candidate for dark energy

• Bounds from laboratories, solar system and astrophysical experimentsare exponentially relaxed

• The best model is the cosmological constant

ご清聴ありがとうございました

DARK ENERGY IN A NUTSHELL CHAMELEON SYMMETRON VAINSHTEIN

Conclusion

• Three ways to hide the additional degrees of freedom• Chameleon• Symmetron• Vainshtein

• Nontrivial interactions between the scalar field and matterallowed

• Candidate for dark energy

• Bounds from laboratories, solar system and astrophysical experimentsare exponentially relaxed

• The best model is the cosmological constant

ご清聴ありがとうございました