Monitoring emission savings from low roll- ing resistance ... · 4.3.1 Baseline GHG emissions from...

Preview:

Citation preview

Monitoringemissionsavingsfromlowroll-ingresistancetirelabellingandphase-outschemesMRVBlueprintbasedonanexamplefromtheEuropeanUnion

FrankDünnebeil,Dr.HeikoKeller

Heidelberg,March2015

ifeuWilckensstraße3D-69120HeidelbergTelefon+49(0)6221.4767-0Telefax+49(0)6221.4767-19E-Mailifeu@ifeu.dewww.ifeu.de

This studyhasbeenelaborated in thecontextof theTRANSferproject implemented by Deutsche Gesellschaft für Internatio-naleZusammenarbeit (GIZ)GmbH; fundedby theGermanFed-eralMinistry for the Environment, Nature Conservation, Build-ings and Nuclear Safety within the framework of the Interna-tional Climate Initiative. The content reflects the views of theauthorsanddoesnotnecessarilyreflecttheviewsofGIZ.

Authors: FrankDünnebeilDr.HeikoKeller

ifeu–InstitutfürEnergie-undUmweltfor-schungHeidelbergGmbHWilckensstr.3,D-69120Heidelberg

Yearofpublication: 2015

TableofContents

1 ScopeandobjectivesoftheMRVblueprint 6

2 Backgroundanddescriptionofthemeasure 72.1 CurrentsituationinthetransportsectorinEuropeandneedsforaction 72.2 Europeantirelabellingandphase-outregulations 8

2.2.1 RequirementsoftheEuropeantireregulationsontrucktires 82.2.2 RoleofrollingresistanceforfuelconsumptionandGHG

emissions 102.3 PotentialtranslationoftheEuropeanmeasureintoaNAMA 11

3 GHGandnon-GHGimpactsofthemeasure 123.1 GHGimpactsofthemeasure 12

3.1.1 DirectandindirectGHGimpacts 133.1.2 Interactionwithothermeasuresinthetransportsector 133.1.3 RelevanceofGHGimpactsforMRV 14

3.2 Non-GHGimpacts 163.3 DefinitionofMRVassessmentboundaries 17

4 MeasurementofGHGimpacts 204.1 OverviewofthemethodologicalapproachforthemeasurementofGHG

impacts 204.2 CalculatingrealGHGemissionsofheavy-dutytrucktransport 21

4.2.1 RealGHGemissionsfromrollingresistance 214.2.2 RealtotalGHGemissionsofheavy-dutytrucktransport 234.2.3 ShareofrollingresistanceontotalGHGemissions 23

4.3 MeasuringabsoluteGHGimpactsperreportingyear 244.3.1 BaselineGHGemissionsfromrollingresistance 244.3.2 AbsoluteGHGimpacts 25

4.4 AssessingoverallrelevanceforGHGemissionsfromheavy-dutytrucktransport 25

4.5 Datasourcesofcalculationparameters 264.5.1 Realandbaselinerollingresistancecoefficients 274.5.2 Parametersforrollingresistancerelatedfuelconsumption 294.5.3 Parametersforgeneraldevelopmentsinheavy-dutytransport 30

4.6 CalculationexampleforthemeasurementofGHGimpacts 314.7 Assessmentofuncertainties 32

TableofContents

5 Indicatorsfornon-GHGimpactsofthemeasure 34

6 Monitoringofmeasureimplementationprogressanddatasources 366.1 Monitoringofmeasureimplementationprogress 366.2 Updatingdatasourcesandcalculationapproach 36

7 Reporting 37

8 Verification 39

9 ApplicabilityoftheMRVblueprintforrelatedNAMAS 40

References 41

ListofTables

Table1: European limit values for rolling resistance coefficients andexternalrollingnoiseofC3tires[EC,2009a] 9

Table2: Impactchain:DirectGHGImpacts 13Table3: Impactchain:IndirectGHGImpacts 13Table4: OverviewofGHGimpactsandtheirrelevanceforMRV 15Table5: CalculationparametersforrealrollingresistanceGHGemissions 22Table6: Calculation parameters for total GHG emissions of heavy-duty

trucktraffic 23Table7: Calculation parameters for baseline rolling resistance GHG

emissions 24Table8: Overviewofcalculationparametersanddatasources 26Table9: Distribution parameters for the calculation ofweighted rolling

resistancecoefficients 28Table10: Estimatesofweightedaveragerolling resistancecoefficients in

theyear2015 28Table11: Estimated development of powertrain efficiency values for

heavy-dutytrucksinEurope 30Table12: Exemplary calculation parameters for the year 2020 for the

largevehiclesegment 32Table13: ExemplaryassessmentofGHGimpactsfortheyear2020forthe

largevehiclesegment 32

ListofFigures

Figure1: Exemplary EU tire label with explanation of segments for C3trucktires[EC,2009b,2011] 9

Figure2: ContributionstofuelconsumptionofEUROVIheavy-dutytrucks 10Figure3: Contribution of tires on different axles to total vehicle rolling

resistanceonatypical40tsemi-trailertruck[Goodyear,2012] 11Figure4: Bottom-up model approach for calculating fuel consumption

andGHGemissionsrelatedtorollingresistance 22Figure5: ExemplarydistributionsoftrucktiresinEUtirelabelRRCclasses

in the market offer of one online tire shop and derivedweightedaverage[Reifenleader,2015] 28

Figure6: Exemplary distributions of truck tires in EU tire label wet gripclasses (left)andnoise levels (right) in themarketofferofoneonlinetireshop[Reifenleader,2015] 34

6= MRVblueprint–Europeantirelabellingandphase-outregulationsforheavy-dutytrucks=ifeu

1 ScopeandobjectivesoftheMRVblueprint

In 2012, the EuropeanUnion introducedmandatory labelling and phase-out regulationsfor tiresofall roadvehicleclassesaimingatawiderapplicationof lowrolling resistancetiresand,throughthisefficiencymeasure,atareductionofgreenhousegas(GHG)emis-sions [EP,2009a;b].These regulations receivedconsiderable internationalattentionandcouldinspiresimilarlegislationinothercountries.

ThepresentMRVblueprintshowshowaMeasurement,ReportingandVerification(MRV)processcouldbedesignedfortirelabellingandphaseoutregulations,usingtheEuropeanUnionasexample.ThescopeofthisMRVblueprint is limitedtotire-labellingandphase-outconcerningheavy-dutytruckswithagrossvehicleweight(GVW)>3.5tons.ArecentrelatedGHGimpactassessmentstudyonthistopic [IFEU,2015]servesasabasis forthecalculation of GHG emissions through the use of low rolling resistance tires within thisMRVblueprint.

TheProjectContext

TheTRANSferproject isaproject implementedbyGIZandfundedthroughtheInter-nationalClimate Initiativeof theGermanMinistry for theEnvironment,NatureCon-versation,BuildingandNuclearSafety (BMUB). Itsobjective is tosupportdevelopingcountries todevelopclimatechange strategies in the transport sectoras „NationallyAppropriateMitigationActions“(NAMAs).Theprojectprovidestechnicalassistanceinthe partner countries Indonesia, The Philippines Columbia, Peru and South Africa.Therefore,theprojectcloselycooperateswithotherprojectsunderthe InternationalClimateInitiativeofBMUB,includingChina.TRANSferinChinawillexplorethesyner-gieswithongoingprojectsandextract lessons learned forgreenhousegas (GHG)ac-countingandimplementationof localactions.Sustainabletransportprojects inChinaprovide plenty of experiences on quantifyingGHGemissions and implementation ofmitigationactions inurban transport,vehicle technologyand logistics.Mitigationac-tions inChinaarecurrentlynotregisteredassingleNAMAs,butservetoachievethenationaltargettodecreasecarbonintensityby40-45percentuntil2020(comparedto2005).Similaractionscould,however,bedevelopedasNAMAsinothercountries.

TRANSferalsosupportsmutualinternationallearning.MRVremainsoneofthegreat-est challenges toNAMAdevelopment in the transport sector. The TRANSfer projectthereforeestablishedanMRVworkstreaminordertolowerthebarrierstoestablish-ingMRVsys-temsandhencemakeiteasiertodevelopandimplementtransportNA-MAs. This includes an international expert group from developing and developedcountries.ToencourageNAMAdevelopmentworldwide,TRANSferhassetouttode-velopafirstsetofso-calledMRVblueprintsfortransportNAMAs–adescriptionoftheMRVmethodologyandcalcula-tionofemissionreductionsfordifferentNAMAtypesinthetransportsector.http://www.transferproject.org.

ifeu=MRVblueprint–Europeantirelabellingandphase-outregulationsforheavy-dutytrucks =7

2 Backgroundanddescriptionofthemeasure

2.1 CurrentsituationinthetransportsectorinEuropeandneedsforaction

Thetransportsectorwasresponsibleforapprox.33%offinalenergyconsumptionand26%ofgreenhousegasemissionsinEuropeintheyear2010.Inthiscontext,roadtranspor-tationaccountsforthelargestsharewith72%oftotalGHGemissionsfromtransport[EU,2013].Heavy-dutytrucks(>3.5tGVW)accountforaboutaquarterofenergyconsumptionandGHGemissionsinroadtransportatpresent[Emisia,2013].CurrentprojectionsexpectsubstantialincreasesofHDVtransportinthefuture(2010to2050:+55%)[COM,2013].Inconsequence, compliancewith climate changemitigation goals and theminimisation offinalenergyconsumptionrequireasubstantialreductionofthefuelconsumptionandGHGemissionsassociatedwithroadfreighttransport.

GHGmitigationpathwaysinthetransportsector

TheamountofGHGemissions causedbymotorised transportdependson theextentoftransportactivities,thespecificenergyconsumptionoftheusedmeansoftransportationandonthespecificGHGemissionsintensityofthefinalenergycarriers.Accordingly,therearedifferentmechanismsofactionforthereductionofGHGemissions:

• Avoidmotorizedtransport(lesstrips,reduceddistances,higherloads)

• Shifttransportdemandtolow-emittingtransportmodes

• Improveenergyefficiencyofthevehiclefleetand loweringthespecificenergyde-mandpertransportactivity

• ImprovespecificGHGemissionsperenergyconsumptionbyusingalternativeener-gycarriers(e.g.biofuels,electricity).

EuropeanpoliciesforGHGmitigationintheroadfreightsector

EuropeanpoliciesforGHGmitigationintheroadfreightsofarfocusprimarilyonaffirma-tiveaction foravoidingroadtransportactivityby increasingvehicle loadsandshifting tomore environmentally-friendly transport modes (train, shipping). Improving energy effi-ciency of trucks has not been themain concern of policymeasures in the past; insteadtechnical improvementsofheavy-dutyvehicles focusedon the reductionofairpollutantemissions.Despite the focusonairpollutants, some individualpolicieshavebeen imple-mented that support vehicle manufacturers and suppliers in the development of moreenergy-efficient trucks and truck components, e.g. a flexibilisationof vehicledimensionsenablingaerodynamicimprovementsandthelabellingandphase-outregulationsforroadvehicletires.

8= MRVblueprint–Europeantirelabellingandphase-outregulationsforheavy-dutytrucks=ifeu

In 2014, the European Commission has started to devise strategies for the reduction ofCO2emissionsfromheavy-dutyvehiclesincollaborationwithitsmemberstatesandpub-lished an initial Key Issues Paper [EC, 2014]. This strategic processwill probably lead tofurtherefficiencymeasuresinthefuture.

2.2 Europeantirelabellingandphase-outregulations

Oneof themajor contributors to fuel consumptionof roadvehicles is rolling resistance.Lowrollingresistancetiresreducetherollingresistanceofavehicleandrelatedfuelcon-sumption.Thewideapplicationof lowrolling resistance tires invehicle fleets can there-foreconsiderablyreducefuelconsumptionandGHGemissionsinthetransportsector.Asaco-benefit,transportationcostsforthevehicleownersdecreaseconsiderably.

In 2009 and 2011, the European Union introduced and amended regulations, which in-cludetechnicalspecificationsofnewtiresformoston-roadvehicletypes,i.e.tiresforcars(c1),vans (C2)andtrucks (C3) [EC,2009a;b,2011].Mainobjectivesof theseregulationsregardingtiresare:

• Improving tire-related fuel efficiency by improving rolling resistance coefficientsRRC(inkg/t)1,whichisthekeyfactorforthefuelefficiencyofatire,

• Improvingroadsafetyofvehicles,usingthewetgrip indexas indicatorforbrakingperformanceofa tireunderwetconditions,definedbycomparisonwithaprede-finedreferencetire,

• Reducingexternalrollingnoiseoftires,definedbythedrive-bynoisegeneratedbyatire(indB).

European tire regulations as a whole concern passenger cars, vans, trucks and buses.However,thepresentMRVblueprintaddressesonlythosemeasureswithinEuropeantireregulations concerning heavy-duty road freight transport. Therefore, following descrip-tionsoftheconfigurationofthemeasurereferonlytoC3tires,whichareusedonheavy-dutytrucks>3.5tonsGVW.

Section2.2.1givesanoverviewof the relevantEuropean tire regulations forheavy-dutytrucks including requirements on rolling resistance coefficients. Section 2.2.2 gives addi-tional general information about the role of rolling resistance for fuel consumption andGHGemissionsofheavy-dutytrucksforanimprovedunderstandingoftheGHGimpactsoftheEuropeanmeasure.

2.2.1 RequirementsoftheEuropeantireregulationsontrucktires

This section gives an overview of the relevant European tire regulations for heavy-dutytrucksincludingrequirementsonrollingresistancecoefficients.

In the first regulation step in [EC, 2009a], limit values of the defined parameters havebeen specified in order to induce a phase-out of particularly inefficient tiremodels. Fortrucktires,onlylimitvaluesforrollingresistanceandexternalrollingnoisehavebeende-fined.TheseareshowninTable1.––––––––––––––––1RRCsareactuallydimensionlesscoefficients.However,inmostliteraturesourcessuchasinpresentECregulations,theyareexpressedinkg/torinN/kN,whichresultsin1000-foldhighervalues.

ifeu=MRVblueprint–Europeantirelabellingandphase-outregulationsforheavy-dutytrucks =9

Table1: EuropeanlimitvaluesforrollingresistancecoefficientsandexternalrollingnoiseofC3tires[EC,2009a]

RollingResistancecoefficient

8.0kg/t 01.11.2016fororiginalequipmentofnewvehiclesandreplacementtires(sale&entryintoservice)

6.5kg/t 01.11.2016fornewtypesoftires(typeapproval)and01.11.2020fororiginalequip-mentofnewvehiclesandreplacementtires(saleandentryintoservice)

Externalrollingnoise(asfrom01.11.2016)

73dB(A) Normaltires

75dB(A) Tractiontires

Second regulation step was the introduction of a standardised tire label including thethreedefinedtireparameters,effectiveasfromtheyear2012[EC,2009b,2011].Thislabelismandatoryforall tiresexceptforretreatedtires,motorcyclesandspecialapplications.The tire labelmust bemade available for all tire types from themanufacturers and beprovidedtotheendusersfromthetiredealersbeforethesale.Inthisway,vehicleownersget supporting information regarding the three aspects fuel efficiency, road safety andexternal rollingnoise for their tirebuyingdecision.Figure1showsthetire labelandthedefined labelclassesofeachparameter forC3tiresofheavy-dutytrucksthatareonthefocusofthepresentstudy.

Figure1: ExemplaryEUtirelabelwithexplanationofsegmentsforC3trucktires[EC,2009b,2011]

3dBormorebelowtheEuropeanlimitfrom2016

BetweentheEuropeanlimitfrom206and3dBbelow

Above the Europeanlimit from2016

Labelclass

Energyefficiency

Wet grip

RRCinkg/t G

A <=4 1.25≤G

B >4<= 5 1.10≤G≤1.24

C >5<= 6 0.95≤G≤1.09

D >6<= 7 0.80≤G≤0.94

E >7<= 8 0.65≤G≤0.79

F >8 G≤0.64

G empty empty

10= MRVblueprint–Europeantirelabellingandphase-outregulationsforheavy-dutytrucks=ifeu

2.2.2 RoleofrollingresistanceforfuelconsumptionandGHGemissions

ContributionofrollingresistancetofuelconsumptionandGHGemissionsofheavy-dutytrucks

Specificenergy consumptionofheavy-duty trucksdependsprimarilyon the totaldrivingresistanceofthevehicleandtheresultingmechanicalenergydemandandonthepower-trainefficiency(conversionefficiencyoftheengine,powerlossesingearboxandaxles)toprovide this mechanical energy. Furthermore, specific energy demand of auxiliary con-sumers (e.g. air conditioning, steering pump) contributes to energy consumption. Totaldrivingresistanceofatruckconsistsofrollingresistance,aerodynamicdragandaccelera-tionandbrakinglosses.Contributionsofparticulardrivingresistancesvaryhighlydepend-ingonthetechnicalcharacteristicsofthevehicleaswellasonthedrivingprofile(velocity,acceleration,topography).

Figure2showscontributionsofdifferentdrivingresistancesforEuropeanEUROVIheavy-dutytrucksofdifferentsizeandwithdifferentmissionprofilestofuelconsumption.Con-tributionofrollingresistanceisintherangeofabout20%forurbandeliverytrucksupto35%forlargesemi-trailertrucksinlong-haultransportandcontributesthereforeconsid-erablytofuelconsumptionandGHGemissionsinalltrucksegments.

Figure2: ContributionstofuelconsumptionofEUROVIheavy-dutytrucks

Influencingparametersonrollingresistancerelatedfuelconsumption

Rolling resistance of a heavy-duty truck is directly correlatedwith the rolling resistancecoefficients(RRC)ofthetires,vehiclemassanddrivingspeed.Aswithhigherspeedsalsothe covered distance increases, the rolling resistance related fuel consumption per dis-tancetravellediswidelyspeed-independent.

Thevehicleweightdependsonthevehicleemptyweightandontheactualloadingweight.Therollingresistancecoefficientdependsprimarilyonthetechnicalcharacteristicsofthetire. There are several technical requirements on truck tires including rolling resistancecoefficients,butalsoe.g.roadgripandbrakingperformance,durability,noisegenerationandridingcomfort.Differentrequirementscanbeinterdependent(e.g.possibletrade-offsbetweenreducingrollingresistanceandatthesametimeimprovingwetgrip;influenceofwet grip improvements on tire noise [EPEC, 2008]). Due to these interdependencies be-tweendifferent technical requirementsanddifferentneedsof vehicleowners rolling re-

ifeu=MRVblueprint–Europeantirelabellingandphase-outregulationsforheavy-dutytrucks =11

sistance coefficients vary considerably fordifferent truck segments, operation fields andeven for different axles. Tires for drive axles have generally higher RRCs than steer andtrailer tires. For that reasonandalso for theweightdistribution in thevehicles, tiresondifferentaxlescancontributedivergentsharestotheoverall rollingresistanceofatruck(seeexampleforasemi-trailertruckinFigure3).Actualrollingresistancecoefficientofavehicle during use is additionally influenced by the individual operation conditions (e.g.tirepressure,roadgradientandsurface).

Besidestherollingresistance,alsothepowertrainefficiencyofthevehicle,i.e.theconver-sionefficiencyoftheengineandthepowerlossesingearboxandaxlesinordertoprovidethemechanicalenergyare relevant for thecontributionof rolling resistance to fuelcon-sumptionofthevehicle.

Figure3: Contributionoftiresondifferentaxlestototalvehiclerollingresistanceonatypical40tsemi-trailertruck[Goodyear,2012]

2.3 PotentialtranslationoftheEuropeanmeasureintoaNAMA

TheEuropean tire labellingandphase-out regulationscouldbeabasis for implementingcomparablemeasuresinothercountrieswithintheNAMAframework.Theprimaryobjec-tiveofaNAMAbasedontheEuropeanprogramwouldbethereductionofgreenhousegasemissionsviapromotingtheintroductionoflowrollingresistancetiresinheavy-dutytrucktraffic.Thisshouldbeachievedbythemandatoryintroductionofenergyefficiencylabelsand a related phase out scheme for inefficient tires. The efficiencymeasure intends toreducethemodalenergyintensityoftheconcernedtraffic, i.e.thefuelconsumptionperkilometretravelled.Thesefuelsavingsmayleadtotargetedside-effectssuchasthereduc-tionofoperatingcostsforroadtransportation.Inmostcases,requiredinvestmentsaresolowthatareductionoftotalcostscanbeachievedwithinashortpaybackperiod.

12= MRVblueprint–Europeantirelabellingandphase-outregulationsforheavy-dutytrucks=ifeu

3 GHGandnon-GHGimpactsofthemeasure

TheEuropeantirelabellingandphase-outregulationsaimatadditionaltechnologicaleffi-ciency improvements forheavy-duty trucks.Thishasdirect impactson fuelconsumptionandrelatedGHGemissionsofthevehicles,butcanalsocause indirectGHGimpacts(seechapter3.1).TheseGHGimpactscanalsobeaffectedbyotherGHGsavingmeasures.Fur-thermore,themeasurecancause impactsonnon-GHGtopics,especiallyroadsafety,ex-ternalnoiseandvehicleoperationcosts(seechapter3.2).AsafirststepintheMRVpro-cess of themeasure, both direct and indirectGHG impacts aswell as non-GHG impactsneed to be identified and assessed for their relevance. This is an essential basis for thedefinitionofassessmentboundariesforthecontinuousMRVprocess.

3.1 GHGimpactsofthemeasure

TheamountofGHGemissions causedbymotorised transportdependson theextentoftransportactivitieswithdifferentmeansof transportation, the specificenergyconsump-tion of eachmeans of transportation and on the specific GHG emission intensity of thefinal energy carriers. According to theASIF framework (see e.g. [GIZ, 2014]), impacts ofGHG mitigation measures on the following elements, influencing GHG emissions fromtransportactivitieshavetobeanalysed:

• Activity:Doesthemeasurereduceorincreasetransportactivities(VKT),influencingnumberordistanceoftripsorvehicleloadfactors?

• Structure:DoesthemeasureinduceashiftoftransportactivitiesbetweentransportmodeswithdifferentspecificGHGemissions?

• Intensity: Does the measure lead to changes of energy efficiency of the vehiclefleet?

• Fuels: Does the measure induce a change to energy carriers with different GHGemissionsintensityperenergyconsumption?

Foreachofthesefourelements,directandindirectimpactsofthemeasureandtheirrele-vanceforthetotalGHGimpactneedtobeanalysed.Impactsofthemeasuredonotneces-sarilyconcernonlythosemeansoftransportation(=emissionsources),whicharedirectlyaddressed by themeasure. This analysis of GHG impact chains from themeasure is anessentialbasisforthedefinitionofGHGassessmentboundariesintheMRVprocess.

ifeu=MRVblueprint–Europeantirelabellingandphase-outregulationsforheavy-dutytrucks =13

3.1.1 DirectandindirectGHGimpacts

TheintendedmainimpactoftheEuropeantirelabellingandphase-outregulationsregard-ingenergyefficiencyistoimprovetherollingresistancecoefficientsofvehicletires.Inthisway,totalrollingresistanceofthevehiclesisreducedleadingtoreducedspecificfuelcon-sumption(seeexplanationsinsection2.2.2).DirectGHGimpactofthemeasureisaccord-inglyanimprovementofspecificfuelefficiency(=Intensity)ofheavy-dutytrucks.Therearenosubstantialdirect impactsonotherGHGrelevantparametersofvehicleoperationtobeexpected.

FurtherdirectGHGimpactsmayarisefromotherlifecyclestages(production,recycling),includingimpactsofadifferentdurabilityoflowrollingresistancetirescomparedtocon-ventionaltires.However,GHGimpactsfromotherphasesinthelifeofatireareverylowcomparedtoimpactsduringtireuse[Continental,1999]andtiredurabilityofmodernlowrolling resistance tiresdoesnotdiffer considerably to conventional tires [M.Kern,2014].Accordingly,directGHG impacts fromother life cycle stages canbeomitted in theMRVprocess.

Table2: Impactchain:DirectGHGImpacts

Emissionsource ASIFparameter GHGimpact

Heavy-dutytrucks Intensity:SpecificfuelconsumptionperVKT Improvement

BesidesthedirectGHGimpactsofthemeasure,additionalindirectGHGimpactsarepossi-ble,primarilyduetoreboundeffects.Fuel-savingtiresreducethecostsoftruckoperationconsiderably[ifeu,/TUGraz,2015].Thiscouldleadtoareductionofroadfreighttransportpricesand,inconsequence,induceadditionalorlongerfreighttransports,butalsoamod-alshiftfromcompetingmodesoftransportationsuchasrailor inlandnavigationtoroadtransport. Thiswould increaseGHG emissions in freight transport because specific GHGemissionspertransportdemand(ton.km)arehigherinroadfreighttransportcomparedtoothertransportmodes.HowfarexpectedcostreductionswouldleadtosuchindirectGHGimpacts is veryhard toestimateandwould require in-deptheconomicmodellingof theconcernedtransportationsectors.

Table3: Impactchain:IndirectGHGImpacts

Emissionsource ASIFparameter GHGimpact

Heavy-dutytrucks Activity:Inducedadditionalroadfreighttransports Deterioration

Train,inlandnavigation

Structure:Shiftoffreighttransportactivitiesfromtrainorinlandnavigationtoroadtransport

Deterioration

3.1.2 Interactionwithothermeasuresinthetransportsector

GHGsavingpotentialsinroadfreighttrafficfromtheEuropeantirelabellingandphase-outregulationsalsodependontheeffectivenessofotherexistingor futuremeasures.Thesearemainly:

14= MRVblueprint–Europeantirelabellingandphase-outregulationsforheavy-dutytrucks=ifeu

Measureswitheffectsonvehicletechnology:TheEuropeanCommissionisdevisingstrat-egiesforthereductionofCO2emissionsfromheavy-dutyvehiclesincollaborationwithitsmember states and published an initial Key Issues Paper in 2014 [EC, 2014]. Currently,therearenofurtherspecificpoliticalmeasurestoreducefuelconsumptionandGHGemis-sionsfromheavy-dutyvehiclesinEurope.However,inthefuturethisprocesswillprobablylead to further efficiency measures. Improved rolling resistance interacts with othermeasureswhichaffectthesamevehicleparametersthatarerelevantforenergyconsump-tionfromrollingresistance(seesection2.2.2):

• First of all, future political action regarding specific fuel consumption and GHGemissionsfromheavy-dutyvehiclescouldacceleratethe introductionanddissemi-nationoffuelsavingtiresand,inconsequence,intensifytheimpactsoftheexistingtirelabellingprogram.

• Future introductionofadditional fuel-savingpowertraintechnologies(includingal-ternativedriveconcepts)willimprovethetank-to-wheelpowertrainefficiencyand,therefore,reducespecificfuelsavingpotentialsfromimprovedtirescomparedtoavehiclewithunimprovedpowertrain.

• Lightweightingreducesvehicleemptyweightandinconsequencerollingresistance(assumingunchangedloadfactors).Equippinglight-weightedtruckwithlowrollingresistancetirescanthereforebringlessGHGsavingsthanforastandardtruck.

• Aerodynamic improvements, incontrast,havenoimpactontheGHGpotentialsoflow rolling resistance tires, as both kinds of measures aim at parallel driving re-sistances.

Alternativefuels (biofuels,syntheticfuels)donotaffectthefinalenergyconsumptionofthevehicle,butreducethespecificGHGemissionintensityperenergydemand.Inconse-quence, GHG savings potentials from reducing fuel consumption with low rolling re-sistancetiresdecreasewithincreasingsharesofsuchalternativefuels.

Finally,avoidandshiftmeasuresinthefreighttransportsectorhavenodirectinteractionwithGHGsavingspervehicleasfromimprovedtires.However,theyaffecttotalGHGsav-ingspotentialsoftheheavy-dutytruckfleetbyreducingtransportactivities(VKT).Incon-sequence,measures causing a relevantmodal-shift from road to other transportmodeswouldreducetransportactivitieswithheavy-dutytrucks thatcanbeaffectedbythetirelabellingaswellasotherefficiencymeasures.

AllofthesemeasureswillinfluencetheeffectivenessoftheEuropeantireregulations.Asthese measures also work without European tire regulations, their impacts have to beconsidered in theMRVprocessboth in theanalysisof realGHGemissiondevelopmentsandintheanalysisofbaselineGHGemissions.

3.1.3 RelevanceofGHGimpactsforMRV

Asdiscussedinsection3.1.1,themainandintendeddirectimpactofEuropeantirelabel-lingandphase-outregulationsonGHGemissionsconcernsthereductionoffuelconsump-tionduringvehicleusebyinitiatingawiderapplicationoflowrollingresistancetires.TheirconsiderationintheMRVprocessisessentialfortheassessmentofrelevantGHGimpactsfromthemeasure.

ifeu=MRVblueprint–Europeantirelabellingandphase-outregulationsforheavy-dutytrucks =15

Furtherdirectimpactsmayarisefromotherlifecyclestages.Thesepotentialfurtherdirectimpacts,however,areverylowcomparedtotheimpactsduringtheusephaseandcouldonlybeanalysedwithdetailedknowledgeofproductionprocessesandmaterialcomposi-tionoftires.DuetotheirlowrelevancetheycanbeomittedintheMRVprocess.

AlsoindirectGHGimpactsidentifiedinsection3.1.2ofthemeasurearepossible,resultingfromreboundeffectsduetothereductionofvehicleoperationcostsresultingfromlow-eredfuelconsumption.Thiscanpotentiallyinduceadditionalorlongertripsinroadfreighttransport or lead to amodal shift from low-emitting rail and inland navigation to roadtransport.How farexpectedvehicleoperationcost reductionswould leadalso to reduc-tionsofroadfreighttransportpricesand,inconsequence,increasedroadfreighttransportactivities isveryhardtoestimateandwouldrequire in-deptheconomicmodellingoftheconcernedtransportationsectors.As fuelcostsareonlyapartof totalvehicleoperationcosts,possiblereductionsintransportationpricesareexpectedtoberatherlow,too.Re-latedpossibleindirectGHGimpactsmightthereforebeomittedinthecalculationofGHGimpactsintheMRVinitialphase.However,anamendmentoftheGHGimpactassessmentinlaterphases,e.g.whenadditionalinformationontheeffectivenessofthemeasureandinfluencesonroadfreighttransportpricesareavailable,couldberecommendable.

The relevance of interactions with other policy measures is very specific for each of themeasures.Severalinteractionswithpotentialfuturelegislationandregulationmeasuresarediscussedinchapter3.1.2Effectsofavoidandshiftmeasuresorincreaseduseofalternativefuels should be reflected in the developments of transport activities andGHG conversionfactorsbothinmonitoringofrealGHGemissionsandinbaselinecalculationswithoutmeas-ure.Theyneedtherefore,nospecialconsiderationintheMRV.Currently,therearenootherpolicymeasureswithdirectimpactsonfuelefficiencyofheavy-dutytrucksthatneedtobeconsideredinthequantificationofGHGimpacts.However,infutureEuropeanstrategiesforthereductionofCO2emissionsfromheavy-dutyvehiclesprocesswillprobably leadtofur-ther efficiencymeasures. If newmeasures with focus on energy efficiency of heavy-dutytrucksareimplementedinEurope,theirpotentialinteractionwiththeexistingtirelabellingmeasurewillhavetobeanalysedand,ifrelevant,havetoberegardedalsointhequantifica-tionofGHGemissionsavingsfromtheEuropeantireregulations.

Table4summarisestherelevanceofdirectandindirectGHGimpactsandof interactionswithotherGHGmitigationmeasuresfortheMRVprocess.

Table4: OverviewofGHGimpactsandtheirrelevanceforMRV

KindofGHGimpact DirectionofGHGimpact

PriorityforinclusioninMRV

Directimpactviafuelsavingsintheusephase

GHGreduction Essential

Directimpactsfromotherlifecyclestages

Positiveornega-tive

Negligible

Indirectimpactsviavehiclecostreduction(reboundeffect)

GHGincrease Optional

InteractionwithotherGHGmitigationmeasuresinfreighttransport

WeakeningofGHGreducingimpacts

Relevancedependsonindividualmeasuresandtheirimpactsontransportactivities,modalsplit,fuelefficiencyandGHGconversionfactors.

16= MRVblueprint–Europeantirelabellingandphase-outregulationsforheavy-dutytrucks=ifeu

3.2 Non-GHGimpacts

GHG mitigation measures can also have other environmental as well as economic andsocial impacts. These can be co-benefits, but might also be adverse impacts causing atrade-offfordifferentpolitical(andsocial)objectives.Forthatreason,theimpactassess-mentof the tire labelling andphase-out regulations cannot focusonly onGHG impacts,butmustalsoconsidernon-GHGimpacts.

Non-GHGenvironmentalimpacts

Typicalnon-GHGenvironmentalimpactsconcerndirectimpactsofthetransportactivitiesonairqualityandnoise,butmightalsoincludeindirectimpactsfromprovisionofenergycarriersandproductionandrecyclingofvehiclesandinfrastructure.

• NOxandsootparticleexhaustemissions:Reducingthemechanicalenergydemandwithlowrollingresistancetiresreducestheengineloadandcanthereforeleadtoareductionofengine-outemissionsofNOxandparticles.However,exhaustemissionsdependprimarilyontheefficiencyofthedownstreamexhausttreatmentsystem.Ifthereductionefficiencyoftheexhausttreatmentremainsunchanged,alsoexhaustemissionswilldecrease.Asmodernparticlefiltersreduceparticleemissionsby99%lowrollingresistancetireshavenoconsiderableimpactonsootparticleemissions.However,areductionofNOxexhaustemissionsispossible.

• Emissionsfromtireabrasion(particulatematterPM10,PM2.5andembeddedheavymetals) depend on the abrasion characteristics of the tires and on theirmaterialcomposition.Differences of low rolling resistance to conventional tires can there-forealsohaveimpactsonemissionsfromtireabrasion.However,datasituationonPMandheavymetalemissionsfromtireabrasionisgenerallyuncertainwith largebandwidths of emission factors (see [EMEP-EEA, 2013] part B 1.A.3.b.vi-vii). TireabrasioncontributesonlyasmallfractiontoPMairqualityproblemsandnoreliableinformationonthecontributionofheavymetalemissionsfromroadtransportatallto pollution of soil andwater is available [IFEU, 2013]. Therefore, impacts on airqualityduetolowrollingresistancetirescanbeestimatednegligible.

• Noise: As explained in ([EPEC, 2008], p. 11), no direct correlation was found be-tween RR and tyre noise. However, tire noise is influenced by wet grip require-ments,which in turn canhavea trade-offwith rolling resistance ([EPEC,2008],p.63). The European tire labelling and phase-out regulations also include require-mentsforwetgripandexternalnoise,hencenoiselevelsmightbeinfluencedbytheparalleloptimizationofrollingresistanceandwetgrip.ActualnoiseimpactsoftheEuropeanregulationscouldbeanalysedusingthenoiselabel,whichhastobepub-lishedforalltiresifaccordingstatisticalormarketinformationisavailable.

• Environmental impacts fromother lifecyclestagesofatirearegenerallyvery lowcomparedtoimpactsduringtireuse[Continental,1999].Thoughdifferentmaterialsand production processes between conventional and low rolling resistance tiresleadtodifferencesofenvironmentalimpactsinproductionandrecyclingprocessesthesecanbeneglectedcomparedtoimpactsinthephaseoftireuse.

ifeu=MRVblueprint–Europeantirelabellingandphase-outregulationsforheavy-dutytrucks =17

Roadsafetyandvehicleoperationcosts

Importantnon-environmental topics thatareaffectedby theEuropean tire labellingandphase-outregulationsareroadsafetyandvehicleoperationcosts.

• Road safety: TheEU tire labelling regulationalso includesa label scheme forwetgrip,which isan important indicator forroadsafetyoftires.Asanalysed in[EPEC,2008],“thekeytrade-offsthatarelikelytoarisefromafocusonreducingrollingre-sistanceareareducedlevelofwetgripandpossiblyaquaplaning”.Theseparame-tersare important for roadsafety.Therefore, focusing the improvementof futuretiresonlyonrollingresistancecouldconsiderablyaffectroadsafety.However,theEU tire labelling system includes rolling resistance andwet grip, so it is expectedthatthisduallabellingwillnotleadtoadeteriorationofwetgrip“becausecustom-ersarelikelytoranksafetyasamoreimportantattributethanfuelefficiencywhenpurchasingatyre”([EPEC,2008],p.66).“Thisincreasedchallengefortyreproducersto optimise not just rolling resistance andwet grip but also to ensure tyre noisedoesnotexceed the standards set is reflected in thehigher tyreproductioncostsestimatedforduallabelling”([EPEC,2008],p.63).Hence,noadverseeffectsofthelabellingforlowrollingresistancetiresonroadsafetyareestimated.

• Vehicleoperationcosts: Purchasing low rolling resistance tires requireshigher in-vestmentcostsforthevehicleowners. Improvingrollingresistanceofall tiresofavehiclebyoneRRClabelclass(e.g.fromlabelCtolabelB)meansadditionalinvest-mentcostsofabout200€forasemi-trailertruckandlessthan50€forarigidtruck.Ontheotherhand,thisimprovementofrollingresistancereducesfuelconsumptionbyabout1-4%andconsequentlyfuelcosts.Inthisway,asemi-trailertruckinlong-haultransportcansaveabout2000€fuelcostsperyearandevenarigidtruckinurbandeliverysavesabout300€peryear[ifeu,/TUGraz,2015].Inconsequence,investmentincurrentlowrollingresistancetireshasapaybackwithinfewmonthsand leads toa considerable reductionof vehicleoperationcosts. Evenhigher fuelcostsavingsarepossiblebychangingtotiresof thebestavailableRRC labelclass.For semi-trailer trucks first “label A” tires for all vehicle axles are on themarketsinceendof2014[M.Kern,2014].

3.3 DefinitionofMRVassessmentboundaries

FirststepoftheMRVprocessisthedefinitionofassessmentboundaries,i.e.whichemis-sionsourcesandemissionsandwhichtimeframesareconsideredintheanalysisofGHGimpacts. These definitions are basically driven by the identified direct and indirect GHGimpactsandtheirexpectedrelevanceforthetotalGHGimpactsofthemeasures.Howev-er,adjustmentsofassessmentboundariescanberequireddependingondataavailabilityforcalculationparameters.

An importantpartof thedefinitionofMRVassessmentboundaries isalsothedecision iftherearerelevantnon-GHGimpactstobeincludedintheMRVprocess.

European tire regulations concernpassenger cars, vans, trucks andbuses.However, thepresentMRV blueprint addresses only thosemeasureswithin European tire regulationsconcerningheavy-dutyroadfreighttransport.Therefore,alsoMRVassessmentboundariesreferonlytoimpactsofthemeasureonfreighttransport.

18= MRVblueprint–Europeantirelabellingandphase-outregulationsforheavy-dutytrucks=ifeu

Systemboundaries

TheEuropeantirelabellingandphase-outregulationscoverroadtransportactivitiesinall28memberstatesoftheEuropeanUnion(EU28).AssumingthatonlyvehiclesregisteredinEUareequippedwithtiressold inEU(originalequipmentofnewvehiclesandregulartirereplacement),themeasureaffectsthewholeroadtransportactivitiesintheEUterri-tory.TransboundaryroadtransportonEUexternalborderscanbeassumedtohaveverylowrelevanceduetothelargegeographicalareaofEUandthehighbordershareofsea-coastwithno transboundary road traffic. Therefore, systemboundariesweredefinedasroadtransportactivitiesintheEUterritory.

Emissionsources

AsGHG impactchains insection3.1show,Europeantire labellingandphase-outregula-tions for heavy-duty truck tires affect primarily GHG emissions of heavy-duty trucktransportduringvehicleuse.Othertransportmodes(rail,inlandnavigation)couldbeindi-rectly affected due to modal-shift effects resulting from possibly reduced road freighttransportprices.However,theseindirectGHGimpactsareexpectedtoberatherlowandcouldonlybeestimatedwithconsiderableadditionaleffortsbuthighuncertainties.TheyshouldthereforebeomittedinthecalculationofGHGimpacts,atleastintheMRVinitialphase.Accordingly,emissionsourcesconsideredintheMRVofthemeasurewererestrict-edtoheavy-dutytruckswithagrossvehicleweight(GVW)from3.5to60tons.

Differentfuturedevelopmentsoftransportdemandandoverallenergyefficiencyareex-pected for different vehicle sizes and operation fields (e.g. long-haul, urban delivery) inEurope (see [AEA,/Ricardo,2011].Furthermore,also rolling resistanceand itscontribu-tiontototalenergydemanddiffersignificantlyfordifferentvehiclesegments(seesection2.2.2).Foritsconsiderationintheimpactassessment,heavy-dutytruckshavebeendiffer-entiatedintothreevehiclesegmentswithdifferenttypicaloperationfields:

1. Small:Rigidtruckswith3.5to12tgrossvehicleweight(GVW),typicalforurbande-livery.

2. Medium:Rigidtruckswith12to40tGVWandarticulatedtrucksor tractor-trailercombinationswithupto28tGVW;mainapplicationinurbanandregionaldelivery.

3. Large: Articulated trucks or tractor / trailer combinations with 28 to 60 t GVW,whichareprimarilyusedinlong-haulfreighttransport,butalsoinregionaldelivery.

CoveredGHGemissions

GHG emission factors can be differently defined.Main decisions for the GHG emissionscoveredbyappliedemissionfactorsare:

• Greenhousegases:CO2vs.CO2equivalents(incl.CH4andN2O)

• Emission origins: Direct emissions in vehicle use (“tank-to-wheel”) and upstreamemissions to provide the fuel (well-to-tank). Upstream emissions from vehicle (orvehicleparts)production.

In this MRV blueprint, considered GHG emissions cover well-to-wheel CO2 equivalentemissions of CO2, CH4 andN2O including both fuel consumption in the vehicles and up-streamprocesses.NoGHGemissionsfromotherlifecyclestagesoftiresareconsideredastheseareverylowcomparedtoGHGemissionsduringusephase(seesection3.1.1).

ifeu=MRVblueprint–Europeantirelabellingandphase-outregulationsforheavy-dutytrucks =19

TimeintervalandReportingperiod

GHGemissions savings of themeasure are calculated for each reporting period (usuallyone year). These calculations are repeated in defined intervals (e.g. annually or every 5years).A firstassessmentofgeneraleffectivenessof themeasureshouldbeprepared intheyear2020or2021,when the secondstage limit valuecomes into force (see section2.2.1).Totalreportingperiodshouldcontinueuptotheyear2030orlaterinordertoas-sesslong-termGHGimpactsofthemeasure.

Assessmentofnon-GHGimpacts

There are several potential non-GHG impacts of the measure, identified in section 3.2.Theseareprimarilyco-benefitsforotherenvironmentalfields,butalsoforroadsafetyandvehicleoperationcosts.Themeasureaddressesdirectly improvementsof roadsafetyandexternal noise. These should therefore also be included in theMRVprocess. Additionally,changesofvehicleoperationcostsshouldbeincludedascostsavingsareanimportantdriverforthedisseminationoflowrollingresistancetires.

20= MRVblueprint–Europeantirelabellingandphase-outregulationsforheavy-dutytrucks=ifeu

4 MeasurementofGHGimpacts

ThemainimpactsoftheEuropeantirelabellingandphase-outregulationsandofpotentialfurtheranalogousimplementationsasaNAMAinotherregionsaredirectimpactsonGHGemissionsviafuelsavingsasidentifiedinsection3.ThisMRVblueprintfocussesonmeas-uringtheseimpactsforHDVswithagrossvehicleweight(GVW)above3.5tons.

4.1 OverviewofthemethodologicalapproachforthemeasurementofGHGimpacts

GHGemissionssavingsoftheEuropeantirelabellingandphase-outregulationsforheavy-dutytrucksareassessedbycomparingthedevelopmentofrealGHGemissionswiththemeasuretoahypotheticalbaselinedevelopmentwithoutmeasure.Themeasureaimsatimprovingrollingresistancecoefficientsofvehicletiresand,thus,reducingtherollingresistanceofthevehicles.Inthisway,onlythatshareoffuelconsumptionandGHGemissionsisaffectedthatiscausedbyrollingresistance(seeFigure2 insection2.2.2),butnoother factors influencingfueleffi-ciency such as aerodynamic drag, acceleration or auxiliary equipment. Therefore, absoluteGHGimpactsofthemeasurecanbemeasuredbyfocusingtheanalysisonlyonthesharesofGHGemissionsthataredirectlycausedbyrollingresistance.

Toassesstheoverallrelevanceofthemeasureimpacts,acomplementarycomparisonofabsolute GHG savings to total GHG emissions of heavy-duty truck transport is recom-mended.Calculationmethodologyincludesthereforethefollowingsteps:

1. CalculatingrealGHGemissionsofheavy-dutytrucktransportperreportingyear

- Calculatingrealrolling-resistancerelatedGHGemissions, i.e.partialGHGemis-sionsthataredirectlyrelatedtorollingresistanceofthevehicle.

- CalculatingrealtotalGHGemissionsofheavy-dutytrucktransportinEurope.

- DerivingtheshareofrollingresistanceontotalGHGemissions.

2. MeasurementofabsoluteGHGimpactsperreportingyear

- Calculatingbaselinerolling-resistancerelatedGHGemissionsassumingnointro-ductionoftheEuropeantireregulations.

- Calculating absolute GHG impacts by comparing real rolling resistance relatedGHGemissionstobaselinerollingresistancerelatedGHGemissions.

3. AssessmentofoverallGHGimpactsforheavy-dutytrucktransportperreportingyear

- CalculatingbaselinetotalGHGemissionsofheavy-dutytrucktransportinEurope.

- Calculating of percentage change of total GHG emissions of heavy-duty trucktransportinEuropebycomparingrealandbaselinetotalGHGemissions.

ifeu=MRVblueprint–Europeantirelabellingandphase-outregulationsforheavy-dutytrucks =21

ThefollowingsectionsprovideconcreteguidanceforeachoftheabovecalculationstepsintheMRVprocessandtherequiredcalculationparameters.Currentlyavailabledatasourcesfor therealdevelopmentofcalculationparameters,estimatedex-antebaselinedevelop-mentswithout themeasureanddefaultvalues forcalculationparameters,whichcannotbemonitoredregularlywith reasonableeffort,aredetermined insection4.5Section4.6shows a calculation example for themeasurement ofGHG impacts. An analysis ofmainuncertaintiesofthemeasurementofGHGimpactsisdoneinsection4.7.

4.2 CalculatingrealGHGemissionsofheavy-dutytrucktransport

4.2.1 RealGHGemissionsfromrollingresistance

Inthefirstcalculationstep,realGHGemissionsresultingdirectlyfromrollingresistancearecalculated.ThisisthemostimportantcalculationforassessingGHGimpactsintheMRV.

Rollingresistanceisdirectlycorrelatedwiththerollingresistancecoefficients(RRC)ofthetiresandwiththevehiclemass.Furthermore,powertrainefficiencyandoperationcondi-tionssuchasroadgradient,surfaceandconditionsortirepressureareofimportanceforthe rolling resistance (see section 2.2.2). Accordingly, real rolling resistance related fuelconsumptionpertransportactivity(VKT)canbecalculatedwiththefollowingbottom-upequation:

FCRR,spec.=RRCrealxCRRCxmxg/ηpt/1000 (1)

Where:

FCRR,spec RealspecificfuelconsumptionperVKTfromrollingresistance(inMJ/vkm)RRCreal RealRollingresistancecoefficient(inkg/t)CRRC RRCcorrectionfactor(dimensionless)m vehicleweight(=emptyweight+vehicleload)(intons)g gravityacceleration(9,81m/s²)ηpt averagepowertrainefficiencyofthevehicle(in%)

Rolling resistance related GHG emissions are calculated by multiplying the VKT of theheavy-dutyvehicleswiththisspecificfuelconsumptionandthefuelspecificGHGconver-sionfactor.

GHGRR=VKTxFCRR,spec.xGHGfuel.spec./106 (2)

Where:

GHGRR RealGHGemissionsresultingfromrollingresistance(in106tons)VKT Transportactivity(in106vkmperyear)FCRR,spec RealspecificfuelconsumptionperVKTfromrollingresistance(inMJ/vkm)GHGfuel,spec. GHGconversionfactorfortheusedfuel(ingCO2e/MJ)

Figure4givesanoverviewofthemodelapproach.Calculationshavetobedoneindividual-lyforeachofthedefinedheavy-dutyvehiclesegments.

22= MRVblueprint–Europeantirelabellingandphase-outregulationsforheavy-dutytrucks=ifeu

Figure4: Bottom-upmodelapproachforcalculatingfuelconsumptionandGHGemissionsrelatedtorollingresistance

Table 5 gives further characterizations of the calculation parameters. Data sources formonitoringtherealdevelopmentofcalculationparametersaswellasadditionalassump-tionsforthosecalculationparameters,whichcannotbemonitoredwithreasonableeffort,are determined in section 4.5. Themost important calculation parameter for themeas-urementofGHGimpactsistherollingresistancecoefficient(RRC).Thisisthemainparam-eterinfluencedbythemeasureandthereforehighlyrelevantforcomparingrealemissionstobaselinedevelopments.Accordingly,knowingtherealRRCdevelopmentsisessentialfortheMRVprocess.Allothercalculationparametersareidenticalforrealdevelopmentsandbaselinedevelopments.

Table5: CalculationparametersforrealrollingresistanceGHGemissions

Calculationparameter

Description Unit Influencedfrommeasure

Datasourcesinsection

RRCreal RealmediumRollingresistancecoeffi-cientpervehiclesegmentandyear

kg/t Yes 4.5.1

CRRC RRCcorrectionfactor - No 4.5.2

m Vehiclemass(=emptyweight+vehicleload)pervehiclesegmentandyear

metrictons No 4.5.2

g Gravityacceleration:9.81m/s² m/s² No -

ηttw Mediumpowertrainefficiencypervehi-clesegmentandyear

% No 4.5.2

VKT AnnualVKTpervehiclesegment 106vkm (No)* 4.5.3

GHGfuel,spec GHGconversionfactorfordieselfuelinEuropeperyear

gCO2e/MJ No 4.5.3

*There couldbe slight indirect impactsof themeasurealsoonVKTdue to reboundeffects.However,theseeffectsarenotincludedintheMRVboundariesastheyareexpectedtobesmallandcouldonlybeanalysedwithhighadditionaleffort(seesection3.3).

ifeu=MRVblueprint–Europeantirelabellingandphase-outregulationsforheavy-dutytrucks =23

4.2.2 RealtotalGHGemissionsofheavy-dutytrucktransport

TotalGHGemissionsofheavy-duty truck transportarecalculatedcomplementary to thespecific calculations for the partial GHG emissions resulting from rolling resistance. ThiscalculationstepisnotneededtoassessabsoluteGHGemissionsavingsfromthemeasure.However, it enables an additional assessment of the relevanceofmeasure-specificGHGimpactsontotalGHGemissionsofheavy-dutytrucktransportinEurope.

Total GHG emissions are calculated based on statistical data of transport activities and,specific fuel consumption factors from comprehensive data bases and fuel specific GHGconversionfactorswiththefollowingequation:

GHGtotal=VKTxFCtotal,spec.xGHGfuel.spec./106 (3)

Where:

GHGtotal GHGemissionsperyear(in106tons)VKT Transportactivityinveh.kmperyear(in106veh.km)FCtotal,spec TotalspecificfuelconsumptionperVKTunderrealdrivingconditions(inMJ/vkm)GHGfuel,spec. GHGconversionfactorfortheusedfuel(ingCO2e/MJ)

Table5givesfurthercharacterizationsofthecalculationparameters.Datasourcesfortheparametersaredeterminedinsection4.5.

Table6: CalculationparametersfortotalGHGemissionsofheavy-dutytrucktraffic

Calculationparameter

Description Unit Influencedfrommeasure

Datasourcesinsection

VKT AnnualVKTpervehiclesegment 106vkm (No)* 4.5.3

FCtotal,spec SpecificfuelconsumptionperVKTpervehiclesegmentandyear

MJ/vkm Yes** 4.5.3

GHGfuel,spec GHGconversionfactorfordieselfuelinEuropeperyear

gCO2e/MJ No 4.5.3

*TherecouldbeslightindirectimpactsofthemeasurealsoonVKTduetoreboundeffects.However,theseeffectsarenotincludedintheMRVboundariesastheyareexpectedtobesmallandcouldonlybeanalysedwithhighadditionaleffort(seesection3.3).**Asrollingresistancecontributesconsiderablytospecificfuelconsumptionofavehicle,alsorealtotalfuelconsumptionfactorsforthewholevehicle,providedinaccordingdatabasesareinfluencedbythemeasure.

4.2.3 ShareofrollingresistanceontotalGHGemissions

Ahelpfuladditional indicator for theeffectivenessofEuropean tire regulations is theesti-mate of the share of rolling resistance related GHG emissions on total GHG emissions ofheavy-duty trucks. State-of-the-art heavy-duty trucks have a contribution of rolling re-sistancetototalfuelconsumptionandGHGemissionsintherangeofabout20-35%depend-ing on vehicle size andoperation field (see section 2.2.2).Decreasing shares of rolling re-sistance in future reporting years indicate that the improvementof rolling resistance con-tributedaboveaveragetototalreductionofGHGemissionsfromheavy-dutytrucktransport.

24= MRVblueprint–Europeantirelabellingandphase-outregulationsforheavy-dutytrucks=ifeu

Theshareof rolling resistanceon totalGHGemissionsofheavy-duty trucks is calculatedwiththefollowingequation:

GHGshare=GHGRR/GHGtotal (4)

Where:

GHGshare ShareofrollingresistanceonrealtotalGHGemissionsperyear(in106tons)GHGRR RealGHGemissionsresultingfromrollingresistance(in106tons,section4.2.1)GHGtotal RealtotalGHGemissions(in106tons,section4.2.2)

Calculationsarefullybasedontheresultsofpreviouscalculationsandnoadditionalcalcu-lationparametersarerequired.

4.3 MeasuringabsoluteGHGimpactsperreportingyear

4.3.1 BaselineGHGemissionsfromrollingresistance

TheMRVboundariesforEuropeantirelabellingandphase-outregulationsincludeonlydirecteffectsofthemeasureonthedevelopmentofrollingresistancecoefficients.PotentialindirectGHGimpacts,e.g.fromreboundeffects,arenotconsideredintheMRV(seesection3.3).

Therefore,themethodologicalapproachforbaselineGHGemissionsfromrollingresistanceisidenticaltothecalculationofrealrollingresistancerelatedGHGemissions.BaselinerollingresistanceGHGemissionsarecalculatedwithequations(1)and(2)fromsection4.2.1

DifferencesbetweenrealandbaselineGHGemissionscalculationsapplyonlyfortherollingresistancecoefficients(RRC)ofthetires.ForcalculatingbaselineGHGemissionsfromrollingresistance,hypotheticalbaselinemediumRollingresistancecoefficientspervehiclesegmentandyearare required (seeTable7). ThesebaselineRRCdevelopments reflecthypotheticalaverageimprovementswithouttheEUtirelabellingandphase-outregulations.

Baselinedevelopmentsareestimatedex-antebeforestartingthecontinuousMRVprocess,but adjustments can become necessary in future in certain cases. All other calculationparametersforbaselineGHGemissionsfromrollingresistanceareidenticaltocalculationparametersforrealGHGemissionsfromrollingresistance(seeTable5insection4.2.1).

EstimatedbaselineRRCdevelopmentsforthisMRVareexplainedinsection4.5.1,wheredatasourcesforallcalculationparametersofrealandbaselinecalculationsarepresented.

Table7: CalculationparametersforbaselinerollingresistanceGHGemissions

Calculationparameter

Description Unit Influencedfrommeasure

Datasourcesinsection

RRCbaseline BaselinemediumRollingresistancecoef-ficientpervehiclesegmentandyear

kg/t Yes 4.5.1

AllothercalculationparametersareidenticaltothecalculationofrealrollingresistanceGHGemissions(seeTable5insection4.2.1).

ifeu=MRVblueprint–Europeantirelabellingandphase-outregulationsforheavy-dutytrucks =25

4.3.2 AbsoluteGHGimpacts

TheabsoluteGHGemissionsavingsforthewholeassessedheavy-dutytrucktrafficduetotheEuropeantire labellingandphase-outregulationsarecalculatedasdifferenceofrealandbaselinerollingresistancerelatedGHGemissions:

GHGsavingabsolute=GHGRR,baseline-GHGRR,real (5)

Where:

GHGsavingabsolute AbsoluteGHGemissionssavingperyear(in106tons)GHGRR,baseline GHGemissionsperyear(in106tons,section4.3.1)GHGRR,real GHGemissionsperyear(in106tons,section4.2.1)

A positive calculation resultmeans that themeasure has yieldGHG emission savings ofthisamount.

Calculationsarefullybasedontheresultsofpreviouscalculations.

4.4 AssessingoverallrelevanceforGHGemissionsfromheavy-dutytrucktransport

Toassesstheoverallrelevanceofthemeasureimpacts,acomplementarycomparisonofabsolute GHG savings to total GHG emissions of heavy-duty truck transport is recom-mended. This is done by comparing absolute GHG emissions savings with hypotheticalbaselinetotalGHGemissionsforthewholeheavy-dutytrucktransportwithoutEuropeantireregulations.

BaselinetotalGHGemissionsofheavy-dutytransport

As a first step, hypothetical baseline total GHG emissions are are calculated by addingabsoluteGHGemissionssavingstothetotalrealGHGemissions:

GHGtotal,baseline=GHGtotal,real+GHGsavingabsolute (6)

Where:

GHGtotal,baseline BaselinetotalGHGemissions(in106tons)GHGtotal,real RealtotalGHGemissions(in106tons,section4.2.2)GHGsavingabsolute AbsoluteGHGsaving(in106tons,section4.3.2)

Calculationsarefullybasedontheresultsofpreviouscalculations.

PercentagechangeoftotalGHGemissionsofheavy-dutytrucktransportinEurope

ThepercentagechangeofGHGemissionsoftheheavy-dutytransportsectorasaresultofEuropean tire labelling andphase-out regulations is calculatedwith the quotient of realtotalGHGemissionstobaselinetotalGHGemissions:

GHGsavingshare=GHGsaving,absolute/GHGtotal,baseline (7)

26= MRVblueprint–Europeantirelabellingandphase-outregulationsforheavy-dutytrucks=ifeu

Where:

GHGsaving,share SavedpercentageshareoftotalGHGemissions(in%)GHGsaving,absolute AbsoluteGHGemissionssavingperyear(in106tons,section4.3.2)GHGtotal,baseline RealtotalGHGemissions(in106tons,equation6)

Calculationsarefullybasedontheresultsofpreviouscalculations.

4.5 Datasourcesofcalculationparameters

ThischaptergivesanoverviewofallrequiredcalculationparametersforthemeasurementofGHG impacts identified insections4.2and4.3andproposessuitabledatasources foreachparameter.According to theGHGassessmentboundaries (section3.3),allparame-tersaredifferentiatedbyvehiclesegments.

• Section4.5.1providesdatasourcesforrealdevelopmentsofrollingresistancecoef-ficientsandex-anteestimatesforbaselineRRCdevelopmentswithoutthemeasure.KnowingtherealRRCdevelopmentsaswellasacomprehensiveestimateofbase-lineRRCdevelopmentsareessentialfortheMRVprocessasrollingresistancecoef-ficientsarethemainparameterinfluencedbythemeasure.

• Section4.5.2providesadditionalparametersforcalculatingthepartialspecificfuelconsumptionresultingfromrollingresistancearethevehicleweight,RRCcorrectionfactors and powertrain efficiency. These parameters are not influenced from themeasureand,therefore,identicalinrealandbaselinecalculations.

• Section4.5.3providesdata sources for the realdevelopmentsofgeneralparame-ters for the heavy-duty transport sector in Europe, including transport activities(VKT), specific fuel consumptionpervehicle segmentandGHGconversion factors.TheseparametersarerequiredforthecalculationofrollingresistancerelatedGHGemissionsaswellasfortotalGHGemissions.

Table8summarizesforallcalculationparametersandtheirdatasources.

Table8: Overviewofcalculationparametersanddatasources

Calculationparameter

Description Unit Datasources

RRCreal RealmediumRollingresistancecoeffi-cientpervehiclesegmentandyear

kg/t Marketofferoftrucktires(seesectionFehler!Verweisquellekonntenichtgefundenwerden.)

RRCbaseline BaselinemediumRollingresistancecoef-ficientpervehiclesegmentandyear

kg/t EstimatesinsectionFehler!Ver-weisquellekonntenichtgefundenwerden.CRRC RRCcorrectionfactor - [Bode,/Bode,2013],[IFEU,2015]

m Vehiclemass(=emptyweight+vehicleload)pervehiclesegmentandyear

metrictons HBEFA3.1[INFRAS,2010],TRACCS[Emisia,2013]

ifeu=MRVblueprint–Europeantirelabellingandphase-outregulationsforheavy-dutytrucks =27

Calculationparameter

Description Unit Datasources

g Gravityacceleration:9.81m/s² m/s² -(physicalconstant)

ηttw Mediumpowertrainefficiencypervehi-clesegmentandyear

% [IFEU,2015]

VKT AnnualVKTpervehiclesegment 106vkm TRACCS[Emisia,2013],EUTransportinfigures[EU,2013]

FCtotal,spec SpecificfuelconsumptionperVKTpervehiclesegmentandyear

MJ/vkm TRACCS[Emisia,2013],HBEFA[INFRAS,2010]

Biofuelshare

ShareofbiofuelsondieselfuelinEu-rope.(requiredforcalculatingweightedGHGconversionfactors)

% EUtransportinfigures-statisti-calpocketbook[EU,2013]

GHGfuel,spec GHGconversionfactorfordieselfuelinEuropeperyear

gCO2e/MJ EN16258[COM,2013]

4.5.1 Realandbaselinerollingresistancecoefficients

The most important calculation parameter for the measurement of GHG impacts is theweightedaveragerollingresistancecoefficient(RRC)byvehiclesegmentforareportingperiod.

• Realdevelopmentsarerequired,resultingfromtheeffectsofthemeasure.

• Hypothetical baseline developments estimate expected developments withoutmeasure.

RRCs are dimensionless coefficients but are typically expressed in the unit kg/t orN/kN(i.e.‰).TypicalRRCsoftiresvarystronglyforparticularvehiclesegmentsandapplicationfieldsandevenfordifferentaxlesofavehicle(seesection2.2.2).Forcalculationsonahighlevelofaccuracy,differentiateddataforindividualvehiclesegmentsarerecommended.

Rollingresistancecoefficientsinthebaseyearandrealfuturedevelopments

TherearenoregularlyupdatedanddifferentiatedstatisticsonRRCsofsoldtrucktires(tireclassC3) intheEU[ETRMA,2014].Theonlyregularlyavailableinformationisthemarketofferoftrucktiresfromselectedtireshops(e.g.[Reifenleader,2015]).ThoughRRCdistri-butionofthetireofferprobablyisnotrepresentativeforthatoftiresales,itsanalysisgivesat leastanapproximateoverviewofthepresentRRCdistributionoftrucktires intheab-senceofbetterstatisticalsources.

Availableinformationenablesfilteringtheofferedtrucktiresbysizeandaxle(steer,drive,trailer)andshowsthenumberofproductsineachRRClabelclass.Inthisway,itenablestoestimate the RRC distribution for offered truck tires and derive weighted average RRCsdifferentiatedbyvehiclesegmentforeachmonitoringyear.

Tiresondifferentaxlescancontributedivergingsharestototalrollingresistanceofthevehicle,depending on the averageRRCper axle and on theweight distribution in the vehicles (seesection2.2.2).ForthecalculationofweightedaverageRRCs,approximatedistributionparame-terscanbeusedfromTable9forastart,ifnoadditionalinformationisavailable.

28= MRVblueprint–Europeantirelabellingandphase-outregulationsforheavy-dutytrucks=ifeu

Table9: Distributionparametersforthecalculationofweightedrollingresistancecoefficients

Vehiclesegment Steer Drive Trailer

Semi-trailertrucksandtrucktrailers 17% 33% 50%

Rigidtrucks 50% 50% -

Figure5showsexemplarydataonRRCdistributionandresultingweightedaverageRRCsofC3trucktiresdifferentiatedbytiresizeandaxlefortheyear2015fromoneonlinetireshop[Reifenleader,2015].Table10showsweightedaverageRRCsderivedonthisbasis.Accordingtoadditionalanalyses in [IFEU,2015]didnotchangeconsiderably in the lastyears.There-fore,theseaverageRRCvaluesmightalsobeusedforearlierbaseyearsthan2010.

Table10: Estimatesofweightedaveragerollingresistancecoefficientsintheyear2015

Large Medium Small

RRCinkg/t 6.3 7.1 7.1

AverageRRCkg/t)

6.1 6.6 6.6 7.1 7.3 7.2 5.7

Figure5: ExemplarydistributionsoftrucktiresinEUtirelabelRRCclassesinthemarketofferofoneonlinetireshopandde-rivedweightedaverage[Reifenleader,2015]

Baselinedevelopmentsofrollingresistancecoefficients

ForcalculatingbaselineGHGemissionsfromrollingresistance,hypotheticalbaselineme-diumrollingresistancecoefficientspervehiclesegmentandyeararerequired.Thesebase-line RRC developments reflect hypothetical average improvements without the EU tirelabellingandphase-outregulations.

Future baseline developments of rolling resistance coefficients were estimated ex-antebased on the current situation. Analyses of RRC data from2007 to 2015 in [IFEU,2015]shownorelevant improvementofaverageRRCvaluesso far (despite implementationof

ifeu=MRVblueprint–Europeantirelabellingandphase-outregulationsforheavy-dutytrucks =29

the obligatory labelling in 2012). On this basis, no future improvements of rolling re-sistancecoefficientsinthebaselinedevelopmentareassumedfortheyearsupto2030forallvehiclesegmentsduetothefollowingreasons.

• Inmanyoperationfields(exceptlong-haultransport)fuelcostshaveonlylowrele-vanceforthetotalcostsofvehicleoperation[ifeu,/TUGraz,2015].Therefore,oth-ercriteriahavehigherimportanceinbuyingdecisions(e.g.purchaseprice,durabil-ity,seee.g.[COM,2008a])andtherearenomarketdriversforthedevelopmentoftireswithreducedrollingresistance.

• Inlong-haultransport,vehicleownersaregenerallymoreinterestedintechnologiestoreducespecificfuelconsumptionoftheirtruck.However,vehicleownersarera-therscepticalofmanufacturer’spromisesonefficiencygains[NACFE,2013].With-outofficialtirelabelstheyhavenoreliableinformationonactualrollingresistanceandfocusonother,morecomprehensiblecriteriaintheirbuyingdecisions.

Theseassumptions therefore representaconservativeestimateof thebaselinedevelop-mentsofrollingresistancecoefficientsoftrucktiresinEurope,i.e.noimprovementoffuelefficiencyofheavy-dutytruckscomingfromreducedrollingresistance.

BaselineassumptionsoffutureRRCdevelopmentsshouldremainunchangedinall futurereportingyears if therearenoadditional insightsonhowRRCvalueswouldhavedevel-oped without the European tire labelling and phase-out regulations. Additional insightsmight come from comparison with other markets outside Europe without existing orplanned tire regulations, without other policy measures inducing rolling resistance im-provementsanduninfluencedbythedevelopmentsinEurope(thoughinaglobalizedmar-ket the European tire labelling might also influence developments on other regionsworldwide).

4.5.2 Parametersforrollingresistancerelatedfuelconsumption

Vehicleweight

Thetotalvehicleweightofaheavy-dutytruckisthesumofthevehicleemptyweightandtheweightoftheloading.Bothparameterscanchangeinfuturedependingonadditionalmeasuresinthetransportsector(e.g.lightweighting,increaseofvehicleloadfactors)andtheirdevelopmentshouldthereforebemonitored.

• Emptyweights for each are provided for all vehicle segments from the EuropeanemissionfactordatabaseHBEFA3.1[INFRAS,2010].

• Averageloadingweightswerecalculatedforthebaseyear2010asquotientoftheton.kmandveh.kmvaluespervehiclesegmentprovidedinTRACCS[Emisia,2013]1.

Ifdataoftheseprojectsareupdatedregularlyinfuture,theyshouldalsobeusedforregu-larupdatesoftheaverageloadingweights.Otherwise,valuesfromthelastyearshouldbecontinuedtouse.

––––––––––––––––1 In this European research project, an extensive set of historical transport data (vehicle stock, VKT,ton.km, fuel consumption factors etc.) has been collected for all EuropeanMember States, based onEuropean as well as national statistics, other databases and models (e.g. Copert, HBEFA/TREMOD,TREMOVE).TheTRACCSdatabaseprovidesthereforeadetailedup-to-dateandcomprehensivedatabaseforthetransportsector(upto2010)andisalsousedinseveralEuropeanprocesses.

30= MRVblueprint–Europeantirelabellingandphase-outregulationsforheavy-dutytrucks=ifeu

RRCcorrectionfactor

Therollingresistancecoefficient(RRC)doesnotonlydependontheconstructionproper-tiesofthetiresbutisalsoinfluencedbyotherfactorssuchasabrasivewear,tirepressure,track alignment, deformation through load, ambient temperature, road roughness andwaterontheroad[Bode,/Bode,2013].E.g.RRCofatirewithahalfwornprofileonaflatroad is almost 30% lower compared to theRRCof thenew tire.Most other factors in-crease the RRC, but vary considerably depending on the actual conditions during a trip.Therefore,nogeneralcorrectionfactorexists.FortheMRVprocessitisrecommendedtoassumeasastartthatRRCincreasingfactorsinsumoffsettheaverageRRCreductionfromabrasivewear.Inthisway,aRRCcorrectionfactorof1.0canbeusedinallcalculationsandallmonitoringyearsunlessbetterdatabecomesavailable.

Powertrainenergyefficiency

Powertrainenergyefficiencyincludesconversionefficiencyoftheengineandpowerlossesin gearbox and axles. It depends on vehicle characteristics and varies depending on thedrivingsituation(enginemapcharacteristics).Mediumpowertrainenergyefficiencyvaluesforrecent12tand40theavy-dutytrucksEUROVandEUROVIareavailablefrom[ifeu,/TUGraz,2015].Largetruckshaveahigherefficiencythansmallertrucks,recentEUROVImodelshaveahigherefficiencythanolderEUROVmodels.Thisinformationwasalsousedtoestimatepowertrainefficiencyforoldervehicles(Euro0-IV)aswellasfuturedevelop-mentsofpowertrainefficiencyofnewvehicles.Basedonpowertrainefficiencyestimatesper vehicle segment and age,mediumpowertrain efficiency of the vehicle fleet in eachscenario yearwas calculated considering average ag e distributions per vehicle segmentandyearprovidedintheEuropeanmodelTREMOVE[TML,2010].

Table 11 shows estimated average powertrain efficiency values by vehicle segment for2010-2030.Thesevalues canbeusedasdefaults in theMRVprocess.Nevertheless, thisdatashouldbereplacedfrommoreexactsourcesifthesebecomeavailable.

Table11: Estimateddevelopmentofpowertrainefficiencyvaluesforheavy-dutytrucksinEurope

Vehiclesegment 2010 2020 2030

Rigid3.5-7.5tGVW 35% 36.5% 37.5%

Rigid>7.5tGVW,truck-trailer<=28tGVW 37.5% 39% 40%

Truck-trailer>28-60tGVW 39% 41% 42%

4.5.3 Parametersforgeneraldevelopmentsinheavy-dutytransport

For thecalculationof realGHGemissions fromrolling resistance, regular informationontheannualtransportactivities inheavy-dutytrucktransportandspecificGHGconversionfactorsforthedieselfuelarerequired.ForrealtotalGHGemissions,additionallyrealde-velopmentsofspecificfuelconsumptionfactorsforthewholevehicleneedtobeknown.

ifeu=MRVblueprint–Europeantirelabellingandphase-outregulationsforheavy-dutytrucks =31

Transportactivitiesandspecificfuelefficiency

Maindatasourcesfortransportactivitiesandspecificfuelefficiencyare:

TRACCS [Emisia, 2013]: In this project, an extensive set of transport data including vehiclestock,transportactivities(VKT,ton.km)andspecificfuelefficiency(MJ/vkm)hasbeencollectedforallEuropeanMemberStates,basedonEuropeanandnationalstatistics,otherdatabasesandmodels (e.g.Copert,HBEFA/TREMOD,TREMOVE).TheTRACCSdatabaseprovidesade-tailedup-to-dateandcomprehensivedatabaseforthetransportsector(upto2010)andisalsousedinseveralEuropeanprocesses.Ifdataofthisprojectwereupdatedregularlyinthefuture,theywouldrepresentabest-practicedatabaseonbothtransportactivitiesandfuelconsump-tionforthewholeroadfreighttransportsectorinEurope.

EUtransportinfigures-statisticalpocketbook[Emisia,2013]:Thisyearlypublicationincludesregularinformationonthedevelopmentoffreighttransportvolumes(ton.km)inEurope.Thisdata source canbeused for estimating relativedevelopments (percentage increase) ofVKTbasedondataforthelastavailableyearinthedetailedTRACCSdatabase.

HBEFA [INFRAS, 2010]: The European emission factor databaseHBEFA provides annual fuelconsumption factors for all road vehicle categories, differentiated by vehicle segments (andfurthercriteria).Thoughallfuelconsumptionfactorsarespecificforparticularcountries,theyarewidelycomparabletothefuelefficiencyfactorsinTRACCS.HBEFAvaluescanthereforebeappliedinfuturemonitoringyearsifnoupdatesoftheTRACCSdatabaseareavailable.

Well-to-wheelGHGconversionfactors

Well-to-wheelGHGconversionfactorsdependonthecarboncontentofthefuelandontheupstreampathways to provide the fuel.Heavy-duty transport in Europe is still almost com-pletelypendingondieselfuel,howeverwithincreasingsharesofbiofuelsontotalfuel.AverageGHGconversionfactorsforeachreportingyearhavethereforetobecalculatedbyweightingthepercentagefossilandbiosharesontotalfuel.Datasourcesforthesecalculationsare:

EUtransport in figures - statisticalpocketbook [EU,2013]:This statisticaldatabasepro-vides annual information on the share of biofuels on total fuel consumption in roadtransportinEurope.

European standard EN 16258 “Methodology for calculation and declaration of energyconsumption and GHG emissions of transport services (freight and passengers)”: Thisstandardprovideswell-to-wheelGHGconversionfactorsforfossilfuelsandamethodologytocalculateGHGconversionfactorsfordifferentsharesofbiofuelontotalfuel.

4.6 CalculationexampleforthemeasurementofGHGimpacts

This section shows a calculation example for theGHG assessmentmethodology. Exemplarycalculationsarebasedontheex-anteassessmentin[IFEU,2015]includingonlythelargevehi-clesegment(articulatedtrucksortractor/trailercombinationswith28to60tGVW)andrefertotheyear2020.Table12showstheinputparametersforallcalculations.Table13showsthecalculationstepsandtheresults.Baselinecalculationresultsarehighlightedinredcolour.Cal-culatedGHGimpactsforthereportingyeararehighlightedingreencolour.

32= MRVblueprint–Europeantirelabellingandphase-outregulationsforheavy-dutytrucks=ifeu

Table12: Exemplarycalculationparametersfortheyear2020forthelargevehiclesegment

Calculationparameter Value2020 Unit

RRCreal 5.75 kg/t

RRCbaseline 6.30 kg/t

CRRC 1.0 -

m 25.1 metrictons

g 9.81 m/s²

ηttw 41% %

VKT 124’363 106vkm

FCtotal,spec 11.04 MJ/vkm

GHGfuel,spec 87.2 gCO2e/MJ

Table13: ExemplaryassessmentofGHGimpactsfortheyear2020forthelargevehiclesegment

Equation Calculation Result Unit

1FCRR,specreal 5.75x1.0x25.1x9.81/0.41/1000 3.45 MJ/vkm

FCRR,specbaseline 6.30x1.0x25.1x9.81/0.41/1000 3.78 MJ/vkm

2GHGRRreal 124’363x3.453x87.2/106 37.4 106tons

GHGRRbaseline 124’363x3.784x87.2/106 41.0 106tons

3 GHGtotalreal 124’363x11.04x87.2/106 119.7 106tons

4 GHGsharereal 0.037/0.120 31.3 %

5 GHGsavingabsolute 0.041-0.037 3.6 106tons

6 GHGtotal,baseline 0.120+0.004 123.3 106tons

7 GHGsavingshare 0.004/0.124 2.9 %

4.7 Assessmentofuncertainties

UncertaintiesofcalculatedGHGimpactsresultprimarilyfromthefollowingreasons

• Accuracyofcalculationparameters

• Differentiationlevelofcalculationmethodologyandtherewithpossibleaccuracyofresults

• Appropriatenessofbaselineassumptions

Mainuncertainties in thisMRV come fromuncertain accuracyof calculationparameters.This concerns primarily information on real distribution of rolling resistance coefficients

ifeu=MRVblueprint–Europeantirelabellingandphase-outregulationsforheavy-dutytrucks =33

(RRCs).Currently,averageRRCsareestimatedbasedoninformationonthemarketofferoftrucktiresfromselectedtireshops.However,RRCdistributionsofthetireofferprobablyarenotrepresentativeforthatoftiresalesandgivethereforeonlyanapproximateoverviewofthedistributionoftrucktiresinareportingyearanditsdevelopmentovertime.Accordingly,themostimportantsteptoreduceuncertaintiesintheMRVwouldbetoestablisharegularlyupdateddatabaseforrepresentativeRRCdatafromtrucktiresinEurope(e.g.obligationoftiremanufacturerstoprovideannualsalesdatatotheEuropeanCommissionorregularfieldmonitoringofthetireequipmentoftrucksonEuropeanroads).

Furtheruncertaintiesresult fromuncertaintiesofotherrollingresistancespecificcalcula-tionparameters,i.e.developmentofpowertrainefficiencyandRRCcorrectionfactors,butareratherlowcomparedtoRRCdistributionaspowertrainefficiencyimprovesonlyslight-lyovertheyearsandRRCcorrectionfactorscanbeassumedtoremainwidelystableovertheyears.

Uncertaintiesofcalculationparametersmightalsoresult fromfuturedataavailabilityfortransport activities and overall fuel efficiency of heavy-duty vehicles. Basic data for theyear 2010 adopted from TRACCS project provide a high level of detail and can be seentoday’s best data base for road freight transport in Europe. If this data base is updatedregularlyinfuture,uncertaintiesoftheseparametersremainlow.However,uncertaintiesofcalculationparameterswillincreaseiffuturedevelopmentsneedtobeestimatedfromoveralldevelopmentof transportdemandwithout informationon individualvehicleseg-ments(seesection4.5.3).

Thedefineddifferentiationlevelofthemethodologydependsondataavailabilityofap-propriate calculationparameters in the required level of detail and alsoon thepossibleperiodicefforts fordatacollectionandmeasurementofGHG impacts.Calculationmeth-odologyasdefinedinthisMRVblueprintenablesahighlevelofaccuracyconsideringdif-ferencesofeffects fromEuropeantire regulationsontherollingresistancedevelopmentforindividualheavy-dutyvehiclesegmentsaswellasgeneraldifferencesindevelopmentsoftransportactivitiesandfuelefficiencypervehiclesegment.Onprinciple,differentiationlevelofcalculationmethodologycouldbefurtherrefined,e.g.withamoredetaileddiffer-entiationofvehiclesegmentsandadditionaldifferentiationoftransportactivitiesperve-hiclesegmentbyroadcategoriesoroperationfields(long-haul,urbandelivery…).Howev-er,thiswouldincreasecalculationeffortsconsiderablyandrequiresahighlevelofdetailofmostcalculationparameters,whichisnotregularlyavailablesofar.

Uncertaintiesduetopossibleinappropriatenessofbaselineassumptionsconcernmainlythedevelopmentofrollingresistancecoefficients,asonlythisparameterdiffers inbase-line calculations to themonitoring of real emissions developments. In thisMRV, no im-provements of rolling resistance are assumed for thebaseline development as availableRRC information for past years do not show significant improvements and no relevantincentivestodeveloplowrollingresistancetiresareexpectedwithouttheimplementationofEuropeantirelabellingandphase-outregulations(seesection4.5.1).Thisbaselineesti-matecouldbetooconservativeatleastforthelong-haulsectorbecausevehicleoperatorsin this segmentaregenerally interested in fuel saving truck technologies.Theymight in-clude rolling resistance criteria in their tire buying decision also without manufacturer-independentinformationiftheycanbeconvincedoffuelsavingeffectsoftiresinanotherway – and therefore induce RRC improvements over time also without the Europeanmeasure.However, there isnoevidence (e.g. fromotherregions in theworld) thatsucheffectsshouldbeassumedinthebaselinedevelopment.

34= MRVblueprint–Europeantirelabellingandphase-outregulationsforheavy-dutytrucks=ifeu

5 Indicatorsfornon-GHGimpactsofthemeasure

Themeasurehasseveralpotentialnon-GHG impacts, identified insection3.2Withintheassessmentboundaries(section3.3), followingnon-GHGimpactsshouldbemonitored intheMRVprocess:

• Roadsafety

• Externalrollingnoise

• Vehicleoperationcosts

Roadsafetyandexternalrollingnoise

RoadsafetyandexternalrollingnoisearedirectlyaddressedinEuropeantirelabellingandphase-outregulations.TheEuropeantirelabelincludeslabelsforthewetgripasindicatorforroadsafetyandlabelsforexternalrollingnoise(seesection2.2.1).Thedevelopmentoftrucktiresharesindifferentlabelclassescanbeasuitableindicatorforafastoverviewofimprovementsoftheseparameters.Indeed,developmentsindicategeneralimprovementsof these parameters, but do not represent only impacts attributable to themeasure aslongastheyarenotcomparedtoabaselinedevelopment.

Therearenoregularlyupdatedstatisticsonaccordinglabeldistributionsofsoldtrucktires(tireclassC3) in theEU,butestimatesarepossiblebasedon informationon themarketofferoftrucktiresfromselectedtireshops(e.g.[Reifenleader,2015]).Thoughlabelclassdistributionsofthetireofferprobablyarenotrepresentativeforthatoftiresales,itsanal-ysisgivesanapproximateoverviewofthedistributionoftrucktiresinareportingyearanditsdevelopmentovertime.

Figure6: ExemplarydistributionsoftrucktiresinEUtirelabelwetgripclasses(left)andnoiselevels(right)inthemarketofferofoneonlinetireshop[Reifenleader,2015]

ifeu=MRVblueprint–Europeantirelabellingandphase-outregulationsforheavy-dutytrucks =35

Vehicleoperationcosts

Changes of vehicle operation costs result on the one hand from increased investmentcostsforlowrollingresistancetirescomparedtoconventionaltires,butontheotherhandfromreducedfuelcostsresultingfromfuelsavings.Accordingly,afullcostimpactassess-mentshouldconsiderbothcostparameters.Howeveranalyses in [ifeu,/TUGraz,2015]show that additional investment costs only amount to 10-20% of fuel cost savings andinvestment in lowrollingresistancetireshasapaybackwithinfewmonths(seealsosec-tion3.2).

Annualcostsavingsresultingfromthemeasurecanthereforeberoughlyestimatedby

1. RecalculatingfuelsavingsperyearfromabsoluteGHGsavings

2. Multiplyingfuelsavingsperyearwithaveragefuelprices.

3. Reductionfactorofresults(e.g.20%)foradditionalinvestmentcosts.

Asthemeasureaffectsheavy-dutytransport inwholeEurope,costsavingscanbe intherangeofseveralmillionEurosperyear.

𝑪𝑶𝑺𝑻𝒔𝒂𝒗𝒊𝒏𝒈 = 𝑮𝑯𝑮𝒔𝒂𝒗𝒊𝒏𝒈𝒂𝒃𝒔𝒐𝒍𝒖𝒕𝒆𝑮𝑯𝑮𝒇𝒖𝒆𝒍.𝒔𝒑𝒆𝒄.𝒙𝟑𝟓.𝟕𝟒𝒙𝟏𝟎𝟔

𝒙𝒇𝒖𝒆𝒍𝒑𝒓𝒊𝒄𝒆𝒙𝟖𝟎% (8)

Where:

COSTsaving,share Costsavingperyear(in106Euro)

GHGsavingabsolute AbsoluteGHGsaving(in106tons,section4.3.2)

GHGfuel,spec. GHGconversionfactorfortheusedfuel(ingCO2e/MJ)35.74 Conversionfactorforfuelconsumption(35.74MJ/litrediesel)fuelprice Fuelprice(inEuro/litreDiesel)80% Reductionfactorforadditionalinvestmentcosts

36= MRVblueprint–Europeantirelabellingandphase-outregulationsforheavy-dutytrucks=ifeu

6 Monitoringofmeasureimplementationprogressanddatasources

6.1 Monitoringofmeasureimplementationprogress

TheEuropeantirelabellingandphase-outregulationshavebeendecidedintheyear2009.Relevantimplementationstepsare(seesection2.2.1):

• 2012:Implementationofthetirelabelling,includingRRClabelclasses.

• 2016:ComingintoeffectofthefirststageRRClimitvalue.

• 2020:ComingintoeffectofthesecondstageRRClimitvalue.

All implementationstepsaremandatoryregulationsandneedthereforenospecialmoni-toringofimplementationprogress.

If theEuropeanmeasure is translated intoaNAMA,typeofmeasurecanchange. In thiscase,anadditionalmonitoringofselectedparameterscanhelptocontroltheimplementa-tionprogress,e.g.:

• Measure:Self-commitmentsoftiremanufacturersforstepwisereductionofrollingresistancecoefficientsoftrucktires

• Monitoring parameter: Obligatory annual information from tire manufacturersaboutpercentageshareofproduced/soldtiresmeetingdifferentlimitvalues.

Ifappropriatemonitoringparametersaredefined,theycannotonlyindicatetheprogressofthemeasureimplementationbutalsobeusedinthemeasurementofGHGimpacts.

6.2 Updatingdatasourcesandcalculationapproach

ThemeasurementofGHGimpactsneedstobeupdatedregularlyforeachreportingperi-od.Ifdatasourcesremainunchangedinallreportingperiods,thisrequiresonlycollectingdata forthenewreportingyear fromexistingdatasourcesandrepeatingallcalculationswithupdatedparameters.However,fromonereportingperiodtothenext,availabilityorqualityofexistingdatasourcescanchangeorbetterdatasourcesmaybecomeavailable.Inthesecases,changesofdatasourcesand, insomecases,adaptationsofthemethodo-logical approachmay be advantageous or necessary. The following steps should be fol-lowedifchangesaremade:

• Themotivationsforthechangesaredocumented.

• Possiblelimitationsofconsistencyarediscussed.

• Calculationsforpastperiodsarerepeatedwiththenewmethodologyand/orcal-culations for the current period are simultaneously performed using the previousmethodologyifpossible.Deviationsoftheresultsarediscussed.

ifeu=MRVblueprint–Europeantirelabellingandphase-outregulationsforheavy-dutytrucks =37

7 Reporting

AnessentialpartofMRVistheregularreportingofmeasurementresultsandthediscus-sionof theachievementofmeasureobjectives. TheMRV report shouldbeprepared foreachreportingperiod.

ThefirstMRVreportforEuropeantirelabellingandphase-outregulationsshouldincludethefollowinginformationthatcanbebroadlyadoptedfromthisMRVblueprint:

• Background and objectives of the measure: All basic information on the generalbackground why the measure has been started and the main objectives of themeasure.

• MRV assessment boundaries, including system boundaries, emission sources andcoveredGHGemissions(CO2equivalents,well-to-wheel).Alsotheinclusionofnon-GHG impacts in theassessmentboundaries isdocumented.ThedocumentationofMRVassessmentboundariesincludesalsoinformationonthereasonsfortheirdef-inition.Incasethatlimiteddataavailabilityhasbeenacrucialfactorfordefiningas-sessmentboundariesthatarenotfullycompatibletomeasureallrelevantimpactsofthemeasure,consequencesfortheinterpretationofmeasurementresultsshouldbediscussed.

• MethodologicalexplanationofthemeasurementofGHGandnon-GHGimpacts,in-cludingmethodologicalsteps,mainequationsandcalculationparameters.

• Documentationofdatasourcesandbaselineassumptionsforallcalculationparam-eters.

• Calculationsforthebaseyearandmeasurementresultsforthefirstreportingyear,includingdiscussionofthisfirstshort-termoutcomeofthemeasure.

RegularupdatesoftheMRVreportdonotrequireextensiveexplanationsonthemeasure,its objectives, boundaries, methodology and data sources, unless there have been sub-stantialchangestothepreviousreportingperiod(e.g.introductionofadditionallimitval-uesforyearsafter2020).Nevertheless,updatereportsshouldgiveashortsummaryonalltopicsandrefertothefirstmonitoringreportfordetailedinformation.

Furthermore,theMRVupdatereportshouldaddressthefollowingtopics:

• Adjustments of assessment boundaries and measurement methodology: StartingtheMRVprocess,availabilityofbasicdatainhighqualitycanbestilllimited,requir-ing simplifications of assessment boundaries and/or measurement methodology.E.g., for the European tire labelling and phase-out regulations no information onrollingresistancecoefficientsofactualtiresalesisavailablebutonlyontiremarketoffer.Andnoquantificationofpotentialreboundeffectsincludingmodalshiftfromrailandwatertransportispossiblebynow.Therefore,improvingbasicdataavaila-bilityisacontinuoustaskintheMRVprocessinordertoimprovecoverageofrele-vantimpactsintheassessmentboundariesandaccuracyofcalculatedmeasureim-

38= MRVblueprint–Europeantirelabellingandphase-outregulationsforheavy-dutytrucks=ifeu

pacts.Allchangesofboundariesormethodologicalaspectsduetoavailabilityofad-ditionaldatasourceshavetobedocumentedintheupdatedMRVreportsanddis-cussedfortheirconsequencesoftheinterpretationofmeasurementresults.

• Discussion of long-term measure impacts: A strong increase of measure-relatedGHGimpactsisexpectedforlateryearsafterimplementationofthemeasureintheex-ante assessment [IFEU, 2015]. The discussion of long-term measure impactsshouldanalyze,iftheseexpectationshavebeensatisfiedandwhataremainreasonsfor differences of real impacts to the ex-ante assessment. In case of changed as-sessmentmethodologyandboundaries, also consistencyof the timeserieshas tobediscussedand,wheredone,adjustedrecalculationsforformeryearshavetobedocumented.

ifeu=MRVblueprint–Europeantirelabellingandphase-outregulationsforheavy-dutytrucks =39

8 Verification

Inthisspecificcase,noverificationis/wascarriedout.However,thedatauseisavailableandaccessible(seedatasourcescited)andallowsatransparentverificationprocess.Thespreadsheetmodelused is canbe send to interested countries (or verifiers)on request.CalculationsbyTREMODcanbeexplainedbyIFEUonsite.

40= MRVblueprint–Europeantirelabellingandphase-outregulationsforheavy-dutytrucks=ifeu

9 ApplicabilityoftheMRVblueprintforrelatedNAMAS

TheEuropeantirelabellingandphase-outregulationscouldbeabasisforimplementingcom-parablemeasuresinothercountrieswithintheNAMAframework.Therefore,alsotheapplica-bilityoftheMRVblueprintfortheEuropeanmeasureoncomparableNAMAsinotherregionshasbeenassessed.

Applicabilityof thisexemplaryEuropeanMRVblueprint toNAMAs inother regionsdependsfirstonthecomparabilityofthemeasures. Ifothermeasuresalsofocuson improvingrollingresistanceby establishing limit values for rolling resistance coefficients and/or introducing atirelabelling,mostpartsoftheGHGassessmentmethodologycanbeadoptedfromthisMRVblueprint.Inthiscase,calculationparametersarethesameasinEurope(seeTable8).

MaindifferencesofthemeasurementofGHGimpactscanconcernavailabledatasourcesandtherewithlevelofdetailinthecalculations,butalsodefinitionofassessmentboundariesandbaselineassumptions:

• Levelofdetailinthecalculations:IntheexemplaryEuropeanMRVblueprint,allcalcula-tionsaredoneseparatelyfor individualvehiclesegments.Furthermore,differencesofrollingresistancecoefficientsRRCsondifferentaxlesofthevehiclesareconsidered inthe derivation of average RRCs per vehicle segment. Adopting thisMRVblueprint toNAMAsforotherregionswithreduceddataavailabilitymightrequiresimplifiedcalcula-tions,e.g.usingoneaverageRRCforthewholevehiclefleet.However,regularavailabil-ityofdatafortherealdevelopmentofRRCsisessentialinanycaseforassessingGHGimpactsoftheNAMA.

• Assessmentboundaries: ThisMRVblueprint coverswholeheavy-duty truck transportincludingalltruckswithagrossvehicleweight(GVW)>3.5tonsonallroadsontheterri-toryoftheEuropeanUnion.AdoptingthisMRVblueprinttootherregionsmightrequireachangeofassessmentboundaries,e.g.onlyincludingtrucktransportonhighwaysandonlysemi-trailertrucks,dependingontheregularavailabilityofstatisticsontransportactivities.AlsoamendmentsofassessmentboundariestofurthervehiclesegmentsarepossibleifthesearerelevantforGHGimpactsoftheNAMA.

• Baselineassumptions: InEurope,therearestillnorelevant interactionsoftireregula-tionswithotherGHGmitigationmeasuresinthefreighttransportsector.However,in-teractionwith furthermeasures can be relevant in other regions. E.g. fuel efficiencystandardsforheavy-dutytrucks(asintroducede.g.inChina)canleadtoRRCimprove-mentsalsowithoutatire-specificmeasureandneedthereforetobeconsideredinthederivationofbaselinedevelopments.

Besides the assessment ofGHG impacts, also the estimate of fuel cost savings as non-GHGimpactcanbeadoptedfromthisexemplaryEuropeanMRVblueprinttoNAMAsinotherre-gions.Moreover, ifNAMAs includerequirementsonwetgripandrollingnoiseandregularlyavailableinformationontherealdevelopmentoftheseparameters,alsoindicatorsforthesenon-GHGimpactscanbeadoptedfromtheexemplaryEuropeanMRVblueprint.

ifeu=MRVblueprint–Europeantirelabellingandphase-outregulationsforheavy-dutytrucks =41

References

AEA/Ricardo(2011):ReductionandTestingofGreenhouseGas(GHG)EmissionsfromHeavyDutyVehicles – Lot 1 : Strategy.NikolasHill, Stephen Finnegan, JohnNorris, CharlotteBrannigan,DavidWynn,HannahBaker,IanSkinner(AEA,Ricardo).

Bode, O. / Bode, M. (2013): FAT 255: Untersuchung des Rollwiderstands von NutzfahrzeugreifenaufechtenFahrbahnen.FAT,Berlin.

COM(2008):IMPACTASSESSMENT-Tyrelabelling.

COM(2013):EUEnergy,TransportandGHGEmissionsTrends to2050 -ReferenceScenario2013.EuropeanCommission;DGENER,DGCLIMAandDGMOVE.

Continental (1999): Life Cycle Assessment of a Tire. S. Krömer, E. Kreipe,D. Reichenbach,R.Stark,Hannover.

EC (2009a): REGULATION (EC) No 661/2009 OF THE EUROPEAN PARLIAMENT ANDOF THECOUNCILof13July2009concerningtype-approvalrequirementsforthegeneralsafetyofmotorvehicles, their trailersandsystems,componentsandseparate technicalunitsintendedtherefor.

EC (2009b):REGULATION (EC)No1222/2009OFTHEEUROPEANPARLIAMENTANDOFTHECOUNCILof25November2009onthe labellingoftyreswithrespecttofuelefficiencyandotheressentialparameters.EUROPEANPARLIAMENTANDCOUNCIL.

EC (2011): COMMISSIONREGULATION (EU)No1235/2011of 29November2011amendingRegulation(EC)No1222/2009oftheEuropeanParliamentandoftheCouncilwithregardto the wet grip grading of tyres, the measurement of rolling resistance and theverificationproced.pp.17–23.

EC (2014): Strategy for reducingHeavy-DutyVehicles’ fuel consumption and CO2 emissions.European Commission, Brüssel.http://ec.europa.eu/clima/policies/transport/vehicles/heavy/documentation_en.htm.

EMEP-EEA (2013): EMEP/EEA air pollutant emission inventory guidebook 2013 - Technicalguidancetopreparenationalemissioninventories.EuropeanEnvironmentalAgency.

Emisia (2013): Transport data collection supporting the quantitative analysis of measuresrelating to transport and climate change Project acronym : TRACCS. Papadimitriou, GNtziachristos,LNotter,BKeller,MFridell,EWinnes,HStyhre,LCommission.

EP (2009a):REGULATION (EC)No1222/2009OFTHEEUROPEANPARLIAMENTANDOFTHECOUNCILof25November2009onthe labellingoftyreswithrespecttofuelefficiencyandotheressentialparameters.EUROPEANPARLIAMENTANDCOUNCIL.

42= MRVblueprint–Europeantirelabellingandphase-outregulationsforheavy-dutytrucks=ifeu

EP (2009b): REGULATION (EC) No 661/2009 OF THE EUROPEAN PARLIAMENT ANDOF THECOUNCILof13July2009concerningtype-approvalrequirementsforthegeneralsafetyofmotorvehicles, their trailersandsystems,componentsandseparate technicalunitsintendedtherefor.

EPEC (2008): Impact Assessment Study on Possible Energy Labelling of Tyres. Nick Bozeat,European Policy Evaluation Consortium (EPEC), commissioned by the EuropeanCommissionDGTREN,Brussels.

ETRMA(2014):MarketdataforC3tires.EuropeanTyre&RubberManufacturers’Association,Brussels,Personalcommunication,11Nov2014.

EU(2013):EUtransportinfigures-statisticalpocektbook2013.

GIZ (2014): Navigating Transport NAMAs - A practical handbook on Nationally AppropriateMitigationActions(NAMAs)inthetransportsector.

IFEU (2013): Erfassung von Emissionen des Verkehrs in Deutschland im PRTR Erarbeitungmethodischer Grundlagen Quellen für den Bereich Verkehr im nationalenSchadstofffreisetzungs-und-verbringungsregisterPRTR.

IFEU (2015): GHG Impact Assessment for Energy Labelling of Heavy-Duty Truck Tires and aRelatedPhase-OutSchemeintheEuropeanUnion.H.Keller,F.Dünnebeil,commissionedbyDeutscheGesellschaftfürInternationaleZusammenarbeit(giz)GmbH.

ifeu / TU Graz (2015): Zukünftige Maßnahmen zur Kraftstoffeinsparung undTreibhausgasminderung bei schweren Nutzfahrzeugen. Institut für Energie- undUmweltforschung Heidelberg (ifeu) und Institut für Verbrennungskraftmaschinen undThermodynamik, Technische Universität Graz. Im Auftag des Umweltbundesamtes.Forschungskennzahl371196105.Dessau-Roßlau,April2015.

INFRAS (2010): Handbuch Emissionsfaktoren des Straßenverkehrs (HBEFA), Version 3.1.DokumentationinVorbereitung,Bern.www.hbefa.net.

M.Kern(2014):DreigestrichenesA.In:LastautoOmnibus.Vol.12,pp.26–27.

NACFE(2013):BarrierstotheIncreasedAdoptionofFuelEfficiencyTechnologiesintheNorthAmerican On-Road Freight Sector. Mike Roeth, Dave Kircher, Joel Smith, Rob Swim.http://www.theicct.org/hdv-technology-market-barriers-north-america.

Reifenleader(2015):ReifenleaderOnlineshop.

TML(2010):TREMOVEv3.3.2(2010).Leuven.http://www.tmleuven.be/contact/home.htm.

Recommended