Nitzan Akerman Trapped ions group (Roee Ozeri) Weizmann

Preview:

Citation preview

Nitzan Akerman

Trapped ions group (Roee Ozeri)

Weizmann Institute of Science

Optical atomic clock with trapped ions

QTC Workshop 28/10/2020

Optical Ion Clock

𝑄 =πœ”0

βˆ†πœ”

+

πœ”0: 1010 β†’ 1015 𝐻𝑧

Principle of optical atomic clock :

Counter Oscillator Reference

The quality factor

Optical clock outperform microwave due to the much higher frequency

Height resolution due to gravitational red shift

1 m

10 cm

1 cm

The Ion Clock Setup

Stable laser @ 1560 nm with ~1Hz linewidth

Ion reference

Optical frequency comb (modelock laser)

+

Trapped Ions as Reference

Trap RF

β€’ Are atoms and identical by their nature

β€’ The charge allows trapping to be decouple from

the internal electronic state

β€’ Deep trapping and strong confinement

β€’ Can be well isolated from the environment

Advantages of trapped ions and clock reference

Disadvantages of trapped ions

β€’ Micromotion needs to be controlled

β€’ Trapping many ions is challenging due to the

strong Coulomb repulsion

The Strontium Ion Setup

Lasers breadboard

Compact vacuum system

5 2P1/2

5 2P3/2

5 2S1/2

4 2D3/2

4 2D5/2

422 nm

1092 nm

1033 nm

674 nm

t β‰ˆ 8 ns

t β‰ˆ 0.4 s

The Strontium Ion Setup

Lasers breadboardSr+ energy levels

Comparison to GPS

Optical frequency comb) locked to stable laserGPS receiver

β€’ Comparing the stable laser to GPS clock through the frequency comb

β€’ At short time scale stability is limited by GPS

β€’ At times > 1 hour the cavity (linear) drift become apparent

The Ion Clock Setup

Ion reference

Optical frequency comb) locked to stable laser

+

GPS receiverβ€’ Comparing the stable laser to GPS clock through the frequency comb

β€’ At short time scale stability is limited by GPS

β€’ At times > 1 hour the cavity (linear) drift become apparent

β€’ With calibration of the drift using the ion (3 measurements) the Allen div. keeps improving

Clock interrogation schemes

Two ions Rabi spectroscopy (60ms)

Magnetic field gradient(~60 ΞΌG)β€’ Cancelling the DC magnetic field with a single

β€œmagnetic Echo” in a Ramsey sequence Two ions Ramsey spectroscopy (100ms)

β€’ 88Sr+ ions have first order sensitivity to magnetic field.

β€’ For single ion solved by averaging opposite Zeeman states

β€’ For many ions homogeneity matters

β€’ There is advantage in coherent averaging

𝛿f

𝑓= 5 Γ— 10βˆ’15 ΰ΅—1 𝜏 (estimation for single ion)

Two entangled ions clock

Another solution is using two ions in entangled state:

β€’ The 𝛿B drops out because of the opposite Zeeman states in each part of the superposition

β€’ The signal is acquired twice faster (however also the dephasing)β€’ Required single ion addressing capability

ȁ ࡿ𝑆+1/2 ȁ ΰ΅Ώπ‘†βˆ’1/2 + 𝑒𝑖 2π›Ώπ‘™π‘Žπ‘ π‘’π‘Ÿ 𝑑ȁ ࡿ𝐷+3/2 ȁ ΰ΅Ώπ·βˆ’3/2

+

Ξ”πœˆπ‘†1/2,𝐷5/288,86 = 570,264,063.435(5)(8) (stat)(sys) [Hz]

T. Manovitz et al, Phys. Rev. Lett. 123, 203001 (2019).

88Sr+ 86Sr+

ȁ ࡿ𝑆+1/2 ȁ ΰ΅Ώπ‘†βˆ’1/2 ȁ Ϋ§0 ↔ ȁ ࡿ𝐷+3/2 ȁ ΰ΅Ώπ‘†βˆ’1/2 ȁ Ϋ§1

ࡿห𝐷88

ࡿห𝑆86

Ξ€πœ‹ 2BSB

πœ‹RSB

Ξ€πœ‹ 2

ࡿห0𝜈 ࡿห0𝜈

Ξ€πœ‹ 2

Initializing Entangling Interrogating Detecting

Two Isotope entangled clock

Time [us]

ȁ ࡿ𝑆+1/2 ȁ ΰ΅Ώπ‘†βˆ’1/2 + 𝑒𝑖 2π›Ώπ‘™π‘Žπ‘ π‘’π‘Ÿ 𝑑ȁ ࡿ𝐷+3/2 ȁ ΰ΅Ώπ·βˆ’3/2

Time [us]

ȁ ࡿ𝐷+3/2 ȁ ΰ΅Ώπ‘†βˆ’1/2 ȁ Ϋ§1 ↔ ȁ ࡿ𝐷+3/2 ȁ ΰ΅Ώπ‘†βˆ’1/2 ȁ Ϋ§0

Parity=P ȁ ۧ𝑆𝑆 ȁ + P ȁ𝐷 Ϋ§π·βˆ’ P ȁ ۧ𝑆𝐷 βˆ’ P ȁ ۧ𝐷𝑆

Two Isotope entangled clock

ȁ ࡿ𝑆+1/2 ȁ ࡿ𝑆+1/2 + 𝑒𝑖 2π›Ώπ‘™π‘Žπ‘ π‘’π‘Ÿ+2𝛿B 𝑑ȁ ࡿ𝐷+3/2 ȁ ࡿ𝐷+3/2

ȁ ࡿ𝑆+1/2 ȁ ΰ΅Ώπ‘†βˆ’1/2 + 𝑒𝑖 2π›Ώπ‘™π‘Žπ‘ π‘’π‘Ÿ 𝑑ȁ ࡿ𝐷+3/2 ȁ ΰ΅Ώπ·βˆ’3/2

GHZ :

DFS :

β€’ Here the 50Hz feedforward compensation was off in order to emphasize the difference

Roee Ozeri (PI) Tom ManovitzYotam ShapiraMeirav PinkasOr KatzLee Peleg

Weizmann Institute Trapped-ions group

David SchwerdtHaim NakavSapir CohenAbraham Gross Vidyut Kaushal

Michal GoldenshteinBen Yamin

Recommended