Nuclear Structure Theory I - Arunaaruna.physics.fsu.edu/ebss_lectures/M_Lecture2.pdf · Nuclear...

Preview:

Citation preview

Alexander Volya Florida State University

Nuclear Structure Theory I

Nuclear Properties

2

The  world  of  nuclear  physics

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140 160 180

2 8

20 28

50

82

2 8 20 28 50 82 126

Z

N

stable

1012y

106y

1y1h1s

1ns

1fs

(Number of neutron)

(Num

ber o

f pro

tons

)

3

The  world  of  nuclear  physicshttp://ie.lbl.gov/systematics/isodiscovery.pdf

4

The  world  of  nuclear  physics

Evolution of the Table of Isotopes

1 H 2 He 3 Li 4 Be

5 B 6 C

7 N 8 O

9 F 10 Ne

11 Na 12 Mg 13 Al 14 Si

15 P 16 S

17 Cl 18 Ar

19 K 20 Ca

21 Sc 22 Ti

23 V 24 Cr

25 Mn 26 Fe

27 Co 28 Ni

29 Cu 30 Zn

31 Ga 32 Ge

33 As 34 Se

35 Br 36 Kr

37 Rb 38 Sr

39 Y 40 Zr

41 Nb 42 Mo

43 Tc 44 Ru

45 Rh 46 Pd

47 Ag 48 Cd

49 In 50 Sn

51 Sb 52 Te

53 I 54 Xe

55 Cs 56 Ba

57 La 58 Ce

59 Pr 60 Nd

61 Pm 62 Sm 63 Eu

64 Gd 65 Tb 66 Dy 67 Ho

68 Er 69 Tm

70 Yb 71 Lu

72 Hf 73 Ta

74 W 75 Re

76 Os

2 4 6 8

10 12 14

16

18 20

22 24

26 28

30 32

34

36

38 40 42

44 46

48 50

52 54

56 58

60 62

64

66 68

70 72

74 76

78 80 82

84 86

88 90

92 94 96

98

100

102

104

106

108

110

112114

116

118 120

Publication Year194019441948195319581967197819952000Naturally Abundant

77 Ir 78 Pt

79 Au 80 Hg

81 Tl 82 Pb

83 Bi 84 Po

85 At 86 Rn

87 Fr 88 Ra

89 Ac 90 Th

91 Pa 92 U

93 Np 94 Pu

95 Am 96 Cm

97 Bk 98 Cf

99 Es100 Fm

101 Md102 No

103 Lr104 Rf

105 Db106 Sg

107 Bh108 Hs

109 Mt 110

111 112

90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122124

126128

130 132

134136 138

140 142144

146

148

150

152

154 156

158

160

http://ie.lbl.gov/systematics/history00.pdf

5

Exci

tatio

n en

ergy-10 MeV

-20 MeV

-30 MeV

-40 MeV

1 ê2+-8.482

13H2

1 ê2+-7.718

23He1

0+-28.296

0+ 20.20- 21.0

24He2

3 ê2--27.406

25He3

3 ê2--26.331

35Li2 0+

-29.268

2+ 1.8

26He4 1+

-31.994

3+ 2.20+ 3.62+ 4.32+ 5.41+ 5.7

36Li3

3 ê2--39.244

1 ê2- 0.5

7 ê2- 4.65 ê2- 6.75 ê2- 7.57 ê2- 9.73 ê2- 9.93 ê2- 11.2

37Li4

3 ê2--37.600

1 ê2- 0.4

7 ê2- 4.65 ê2- 6.75 ê2- 7.2

7 ê2- 9.33 ê2- 9.93 ê2- 11.0

47Be3

6

The  world  of  nuclear  physics

Experimental Chart of Nuclides 2000Number of Levels (Audi 1995)

2 2

8

8

20

20

28

28

50

50

82

82

126

Levels0-12-56-2021-100101-200>200Known NucleusStable

http://ie.lbl.gov/systematics/chart_nlev.pdf

7

• Classical and quantum mechanics. • Onset of relativistic effects. • Transition from few to many-body: mesoscopic physics. • Emergence phenomena: coexistence of order and chaos. • From applied to fundamental science. • Structure and dynamics

Diverse  nuclear  phenomena

• Nuclear  sizes  • Nuclear  masses  • Nuclear  shapes  • Nuclear  rota1ons  • Shape  vibra1ons  • Mean  field  and  shell  structure

8

Nuclear  structure,  general  proper:es

Nuclear Sizes

Barrett and Jackson Nuclear sizes and structure

Radius R=r0 A1/3

Electron scattering data, H.D. Vries et.al Atom Data, Nucl Data Tab. 36 (1987) 495

Bethe-Weizsacker mass formula

From: Wikimedia

Volume term B/A is roughly constant: Saturation of nuclear forces Surface tension: nucleons on the surface have less “interactions” Coulomb energy:

Symmetry energy: Different Fermi energies: Different interactions

Pairing term:

Nuclear masses

See wikipedia

Describing nuclear shapes

Expand nuclear shapes

Compression

Center-of-mass translation

Quadrupole deformation

Hill-Wheeler Parameters

From Ring and Schuck, The nuclear many-body problem

13

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140 160 180

8

20 28

50

82

8 20 28 50 82 126

Z

N

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

β 2

Nuclear quadrupole deformations

Reduced transition probability

Quadrupole moment

Multipole moments

i

f

EM decay rate

See EM width calculator: http://www.volya.net/

Note that:Prolate Q>0 Oblate Q<0

warning: lab frame and body-fixed are different

Quantum Mechanics of Rotations

Three parameters

From A. Bohr and B. R. Mottelson. Nuclear structure, volume 2

Body-fixed frameLaboratory frame

Angular Momentum Jk k=x,y,z Ik k=1,2,3

Note that J2 and all Ik are scalars

Collective Rotor Hamiltonian

Shape:

J

Rotational SpectrumSpherical Trivial spectrum J(J+1) Axially symmetric rotor

Energy level diagram for 166Er. From W.D. Kulp et. al, Phys. Rev. C 73, 014308 (2006).

Properties: -Band structures E~J(J+1) -Band head J=K -K good quantum number (transitions etc)

Rotation and gamma rays

Alaga rulesObserved reduced rates and moments

Spectral relations

Triaxial rotor

Three different parameters K is mixed (diagonalize H)

Spectrum and states Mixed Transitions

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

E (

ER

/2)

γ (deg)

21

41

61

22

31

42

51

43

Models for moments of inertia

Relationship between Hrot and β γ is model-dependent.

From: J. M. Allmond,Ph.D thesis,. Georgia Institute of Technology, 2007

Evidence for nuclear superfluidity

Surface vibrations

Kinetic energy of a liquid drop

Potential energy

Surface tension

Coulomb energy

Total

Nuclear fission:

Surface vibrations

Collective Hamiltonian

Quantized Hamiltonian

spectrum Transitions

systematics

Bosonic enhancement

Note: Giant resonances

Quadrupole Vibrations in cadmium

0+ 0

2+ 658

2+ 14754+ 1542

0+ 1731

0+ 20783+ 21624+ 22202+ 2287

6+ 2479

0+ 0

2+ 617

2+ 13124+ 14150+ 1433

0+ 18713+ 20644+ 20812+ 21216+ 2168

0+ 0

2+ 558

2+ 12094+ 12830+ 1305

0+ 18593+ 18644+ 19326+ 19902+ 2048

0+ 0

2+ 513

2+ 12134+ 12190+ 1282

4+ 18693+ 19160+ 19282+ 19516+ 2026

0+ 0

2+ 487

4+ 11642+ 12690+ 1285

4+ 19296+ 19352+ 20230+ 20733+ 2091

0+ 0

2+ 505

0+ 11364+ 12032+ 1322

3+ 18982+ 19204+ 19986+ 2032

48110Cd62 48

112Cd64 48114Cd66 48

116Cd68 48118Cd70 48

120Cd72

3—w

2—w

1—w

0—w

Isotopes of Cd, vibrational states

Transition to deformation, soft mode

Exc

itatio

n en

ergy

Two-level model with 20 particles RPA, anharmonic solution, exact solution

Interaction strength

H =1

2B|↵̇|2 + 1

2C↵2 +

1

4⇤↵4

Harmonic

Soft

Deformed

Low-lying Collective modes

Rotations Vibrations Pairing

25

Shell effect and LDM

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140 160 180

8

20 28

50

82

8 20 28 50 82 126

Z

N

-4

-2

0

2

4

Nuc

lear

bin

ding

diff

eren

ce [M

eV]

Shell effects in LDM

26

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140 160 180

8

20 28

50

82

8 20 28 50 82 126

Z

N

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

β 2

Shell effects and nuclear deformations

27

Shell effect in excitation energies

0

0.5

1

1.5

2

2.5

3

3.5

4

20 40 60 80 100 120 140

8 20 28 50 82 126

E(2

+)

[M

eV]

N

Energies of 2+ states

28

Shell structure and two-neutron separation energies

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120 140 160

8 20 28 50 82 126

S2

n [

MeV

]

N

Sn isotopes highlighted in red

29

Shell effects in atomic physics

0

5

10

15

20

25

0 20 40 60 80 100

2 10 18 36 54 86

Ion

izat

ion

En

erg

ies

[eV

]

Atomic Number Z

He

Ne

Ar

Kr

XeRn

Mean field and one body problem

Shell gaps N=2,8,20,

Radial equation to solve

0 s1ê20 p3ê20 p1ê20 d5ê20 d3ê21 s1ê20 f7ê20 f5ê21 p3ê21 p1ê20 g9ê20 g7ê21 d5ê21 d3ê20 h11ê22 s1ê2

2

8

2028

50

82

126

184

0s

0p

0d1s

0f

1p0g

1d0h2s

1f0i2p

0j1g

2d3s

N=0 0s

N=1 0p

N=2 1s,0d

N=3 1p,0f

N=4 2s,1d,0g

N=5 2p,1f,0h

N=6 3s,2d,1g,0i

N=7 3p,2f,1h,0j

0 h9ê21 f7ê20 i13ê22 p3ê21 f5ê22 p1ê21 g9ê20 i11ê20 j15ê22 d5ê23 s1ê21 g7ê22 d3ê2

0 MeV

-10 MeV

-20 MeV

-30 MeV

-40 MeV

oscillator square well Woods-Saxon

82208Pb

2

8

20

40

70

112

168

240

2

8

2034

58

92

138

186

Evolution of single particle states

Woods-Saxon potential

Central potential

Spin-orbit potential

Coulomb potential (uniform charged sphere)

Origin of spin-orbit term is non-relativistic reduction of Dirac equation

Parameterization:

Single-particle states in potential model

-4.14 MeV

d5/2

17O example

Ground state 5/2+

Neutron separation energy 4.1 MeV

Single-particle states in potential model

-3.23 MeV

s1/2

17O example

Excited state 1/2+

Excitation energy 0.87 MeV 3.2 MeV binding

Single-particle states in potential model

0.95 MeV

d3/217O example

Unbound resonance state 3/2+

Excitation energy 5.09 MeV unbound by 0.95 MeV

Nishioka et. al. Phys. Rev. B 42, (1990) 9377 R.B. Balian, C. Block Ann. Phys. 69 (1971) 76single-particle

levels

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 10 20 30 40 50

8 34 186 612 2018 9048

ν(k

)/ν

F(k

)

k

Shell effects, chaos and periodic orbits

Density of states relative to fermi gas model

0

100

200

300

400

500

600

700

0 2 4 6 8 10 12

L2 L3L4 2π 2L2 2L3 4π

ν(x

) [a

rbit

rary

un

its]

x

Periodic orbits and classical chaos

•Motion is regular near classical periodic orbits •Stability

Evolution of shells

• Shells in deformed nuclei • Shells in weakly bound nuclei • “Melting” of shell structure • Is the mean field concept valid?

-40

-35

-30

-25

-20

-15

-10

-5

0

0 50 100 150 200 250 300

ε

A

0s1/2

1s1/2

2s1/2

3s1/2

0p3/2

0p1/2

0d5/2

0d3/2

0f7/2

0f5/2

1p3/2,1/2

0g9/2

0g7/2

1d5/2,3/2

0h9/2

0h11/2

1f7/2,5/2

0i13/2

2p3/2,1/2

0i11/2

0j15/2

1g9/2,7/2

2d5/2,3/2

0k17/21h11/2

0j13/2

2

8

20

28

50

82

126

184Overview of shell structure

Shell structure and deformation

Quantum chaos

Evolution of K=1/2 levels

21

3

Quantum chaos

Level spacing distribution

44

Literature

• P. Ring and P. Schuck, The nuclear many-body problem (Springer-Verlag, 2000). • Bohr A. and B. R. Motttelson, Nuclear Structure (World Scientific Publishing, 1998). • I. Talmi, Simple Models of Complex Nuclei: The Shell Model and Interacting Boson Model (Harwood

Academic Pub, 1993). • L. D. Landau and E. M. Lifshitz, Quantum mechanics. Non-relativistic theory. Third edition, revised and

enlarged (Pergamon Press, New York, 1981). • R. D. Lawson, Theory of the nuclear shell model (Clarendon Press, Oxford, 1980), p. 534. • G. E. Brown and A. D. Jackson, The nucleon-nucleon interaction (North-Holland Pub. Co.; distributors

for the U.S.A. and Canada, American Elsevier Pub. Co., Amsterdam; New York, 1976) • A. G. Sitenko and V. K. Tartakovskiĭ, Lectures on the theory of the nucleus (Pergamon Press, Oxford,

New York, 1975), 74, p. 304. • A. I. Baz, I. B. Zeldovich, and A. M. Perelomov, Scattering, reactions and decay in nonrelativistic

quantum mechanics. (Rasseyanie, reaktsii i raspady v nerelyativistskoi kvantovoi mekhanike) (Israel Program for Scientific Translations, Jerusalem, 1969)

• A. De Shalit and I. Talmi, Nuclear shell theory (Academic Press, New York, 1963), p. 573. • V. Zelevinsky, Quantum physics (Wiley-VCH, Weinheim, 2011)

Recommended