NUMERICAL METHODS OF FINANCE - ku · PDF fileNUMERICAL METHODS OF ... E. & Heath, D.: A...

Preview:

Citation preview

NUMERICAL METHODS OF FINANCE

Eckhard PlatenSchool of Finance and Economics and Department of Mathematical Sciences

University of Technology, Sydney

Platen, E.& Bruti-Liberati, N.: Numerical Solution of SDEs with Jumps i n FinanceSpringer, Applications of Mathematics (2010).

Platen, E.& Heath, D.: A Benchmark Approach to Quantitative FinanceSpringer Finance, 700 pp., 199 illus., Hardcover, ISBN-10 3-540-26212-1 (2010).

Kloeden, P.& Platen, E.: Numerical Solution of Stochastic DifferentialEquationsSpringer, Applications of Mathematics, 600 pp., Hardcover, ISBN-3-540-54062-8 (1999).

Kloeden, P., Platen, E.& Schurz, H.: Numerical Solution of SDEs throughComputer Experiments, Springer, Universitext (2003).

4 Stochastic Expansions

Stochastic Taylor Expansions

Deterministic Taylor Formula

• ordinary differential equation

d

dtXt = a(Xt)

• integral form

Xt = Xt0 +

∫ t

t0

a(Xs) ds

c© Copyright E. Platen NS of SDEs Chap. 4 107

deterministic chain rule

=⇒d

dtf(Xt) = a(Xt)

∂xf(Xt)

• operator

L = a∂

∂x

c© Copyright E. Platen NS of SDEs Chap. 4 108

=⇒integral equation

f(Xt) = f(Xt0) +

∫ t

t0

Lf(Xs) ds

• special case

f(x)≡ x

Lf = a,LLf = (L)2f = La, . . .

• apply tof = a

c© Copyright E. Platen NS of SDEs Chap. 4 109

=⇒

Xt = Xt0 +

∫ t

t0

(

a(Xt0) +

∫ s

t0

La(Xz) dz

)

ds

= Xt0 + a(Xt0)

∫ t

t0

ds+

∫ t

t0

∫ s

t0

La(Xz) dz ds

=⇒

nontrivial Taylor expansion

c© Copyright E. Platen NS of SDEs Chap. 4 110

• applyf = La

=⇒

Xt = Xt0 + a(Xt0)

∫ t

t0

ds+ La(Xt0)

∫ t

t0

∫ s

t0

dz ds+R1

remainder term

R1 =

∫ t

t0

∫ s

t0

∫ z

t0

(L)2a(Xu) du dz ds

c© Copyright E. Platen NS of SDEs Chap. 4 111

• continuing

=⇒

classical deterministic Taylor formula

f(Xt) = f(Xt0) +

r∑

l=1

(t− t0)ℓ

l!(L)ℓf(Xt0)

+

∫ t

t0

· · ·∫ s2

t0

(L)r+1f(Xs1) ds1 . . . dsr+1

for t ∈ [t0, T ] andr ∈ N

c© Copyright E. Platen NS of SDEs Chap. 4 112

Wagner-Platen Expansion

Wagner & Platen (1978), Platen (1982b),

Platen & Wagner (1982) and Kloeden & Platen (1992)

• SDE

Xt = Xt0 +

∫ t

t0

a(Xs) ds+

∫ t

t0

b(Xs) dWs

c© Copyright E. Platen NS of SDEs Chap. 4 113

• Ito formula

f(Xt) = f(Xt0)

+

∫ t

t0

(

a(Xs)∂

∂xf(Xs) +

1

2b2(Xs)

∂2

∂x2f(Xs)

)

ds

+

∫ t

t0

b(Xs)∂

∂xf(Xs) dWs

= f(Xt0) +

∫ t

t0

L0f(Xs) ds+

∫ t

t0

L1f(Xs) dWs

c© Copyright E. Platen NS of SDEs Chap. 4 114

operators

L0 = a∂

∂x+

1

2b2∂2

∂x2

and

L1 = b∂

∂x

f(x)≡ x =⇒ L0f = a andL1f = b

c© Copyright E. Platen NS of SDEs Chap. 4 115

• apply Ito formula tof = a andf = b

Xt = Xt0

+

∫ t

t0

(

a(Xt0) +

∫ s

t0

L0a(Xz) dz +

∫ s

t0

L1a(Xz) dWz

)

ds

+

∫ t

t0

(

b(Xt0) +

∫ s

t0

L0b(Xz) dz +

∫ s

t0

L1b(Xz) dWz

)

dWs

= Xt0 + a(Xt0)

∫ t

t0

ds+ b(Xt0)

∫ t

t0

dWs +R2

c© Copyright E. Platen NS of SDEs Chap. 4 116

remainder term

R2 =

∫ t

t0

∫ s

t0

L0a(Xz) dz ds+

∫ t

t0

∫ s

t0

L1a(Xz) dWz ds

+

∫ t

t0

∫ s

t0

L0b(Xz) dz dWs +

∫ t

t0

∫ s

t0

L1b(Xz) dWz dWs

c© Copyright E. Platen NS of SDEs Chap. 4 117

• apply Ito formula tof = L1b

=⇒

Xt = Xt0 + a(Xt0)

∫ t

t0

ds+ b(Xt0)

∫ t

t0

dWs

+L1b(Xt0)

∫ t

t0

∫ s

t0

dWz dWs +R3

c© Copyright E. Platen NS of SDEs Chap. 4 118

remainder term

R3 =

∫ t

t0

∫ s

t0

L0a(Xz) dz ds+

∫ t

t0

∫ s

t0

L1a(Xz) dWz ds

+

∫ t

t0

∫ s

t0

L0b(Xz) dz dWs

+

∫ t

t0

∫ s

t0

∫ z

t0

L0L1b(Xu) du dWz dWs

+

∫ t

t0

∫ s

t0

∫ z

t0

L1L1b(Xu) dWu dWz dWs

example for Wagner-Platen expansion

c© Copyright E. Platen NS of SDEs Chap. 4 119

• multiple Ito integrals

∫ t

t0

ds = t− t0,

∫ t

t0

dWs = Wt −Wt0 ,

∫ t

t0

∫ s

t0

dWz dWs =1

2

(

(Wt −Wt0)2 − (t− t0)

)

• remainder termR3

consisting of next following multiple Ito integrals

with nonconstant integrands

c© Copyright E. Platen NS of SDEs Chap. 4 120

Generalized Wagner-Platen Expansion

• expanding with respect to processX = Xt, t ∈ [0, T ]

• Ito formula

f(t,Xt) = f(t0, Xt0) +

∫ t

t0

∂tf(s,Xs) ds

+

∫ t

t0

∂xf(s,Xs) dXs +

1

2

∫ t

t0

∂2

∂x2f(s,Xs) d[X]s

quadratic variation

[X]t = [X]t0 +

∫ t

t0

b2 (Xs) ds

c© Copyright E. Platen NS of SDEs Chap. 4 121

• expand further

f(t,Xt) = f(t0, Xt0)

+

∫ t

t0

∂tf(t0, Xt0) +

∫ s

t0

∂2

∂t2f(z,Xz) dz

+

∫ s

t0

∂2

∂x ∂tf(z,Xz) dXz +

∫ s

t0

1

2

∂2

∂x2

∂tf(z,Xz) d[X]z

ds

c© Copyright E. Platen NS of SDEs Chap. 4 122

+

∫ t

t0

∂xf(t0, Xt0) +

∫ s

t0

∂2

∂t ∂xf(z,Xz) dz

+

∫ s

t0

∂2

∂x2f(z,Xz) dXz +

∫ s

t0

1

2

∂3

∂x3f(z,Xz) d[X]z

dXs

+1

2

∫ t

t0

∂2

∂x2f(t0, Xt0) +

∫ s

t0

∂3

∂t ∂x2f(z,Xz) dz

+

∫ s

t0

∂3

∂x3f(z,Xz) dXz +

∫ s

t0

1

2

∂4

∂x4f(z,Xz) d[X]z

d[X]s

= f(t0, Xt0) +∂

∂tf(t0, Xt0) (t− t0) +

∂xf(t0, Xt0) (Xt −Xt0)

+1

2

∂2

∂x2f(t0, Xt0) ([X]t − [X]t0) +Rf(t0, t)

c© Copyright E. Platen NS of SDEs Chap. 4 123

f(t,Xt) = f(t0, Xt0) +∂

∂tf(t0, Xt0) (t− t0)

+∂

∂xf(t0, Xt0) (Xt −Xt0)

+1

2

∂2

∂x2f(t0, Xt0) ([X]t − [X]t0)

+∂2

∂x ∂tf(t0, Xt0)

∫ t

t0

∫ s

t0

dXz ds

+1

2

∂2

∂x2

∂tf(t0, Xt0)

∫ t

t0

∫ s

t0

d[X]z ds

+∂2

∂t ∂xf(t0, Xt0)

∫ t

t0

∫ s

t0

dz dXs

c© Copyright E. Platen NS of SDEs Chap. 4 124

+∂2

∂x2f(t0, Xt0)

∫ t

t0

∫ s

t0

dXz dXs

+1

2

∂3

∂x3f(t0, Xt0)

∫ t

t0

∫ s

t0

d[X]z dXs

+1

2

∂4

∂t ∂x3f(t0, Xt0)

∫ t

t0

∫ s

t0

dz d[X]s

+1

2

∂3

∂x3f(t0, Xt0)

∫ t

t0

∫ s

t0

dXz d[X]s

+1

4

∂4

∂x4f(t0, Xt0)

∫ t

t0

∫ s

t0

d[X]z d[X]s + Rf(t0, t)

c© Copyright E. Platen NS of SDEs Chap. 4 125

Expansions with Jumps

• counting processN = Nt, t ∈ [0, T ]

• for right-continuous processZ

jump size

∆Zt = Zt − Zt−

=⇒Nt =

s∈(0,t]

∆Ns

c© Copyright E. Platen NS of SDEs Chap. 4 126

• measurable function

f : ℜ → ℜ

=⇒f(Nt) = f(N0) +

s∈(0,t]

∆ f(Ns)

consistent with Ito formula

=⇒

f(Nt) = f(N0) +

(0,t]

(

f(Ns− + 1) − f(Ns−))

dNs

c© Copyright E. Platen NS of SDEs Chap. 4 127

• measurable function

∆ f(N) = f(N + 1) − f(N)

=⇒

f(Nt) = f(N0) +

(0,t]

∆ f(Ns−) dNs

= f(N0) +

(0,t]

∆ f(N0) dNs

+

(0,t]

(0,s2)

∆(

∆ f(Ns1−))

dNs1 dNs2

=⇒

multiple stochastic integrals with respect toN

c© Copyright E. Platen NS of SDEs Chap. 4 128

Engel (1982)

Platen (1984)

Studer (2001)

(0,t]

dNs = Nt

(0,t]

(0,s1)

dNs1 dNs2 =1

2 !Nt (Nt − 1),

(0,t]

(0,s1)

(0,s2)

dNs1 dNs2 dNs3 =1

3 !Nt (Nt − 1) (Nt − 2),

(0,t]

(0,s1)

. . .

(0,sn)

dNs1 . . . dNsn−1dNsn =

(

Nt

n

)

for Nt ≥ n

0 otherwise

c© Copyright E. Platen NS of SDEs Chap. 4 129

for t ∈ [0, T ], where

(

i

n

)

=i (i− 1) (i− 2) . . . (i− n+ 1)

1 · 2 · . . . · n =i !

n ! (i− n) !

for i ≥ n

c© Copyright E. Platen NS of SDEs Chap. 4 130

• stochastic Taylor expansion

f(Nt) = f(N0) +

(0,t]

∆ f(N0) dNs

+

(0,t]

(0,s2)

∆(

∆ f(N0))

dNs1 dNs2 + R3(t)

with

R3(t) =

(0,t]

(0,s2)

(0,s3)

∆(

∆(

∆ f(Ns1−)))

dNs1 dNs2 dNs3

=⇒

f(Nt) = f(N0) + ∆ f(N0)

(

Nt

1

)

+ ∆(

∆ f(N0))

(

Nt

2

)

+ R3(t)

c© Copyright E. Platen NS of SDEs Chap. 4 131

∆ f(N0) = ∆ f(0) = f(1) − f(0)

∆(

∆ f(N0))

= f(2) − 2 f(1) + f(0)

=⇒

f(Nt) = f(0) + (f(1) − f(0))Nt

+(f(2) − 2 f(1) + f(0))1

2Nt (Nt − 1) + R3(t)

forNt ≤ 3 R3(t) equals zero

c© Copyright E. Platen NS of SDEs Chap. 4 132

Measuring Market Risk for Linear Portfolios

Primary Securities

St =(

S(0)t , . . . , S

(d)t

)⊤

dS(j)t = S

(j)t

rt dt+

d∑

k=1

bj,kt

(

θkt dt+ dW kt

)

j ∈ 0, 1, . . . , d

c© Copyright E. Platen NS of SDEs Chap. 4 133

invertible volatility matrix

bt = [bj,kt ]dj,k=1

market price for risk

θt = (θ1t , θ2t , . . . , θ

dt )

⊤ = b−1t (at − rt 1)

savings account

S(0)t = exp

∫ t

0

rs ds

c© Copyright E. Platen NS of SDEs Chap. 4 134

Strategies and Portfolios

• strategy

δ = δt = (δ0t , δ1t , . . . , δ

dt )

⊤, t ∈ [0, T ]

• portfolio

Sδt =

d∑

j=0

δjt S(j)t = δ⊤t St

• self-financing

dSδt =

d∑

j=0

δjt dS(j)t = δ⊤t dSt

c© Copyright E. Platen NS of SDEs Chap. 4 135

• jth fraction

πjδ(t) = δjt

S(j)t

Sδt

,

d∑

j=0

πjδ(t) = 1

c© Copyright E. Platen NS of SDEs Chap. 4 136

• portfolio SDE

dSδt = Sδ

t

(

rt dt+

d∑

k=1

βkδ (t) (θ

kt dt+ dW k

t )

)

• portfolio volatility

βkδ (t) =

d∑

j=0

πjδ(t) b

j,kt

=⇒d ln

(

Sδt

)

= (rt + gδ(t)) dt+d∑

k=1

βkδ (t) dW

kt

c© Copyright E. Platen NS of SDEs Chap. 4 137

• portfolio net growth rate

gδ(t) =d∑

k=1

βkδ (t)

(

θkt − 1

2βk

δ (t)

)

• growth optimal portfolio

dSδ∗t = Sδ∗

t

(

rt dt+

d∑

k=1

θkt (θkt dt+ dW kt )

)

c© Copyright E. Platen NS of SDEs Chap. 4 138

General and Specific Market Risk

• each institution obliged to put aside sufficient capital as abuffer for large losses

=⇒ regulatory capital

investment bank, managed fund, insurance company or similar business

• market risk - risk of losing money from adverse movements of financial mar-

kets

=⇒ specificandgeneral market risk

Basle(1996a, 1996b)

Platen & Stahl (2003)

c© Copyright E. Platen NS of SDEs Chap. 4 139

• general market risk

risk exposure of the portfolio against the equity market as awhole

• specific market risk

risk of holding an individual security within a portfolio which is not covered by

general market risk

c© Copyright E. Platen NS of SDEs Chap. 4 140

• broadly based index

required by regulations for measuring general market risk

take world stock index =⇒ general market risk

• particular portfolio - Sδt

correspondingbenchmarked portfolio

Sδt =

Sδt

Sδ∗t

=⇒ specific risk

efficient and natural separation of market risk

into general and specific market risk

c© Copyright E. Platen NS of SDEs Chap. 4 141

Coherent Risk Measures

Artzner, Delbaen, Eber & Heath (1997)

Follmer & Schiedt (2002)

A mapping is acoherent risk measureif

(i) If X ≥ 0, then(X) ≤ 0;

(ii) (X1 +X2) ≤ (X1) + (X2);

(ii) (λX) = λ (X) for λ ≥ 0;

(iv) (a+X) = (X) − a for each constanta ∈ ℜ.

c© Copyright E. Platen NS of SDEs Chap. 4 142

(i) - natural negative sign for positive movements

(ii) - subadditivity

(iii) - positive homogeneity

(iv) - translation invariance

• there exist also convex risk measures

c© Copyright E. Platen NS of SDEs Chap. 4 143

Value at Risk

Basle (1996a, 1996b)

• strictly increasing distribution functionFX

• quantile function

F−1X (α) = infx ∈ ℜ : FX(x) > α

• α-quantile

qα = F−1X (α)

c© Copyright E. Platen NS of SDEs Chap. 4 144

Value at Risk of a random return

X =Sδ

t+∆ − Sδt

Sδt

for a portfolioSδt and a given levelα ∈ (0, 1) is

VaRα(X) = −F−1X (α)Sδ

t

=⇒VaRα(X) = −qα Sδ

t

Use Wagner-Platen expansion to approximateX

c© Copyright E. Platen NS of SDEs Chap. 4 145

• Gaussian return

meanµ = 0

variancev

qα denotes theα-quantile of a standard Gaussian random variable

=⇒VaRα(X) = −qα

√v Sδ

t

q0.05 = −1.645, q0.01 = −2.326

c© Copyright E. Platen NS of SDEs Chap. 4 146

-4 -2 2 40

0.2

0.4

0.6

0.8

1

Figure 4.1: Gaussian distribution function.

c© Copyright E. Platen NS of SDEs Chap. 4 147

• VaR is not a coherent risk measure

under general circumstances

Artzner, Delbaen, Eber & Heath (1997)

• random return linear combination

of underlying risk factorsX1, . . . , Xd

elliptical joint distribution

density is constant on ellipsoids

=⇒

VaRα(X) is acoherent risk measure

Embrechts, McNeal & Straumann (1999)

c© Copyright E. Platen NS of SDEs Chap. 4 148

• in general,subadditivity can be violated

risk capital assigned to a diversified position may be

bigger than the sum of the risk capitals allocated

• for optionVaRα(Sδ(T )) can be misleading

• in practice if portfolio is diversified

and market model is realistic

subadditivity is likely

=⇒ VaRα coherent risk measure

c© Copyright E. Platen NS of SDEs Chap. 4 149

VaR for Conditionally Gaussian Random Variables

• conditionally Gaussian random variable

stochastic but independent variancev

=⇒ mixture of normals

• if 1v

is χ2-distributed withν degrees of freedom

=⇒ X is Studentt with ν degrees of freedom

• if v is gamma distributed

=⇒ X is variance gamma

c© Copyright E. Platen NS of SDEs Chap. 4 150

• if X is a linear combination of returns

X =

d∑

i=1

πiδ Ri

with

Ri = Zi

√v

Zi - standard Gaussian

v - independent random variance

=⇒ R1, . . . , Rd is elliptical

=⇒ coherent risk measure

c© Copyright E. Platen NS of SDEs Chap. 4 151

• correlated conditionally Gaussianreturns

covariance matrix

D =[

dj,ℓ]d

j,ℓ=1

D = b b⊤

Cholesky decomposition

b =[

bj,ℓ]d

j,ℓ=1

invertible matrix

c© Copyright E. Platen NS of SDEs Chap. 4 152

• return vector

R = (R1, . . . , Rd)⊤ =

√v bZ

correlated according toD

R1, . . . , Rd is elliptical

=⇒ representation

X = π⊤δ R = |π⊤

δ b| ξ

weight vector

πδ =(

π1δ , . . . , π

)⊤∈ ℜd

ξ normal mixture distributed scalar random variable

c© Copyright E. Platen NS of SDEs Chap. 4 153

with variancec2 ∆

For Studentt distributed multivariate log-returns

ξ is Studentt distributed

c© Copyright E. Platen NS of SDEs Chap. 4 154

• VaRα(X) is in this case acoherent risk measure

=⇒ internal risk measure for capital allocation

significantly simplifies the VaR calculation

VaRα(X) ≈ −√

π⊤δ Dπδ c

√∆ tαS

δt

tα - α-quantile of standardized normal mixture

distribution

Sδt - present face value of the portfolio

qα - standard Gaussianα-quantile

c© Copyright E. Platen NS of SDEs Chap. 4 155

• event factor

ϕα =tαqα

Platen & Stahl (2003)

=⇒

VaRα(X) = −√

π⊤δ Dπδ c

√∆ qα ϕα S

δt

c© Copyright E. Platen NS of SDEs Chap. 4 156

• event risk

Basle(1996a, 1996b)

considerStudent t distributed log-returns

with ν ∈ 2, 3, 4, 5, 10

=⇒ event factorϕα

ν ∞ 10 5 4 3 2

ϕ0.01 1 1.06 1.11 1.12 1.14 1.16

Table 1: Event factorϕα in dependence on degrees of freedomν.

c© Copyright E. Platen NS of SDEs Chap. 4 157

• extensivehistorical simulations

Gibson (2001)

=⇒ average event factor ϕ0.01 ≈ 1.12

typical portfolios of US institutions

coincides exactly with the event factor that is obtained fortheStudent t distri-

bution with four degreesof freedom

=⇒ supports alternative market model

c© Copyright E. Platen NS of SDEs Chap. 4 158

Internal Models

• internal modelsfor calculatingregulatory capital

Basle(1996a, 1996b)

reduces the requiredregulatory capital

• if the portfolio of an institution is not linear

but forms adiversified portfolio

=⇒ approximately GOP

Fergusson & Platen (2006)

Studentt distributed

c© Copyright E. Platen NS of SDEs Chap. 4 159

Wagner-Platen Expansion for a BS Portfolio

Studer (2001)

Giannelli & Primbs (2001)

Black-Scholes dynamics ofS(1)

∆S(δ)t =

∫ t+∆

t

δ(0)s dS(0)s +

∫ t+∆

t

δ(1)s dS(1)s

=

∫ t+∆

t

δ(0)s S(0)s rs ds+

∫ t+∆

t

δ(1)s S(1)s

×(

(

rs + b1,1s θ1s)

ds+ b1,1s dW 1s

)

c© Copyright E. Platen NS of SDEs Chap. 4 160

≈(

δ(0)t S

(0)t rt + δ

(1)t S

(1)t

(

rt + b1,1t θ1t)

)

+ δ(1)t S

(1)t b1,1t ∆W 1

t

+∂

∂S(1)

[

δ(1)t S

(1)t b1,1t

]

δ(1)t S

(1)t b1,1t

1

2

[

(∆W 1t )

2 − ∆]

= ∆S(δ)t

∆W 1t = W 1

t+∆ −W 1t

c© Copyright E. Platen NS of SDEs Chap. 4 161

Multiple Stochastic Integrals

• d-dimensional Ito equation

Xt = Xt0 +

∫ t

t0

a(s,Xs) ds+

m∑

j=1

∫ t

t0

bj(s,Xs) dWjs

• equivalent Stratonovich equation

Xt = Xt0 +

∫ t

t0

a(s,Xs) ds+

m∑

j=1

∫ t

t0

bj(s,Xs) dW js

ai = ai − 1

2

m∑

j=1

d∑

k=1

bk,j∂bi,j

∂xk

c© Copyright E. Platen NS of SDEs Chap. 4 162

Multi-indices

α = (j1, j2, . . . , jℓ)

where

ji ∈ 0, 1, . . . ,m

for i ∈ 1, 2, . . . , ℓ andm ∈ N is amulti-indexof length

ℓ = ℓ(α) ∈ N

c© Copyright E. Platen NS of SDEs Chap. 4 163

• m - number of components of Wiener process

v - multi-index of length zero

ℓ(v) = 0

ℓ((0, 1)) = 2, ℓ((0, 1, 0)) = 3

• n(α) - number of components of a multi-indexα which equal0

n((1, 0, 1)) = 1, n((0, 1, 0)) = 2, n((0, 0)) = 2

c© Copyright E. Platen NS of SDEs Chap. 4 164

• set of all multi-indices

Mm =

(j1, j2, . . . , jℓ) : ji ∈ 0, 1, . . . ,m,

i ∈ 1, 2, . . . , ℓ, for ℓ ∈ N

∪ v

• Givenα ∈ Mm with ℓ(α) ≥ 1,

−α orα− obtained by deleting

the first or the last component ofα, respectively.

−(1, 0) = (0), (1, 0)− = (1) and

−(0, 1, 1) = (1, 1), (0, 1, 1)− = (0, 1)

c© Copyright E. Platen NS of SDEs Chap. 4 165

• for α= (j1, j2, . . ., jk), α= (j1, j2, . . ., jℓ)

concatenation operation∗

α ∗ α = (j1, j2, . . . , jk, j1, j2, . . . , jℓ)

for α= (0, 1, 2) andα= (1, 3)

α ∗ α = (0, 1, 2, 1, 3) andα ∗ α = (1, 3, 0, 1, 2)

c© Copyright E. Platen NS of SDEs Chap. 4 166

Multiple It o Integrals

Let andτ be two stopping times

0 ≤ ≤ τ ≤ T

multi-indexα= (j1, j2, . . ., jℓ) ∈ Mm

f ∈ Hα

c© Copyright E. Platen NS of SDEs Chap. 4 167

• multiple It o integral

Iα[f·],τ =

fτ for ℓ = 0

∫ τ

Iα−[f·],s ds for ℓ ≥ 1 and jℓ = 0

∫ τ

Iα−[f·],s dW

jℓs for ℓ ≥ 1 and jℓ ≥ 1

• in the caseft = 1

abbreviate Iα,τ by Iα

c© Copyright E. Platen NS of SDEs Chap. 4 168

Relationships between Multiple Ito Integrals

• write

Iα,t = Iα[1]0,t

W 0t = t

• relationship

for α = (j1, . . . , ji, ji+1, . . . , jℓ)

W jt Iα,t =

ℓ∑

i=0

I(j1,...,ji,j,ji+1,...,jℓ),t

+

ℓ∑

i=1

1ji=j 6=0 I(j1,...,ji−1,0,ji+1,...,jℓ),t

c© Copyright E. Platen NS of SDEs Chap. 4 169

Hermite Polynomials and Multiple It o Integrals

Kloeden & Platen (1999)

• Hermite polynomials

Hn(x) = (−1)n ex2 dn

dxnexp−x2

generating function

exp2 z x− z2 =

∞∑

n=0

Hn(x)zn

n !

c© Copyright E. Platen NS of SDEs Chap. 4 170

• monic Hermite polynomials

Hn(t, x) =

(

t

2

)n2

Hn

(

x√2t

)

• scaled monic Hermite polynomials

hn(t, x) =1

n !Hn(t, x)

for n ∈ 0, 1, . . ., x ∈ ℜ, t ∈ (0,∞)

c© Copyright E. Platen NS of SDEs Chap. 4 171

=⇒ Hermite polynomials

Hn(x) = n !

[n2]

j=0

(−1)j (2x)n−2j

j ! (n− 2j) !

for n ∈ 0, 1, . . . andx ∈ ℜ

[y] - largest integer not greater thany

=⇒ scaled monic Hermite polynomials

hn(t, x) =

[n2]

j=0

(−1)j xn−2j

j ! (n− 2j) !

(

t

2

)j

c© Copyright E. Platen NS of SDEs Chap. 4 172

with properties∂

∂xhn(t, x) = hn−1(t, x)

and∂

∂thn(t, x) = −1

2

∂2

∂x2hn(t, x)

for x ∈ ℜ, t ∈ (0,∞) andn ∈ 1, 2, . . .

c© Copyright E. Platen NS of SDEs Chap. 4 173

• Forα = (j1, . . . , jℓ) = (0, . . . , 0)

with ji = 0 for i ∈ 1, 2, . . . , ℓ

Iα,t =

∫ t

0

. . .

∫ s2

0

ds1 . . . dsℓ =tℓ

ℓ !

• Forα = (j1, . . . , jℓ) = (j, . . . , j)

with ji = j ∈ 1, 2, . . . ,m for i ∈ 1, 2, . . . , ℓ

Iα,t =

∫ t

0

. . .

∫ s2

0

dW js1 . . . dW

jsℓ = hℓ(t,W

jt )

c© Copyright E. Platen NS of SDEs Chap. 4 174

I(j),t = W jt

I(j,j),t =1

2

(

(

W jt

)2

− t

)

I(j,j,j),t =1

3 !

(

(

W jt

)3

− 3 tW jt

)

I(j,j,j,j),t =1

4 !

(

(

W jt

)4

− 6 t (W jt )

2 + 3 t2)

I(j,j,j,j,j),t =1

5 !

(

(

W jt

)5

− 10 t (W jt )

3 + 15 t2W jt

)

for t ∈ [0,∞), j ∈ 1, 2, . . . ,m

c© Copyright E. Platen NS of SDEs Chap. 4 175

Multiple Stratonovich Integrals

stopping times

0 ≤ ≤ τ ≤ T

Jα[g(·, X·)],τ =

g(τ,Xτ ) for ℓ = 0

∫ τ

Jα−[g(·, X·)],s ds for ℓ ≥ 1, jℓ = 0

∫ τ

Jα−[g(·, X·)],s dW jℓ

s for ℓ ≥ 1, jℓ ≥ 1

c© Copyright E. Platen NS of SDEs Chap. 4 176

Relationships between Multiple Stratonovich Integrals

Jα,t = Jα[1]0,t

W 0t = t

Let j1, . . ., jℓ ∈ 0, 1, . . . ,m andα = (j1, . . ., jℓ) ∈ Mm whereℓ ∈ N .

Then

W jt Jα,t =

ℓ∑

i=0

J(j1,...,ji,j,ji+1,...,jℓ),t

for all t ∈ [0, T ].

c© Copyright E. Platen NS of SDEs Chap. 4 177

Coefficient Functions

• operators

L0 =∂

∂t+

d∑

k=1

ak ∂

∂xk+

1

2

d∑

k,l=1

m∑

j=1

bk,jbl,j∂2

∂xk∂xℓ

Lj =

d∑

k=1

bk,j∂

∂xk

j ∈ 1, 2, . . . ,m

c© Copyright E. Platen NS of SDEs Chap. 4 178

• It o coefficient function

fα =

f for l = 0

Lj1f−α for l ≥ 1

multi-indexα= (j1,. . ., jℓ)

functionf : [0, T ] × ℜd → ℜ

for f(t, x) = x

f(0) = a, f(1) = b, f(1,1) = b b′ andf(0,1) = a b′ + 12b2b′′

c© Copyright E. Platen NS of SDEs Chap. 4 179

Stratonovich Coefficient Functions

• operators

L0 =∂

∂t+

d∑

k=1

ak ∂

∂xk

Lj = Lj =

d∑

k=1

bk,j∂

∂xk

for j ∈ 1, 2, . . . ,m

a = a− 1

2

m∑

j=1

Ljbj

c© Copyright E. Platen NS of SDEs Chap. 4 180

• Stratonovich coefficient function

=

f for l = 0

Lj1f−αfor l ≥ 1

for α= (j1, . . ., jℓ)

c© Copyright E. Platen NS of SDEs Chap. 4 181

• Examples for Stratonovich coefficient functions

f(0)

= a, f(j1)

= bj1 , f(0,0)

= a a′,

f(0,j1)

= a bj1 ′, f(j1,0)

= a′bj1 , f(j1,j2)

= bj1bj2 ′,

f(0,0,0)

= a(

a a′′ + (a′)2)

, f(0,0,j1)

= a(

a bj1 ′′ + a′bj1 ′)

,

f(0,j1,0)

= a(

a′′bj1 + a′bj1 ′)

, f(j1,0,0)

= bj1(

a a′′ + (a′)2)

,

c© Copyright E. Platen NS of SDEs Chap. 4 182

f(0,j1,j2)

= a(

bj1bj2 ′′ + bj1 ′bj2 ′)

, f(j1,0,j2)

= bj1(

a bj1 ′′ + a′bj1 ′)

,

f(j1,j2,0)

= bj1(

a′′bj2 + a′bj2 ′)

, f(j1,j2,j3)

= bj1(

bj2bj3 ′′ + bj2 ′bj3 ′)

,

wherej1, j2, j3 ∈ 1, 2, . . . ,m

c© Copyright E. Platen NS of SDEs Chap. 4 183

Hierarchical Sets

We call a subsetA⊂ Mm ahierarchical setif

A 6= ∅

supα∈A

ℓ(α) < ∞

and

−α ∈ A for each α ∈ A \ v.

Examples:

v, v, (0), (1), v, (0), (1), (1, 1) are hierarchical sets

c© Copyright E. Platen NS of SDEs Chap. 4 184

Remainder Sets

For a given hierarchical setA

B(A) = α ∈ Mm \A : −α ∈ A.

Remainder setconsists of all of the next following multi-indices with respect to the

given hierarchical set.

Examples:

Whenm= 1 then

B (v) = (0), (1)and

B (v, (0), (1)) = (0, 0), (0, 1), (1, 0), (1, 1)

c© Copyright E. Platen NS of SDEs Chap. 4 185

General Stochastic Taylor Expansion

Wagner-Platen Expansion

Theorem 4.1 (Wagner-Platen)

Let andτ be two stopping times with

0 ≤ (ω) ≤ τ(ω) ≤ T,

a.s.,A⊂ Mm a hierarchical set

andf : [0, T ]×ℜd → ℜ a sufficiently smooth function, then we have

f(τ,Xτ ) =∑

α∈A

Iα [fα(,X)],τ +∑

α∈B(A)

Iα [fα(·, X·)],τ .

c© Copyright E. Platen NS of SDEs Chap. 4 186

Example

d=m= 1

for functionf(t, x)≡ x,

times= 0, τ = t

hierarchical set A = α ∈ Mm : ℓ(α) ≤ 3

drift a(t, x) = a(x)

diffusion coefficient b(t, x) = b(x)

dXt = a (Xt) dt+ b(Xt) dWt

=⇒

Wagner-Platen expansion in the form:

c© Copyright E. Platen NS of SDEs Chap. 4 187

Xt = X0 + a I(0) + b I(1) +

(

a a′ +1

2b2a′′

)

I(0,0)

+

(

a b′ +1

2b2b′′

)

I(0,1) + b a′I(1,0) + b b′I(1,1)

+

[

a

(

a a′′ + (a′)2 + b b′a′′ +1

2b2a′′′

)

+1

2b2(

a a′′′ + 3 a′a′′

+(

(b′)2 + b b′′)

a′′ + 2 b b′a′′′)+1

4b4a(4)

]

I(0,0,0)

+

[

a

(

a′b′ + a b′′ + b b′b′′ +1

2b2b′′′

)

+1

2b2(

a′′b′ + 2 a′b′′

+a b′′′ +(

(b′)2 + b b′′)

b′′ + 2 b b′b′′′ +1

2b2b(4)

)

]

I(0,0,1)

c© Copyright E. Platen NS of SDEs Chap. 4 188

+

[

a(

b′a′ + b a′′)+1

2b2(

b′′a′ + 2 b′a′′ + b a′′′)]

I(0,1,0)

+

[

a(

(b′)2 + b b′′)

+1

2b2(

b′′b′ + 2 b b′′ + b b′′′)

]

I(0,1,1)

+ b

(

a a′′ + (a′)2 + b b′a′′ +1

2b2a′′′

)

I(1,0,0)

+ b

(

a b′′ + a′b′ + b b′b′′ +1

2b2b′′′

)

I(1,0,1)

+ b(

a′b′ + a′′b)

I(1,1,0) + b(

(b′)2 + b b′′)

I(1,1,1) +R6

c© Copyright E. Platen NS of SDEs Chap. 4 189

Examples for Wagner Platen Expansions

• Vasicek interest rate model

drt = γ (r − rt) dt+ β dWt

for t ∈ [0, T ], r0 ≥ 0

c© Copyright E. Platen NS of SDEs Chap. 4 190

• hierarchical set

A = α ∈ M1 : ℓ(α) ≤ 3

rt = r0 + γ (r − r0) t+ βWt − γ2 (r − r0)t2

2

−β γ

∫ t

0

Ws ds+ γ3 (r − r0)t3

6

+β γ2

∫ t

0

∫ s2

0

Ws1 ds1 ds2 +R6

c© Copyright E. Platen NS of SDEs Chap. 4 191

• Black-Scholes dynamics

dSt = St (a dt+ σ dWt)

for t ∈ [0, T ], S0 ≥ 0

• Wagner-Platen expansion

hierarchical set

A = α ∈ M1 : ℓ(α) ≤ 3

c© Copyright E. Platen NS of SDEs Chap. 4 192

is given by

St = S0

(

1 + a t+ σWt + a2 t2

2+ aσ (I(0,1) + I(1,0))

+σ2 1

2

(

(Wt)2 − t

)

+ a3 t3

6

+ a2 σ (I(0,0,1) + I(0,1,0) + I(1,0,0))

+ aσ2 (I(0,1,1) + I(1,0,1) + I(1,1,0))

+σ3 1

6

(

(Wt)3 − 3 tWt

)

)

+R6

c© Copyright E. Platen NS of SDEs Chap. 4 193

• relationship

tWt = I(0) I(1) = I(0,1) + I(1,0)

Wtt2

2= I(1) I(0,0) = I(0,0,1) + I(0,1,0) + I(1,0,0)

t1

2

(

(Wt)2 − t

)

= I(0) I(1,1) = I(0,1,1) + I(1,0,1) + I(1,1,0)

c© Copyright E. Platen NS of SDEs Chap. 4 194

• Wagner-Platen expansion

St = S0

(

1 + a t+ σWt + a2 t2

2+ aσ tWt

+σ2

2

(

(Wt)2 − t

)

+ a3 t3

6+ a2σWt

t2

2

+ aσ2 t

2

(

(Wt)2 − t

)

+ σ3 1

6

(

(Wt)3 − 3 tWt

)

)

+R6

c© Copyright E. Platen NS of SDEs Chap. 4 195

• squared Bessel process

dXt = ν dt+ 2√Xt dWt

for t ∈ [0, T ] withX0 > 0

hierarchical set

A = α ∈ M1 : ℓ(α) ≤ 2

c© Copyright E. Platen NS of SDEs Chap. 4 196

• Wagner-Platen expansion

Xt = X0 + (ν − 1) t+ 2√X0Wt

+ν − 1√X0

∫ t

0

s dWs + (Wt)2 + R

c© Copyright E. Platen NS of SDEs Chap. 4 197

Stratonovich-Taylor Expansion

(Kloeden-Platen) andτ stopping times

0 ≤ ≤ τ ≤ T , f : [0, T ] × ℜd → ℜ and

A⊂ Mm hierarchical set, then

f (τ,Xτ ) =∑

α∈A

[

fα(,X)

]

,τ+

α∈B(A)

[

fα(·, X·)

]

c© Copyright E. Platen NS of SDEs Chap. 4 198

• example Stratonovich-Taylor expansion

Xt = X0 + a J(0) + b J(1) + a a′ J(0,0) + a b′ J(0,1) + b a′J(1,0)

+ b b′J(1,1) + a(

a a′′ + (a′)2)

J(0,0,0) + a(

a b′′ + a′b′)

J(0,0,1)

+ a(

a′′b+ a′b′)

J(0,1,0) + b(

a a′′ + (a′)2)

J(1,0,0)

+ a(

b b′′ + (b′)2)

J(0,1,1) + b(

a b′′ + a′b′)

J(1,0,1)

+ b(

a′′b+ a′b′)

J(1,1,0) + b(

b b′′ + (b′)2)

J(1,1,1) +R7

c© Copyright E. Platen NS of SDEs Chap. 4 199

Moments of Multiple It o Integrals

First Moments

α ∈ Mm \ v with ℓ(α) 6= n(α)

E(

Iα [f·],τ

∣A

)

= 0

c© Copyright E. Platen NS of SDEs Chap. 4 200

Estimates of Higher Moments

α ∈ Mm

(

E

(

∣Iα [g·],τ

2q ∣∣

∣A

)) 1q

≤(

2 (2 q − 1) eT)ℓ(α)−n(α)

(τ − )ℓ(α)+n(α)R8,

where

R8 =

(

E

(

sup≤s≤τ

|gs|2q∣

∣A

)) 1q

c© Copyright E. Platen NS of SDEs Chap. 4 201

• truncated Wagner-Platen expansions

Xk(t) =∑

α∈Λk

Iα [fα(0, X0)]0,t

hierarchical set

Λk = α ∈ Mm : ℓ(α) + n(α) ≤ k

under appropriate assumptions

Xta.s.= lim

k→∞Xk(t)

a.s.=

α∈Mm

Iα [fα(0, X0)]0,t

c© Copyright E. Platen NS of SDEs Chap. 4 202

Exercises of Chapter 4

4.1 Use the Wagner-Platen expansion with time incrementh > 0 and

Wiener process incrementWt0+h −Wt0 in the expansion part to ex-

pand the incrementXt0+h −Xt0 of a geometric Brownian motion at

time t0, where

dXt = aXt dt+ bXt dWt.

4.2 Expand the geometric Brownian motion from Exercise 4.1 such that all

double integrals appear in the expansion part.

4.3 For multi-indicesα = (0, 0, 0, 0), (1, 0, 2), (0, 2, 0, 1) determine

−α,α−, ℓ(α) andn(α).

4.4 Write out in full the multiple Ito stochastic integralsI(0,0),t, I(1,0),t,

I(1,1),t andI(1,2),t.

c© Copyright E. Platen NS of SDEs Chap. 4 203

4.5 Express the multiple Ito integralI(0,1) in terms ofI(1), I(0) andI(1,0).

4.6 Verify thatI(1,0),∆ is Gaussian distributed with

E(I(1,0),∆) = 0, E(

(I(1,0),∆)2)

=∆3

3,

E(I(1,0),∆ I(1),∆) =∆2

2.

4.7 For the cased = m = 1 determine the Ito coefficient functionsf(1,0)andf(1,1,1).

4.8 Which of the following sets of multi-indices are not hierarchical sets:

∅, (1), v, (1), v, (0), (0, 1), v, (0), (1), (0, 1) ?

4.9 Determine the remainder sets that correspond to the hierarchical sets

v, (1) andv, (0), (1), (0, 1).

c© Copyright E. Platen NS of SDEs Chap. 4 204

4.10 Determine the truncated Wagner-Platen expansion at time t = 0 for the

solution of the Ito SDE

dXt = a(t,Xt) dt+ b(t,Xt) dWt

using the hierarchical setA = v, (0), (1), (1, 1).

4.11 In the notation of Sect.4.2 where the component−1 denotes in a multi-

indexα a jump term, determine forα = (1, 0,−1) its lengthℓ(α),

its number of zeros and its number of time integrations.

4.12 For the multi-indexα = (1, 0,−1) derive in the notation of Sect.4.2

−α.

c© Copyright E. Platen NS of SDEs Chap. 4 205

5 Introduction to Scenario Simulation

Discrete Time Approximation

0 = τ0 < τ1 < · · · < τn < · · · < τN = T

one-dimensional SDE

dXt = a(t,Xt) dt+ b(t,Xt) dWt

c© Copyright E. Platen NS of SDEs Chap. 5 206

• Euler scheme

Euler-Maruyama scheme

Maruyama (1955)

Yn+1 = Yn + a(τn, Yn) (τn+1 − τn) + b(τn, Yn)(

Wτn+1−Wτn

)

Y0 = X0,

Yn = Yτn

∆n = τn+1 − τn

c© Copyright E. Platen NS of SDEs Chap. 5 207

maximum step size

∆ = maxn∈0,1,...,N−1

∆n

• equidistant time discretization

τn = n∆

∆n ≡ ∆ = TN

c© Copyright E. Platen NS of SDEs Chap. 5 208

• Euler approximationrecursively computed

• random increments

∆Wn = Wτn+1−Wτn

for n ∈ 0, 1, . . . , N−1

Wiener process

W = Wt t ∈ [0, T ]

Gaussian distributed

mean

E (∆Wn) = 0

variance

E(

(∆Wn)2) = ∆n

c© Copyright E. Platen NS of SDEs Chap. 5 209

Gaussian pseudo-random numbers generated

• abbreviation

f = f(τn, Yn)

Euler scheme

Yn+1 = Yn + a∆n + b∆Wn,

discrete time approximations

c© Copyright E. Platen NS of SDEs Chap. 5 210

Interpolation

• discrete time approximation

stochastic process on[0, T ]

piecewise constant interpolation

Yt = Ynt

for t ∈ [0, T ]

nt = maxn ∈ 0, 1, . . . , N : τn ≤ t

largest integern for whichτn does not exceedt

c© Copyright E. Platen NS of SDEs Chap. 5 211

• linear interpolation

Yt = Ynt +t− τnt

τnt+1 − τnt

(Ynt+1 − Ynt)

c© Copyright E. Platen NS of SDEs Chap. 5 212

Simulating Geometric Brownian Motion

• illustrate scenario simulation

standard market model as geometric Brownian motions

dXt = aXt dt+ bXt dWt

for t ∈ [0, T ],X0 > 0

• drift coefficient

a(t, x) = ax

• diffusion coefficient

b(t, x) = b x

c© Copyright E. Platen NS of SDEs Chap. 5 213

• appreciation rate a

• volatility b 6= 0

• explicit solution

Xt = X0 exp

((

a− 1

2b2)

t+ bWt

)

• Wiener process

W = Wt, t ∈ [0, T ]

c© Copyright E. Platen NS of SDEs Chap. 5 214

Scenario Simulation

• simulate trajectory of Euler approximation

1. initial valueY0 =X0

2. proceed recursively

Yn+1 = Yn + aYn ∆n + b Yn ∆Wn

for n ∈ 0, 1, . . . , N−1

∆Wn = Wτn+1−Wτn

c© Copyright E. Platen NS of SDEs Chap. 5 215

• comparison with explicit solution at timeτn

Xτn = X0 exp

(

(

a− 1

2b2)

τn + b

n∑

i=1

∆Wi−1

)

for n ∈ 0, 1, . . . , N−1Euler approximation

mathematically another new object

different

negative ?

alternative ways ?

c© Copyright E. Platen NS of SDEs Chap. 5 216

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

Figure 5.1: Euler approximations for∆ = 0.25 and∆ = 0.0625 and

exact solution for Black-Scholes SDE.c© Copyright E. Platen NS of SDEs Chap. 5 217

Strong Approximation

• not specified acriterion for classification

• scenario simulation

approximates paths

testing ofcalibration methods

statisticalestimators

filtering

c© Copyright E. Platen NS of SDEs Chap. 5 218

• Monte-Carlo simulation

approximatesprobabilities

functionals

simulatesexpectations

moments

pricesof contingent claims

or risk measuresas Value at Risk

c© Copyright E. Platen NS of SDEs Chap. 5 219

Order of Strong Convergence

• absolute error criterion

ε(∆) = E(∣

∣XT − Y ∆T

)

A discrete time approximationY ∆ converges strongly with orderγ > 0 at time

T if there exists a positive constantC, which does not depend on∆, and aδ0> 0 such that

ε(∆) = E(∣

∣XT − Y ∆T

)

≤ C∆γ

for each∆ ∈ (0, δ0).

c© Copyright E. Platen NS of SDEs Chap. 5 220

Strong Taylor Schemes

• useWagner-Platen expansions

appropriate truncation

• operators

L0 =∂

∂t+

d∑

k=1

ak ∂

∂xk+

1

2

d∑

k,ℓ=1

m∑

j=1

bk,j bℓ,j∂

∂xk ∂xℓ

L0 =∂

∂t+

d∑

k=1

ak ∂

∂xk

c© Copyright E. Platen NS of SDEs Chap. 5 221

and

Lj = Lj =d∑

k=1

bk,j∂

∂xk

for j ∈ 1, 2, . . . ,m, where

ak = ak − 1

2

m∑

j=1

Lj bk,j

c© Copyright E. Platen NS of SDEs Chap. 5 222

• multiple It o integrals

I(j1,...,jℓ) =

∫ τn+1

τn

. . .

∫ s2

τn

dW j1s1 . . . dW

jℓsℓ

• multiple Stratonovich integrals

J(j1,...,jℓ) =

∫ τn+1

τn

. . .

∫ s2

τn

dW j1s1 . . . dW jℓ

sℓ

for j1, . . . , jℓ ∈ 0, 1, . . . ,m, ℓ ∈ 1, 2, . . .andn ∈ 0, 1, . . .

W 0t = t

for all t ∈ [0, T ]

c© Copyright E. Platen NS of SDEs Chap. 5 223

• It o SDE

dXt = a(t,Xt) dt+m∑

j=1

bj(t,Xt) dWjt

• equivalentStratonovich SDE

dXt = a(t,Xt) dt+

m∑

j=1

bj(t,Xt) dW jt

c© Copyright E. Platen NS of SDEs Chap. 5 224

Euler Scheme

simplest strong Taylor approximation

order of strong convergenceγ = 0.5

• d=m= 1

Euler scheme

Yn+1 = Yn + a∆ + b∆W

∆ = τn+1 − τn

∆W = ∆Wn = Wτn+1−Wτn

N(0,∆) independent Gaussian distributed

c© Copyright E. Platen NS of SDEs Chap. 5 225

• multi-dimensional Euler scheme

m = 1 andd ∈ 1, 2, . . .

kth component

Y kn+1 = Y k

n + ak ∆ + bk ∆W

for k ∈ 1, 2, . . . , d

a= (a1, . . ., ad)⊤ andb= (b1, . . ., bd)⊤

c© Copyright E. Platen NS of SDEs Chap. 5 226

• general multi-dimensional Euler scheme

d,m ∈ 1, 2, . . .

Y kn+1 = Y k

n + ak ∆ +

m∑

j=1

bk,j ∆W j

∆W j = W jτn+1

−W jτn

N(0,∆) independent Gaussian distributed

∆W j1 and∆W j2 independent forj1 6= j2

b= [bk,j]d,mk,j=1 d×m-matrix

truncated Wagner-Platen expansion

c© Copyright E. Platen NS of SDEs Chap. 5 227

Theorem 5.1 Suppose that we have initial valuesX0 andY0 = Y ∆0 such that

E(|X0|2

)

< ∞

and

E

(

∣X0 − Y ∆0

2) 1

2

≤ K1 ∆12 .

Furthermore, assume the Lipschitz condition

|a(t, x) − a(t, y)| + |b(t, x) − b(t, y)| ≤ K2 |x− y|,

the linear growth condition

|a(t, x)| + |b(t, x)| ≤ K3 (1 + |x| )

c© Copyright E. Platen NS of SDEs Chap. 5 228

and

|a(s, x) − a(t, x)| + |b(s, x) − b(t, x)| ≤ K4 (1 + |x| ) |s− t| 12

for all s, t∈ [0, T ] andx, y ∈ℜd, where the constantsK1, . . .,K4 do not depend

on∆. Then the Euler approximationY ∆ converges with strong orderγ = 0.5, that

is we have the estimate

E(∣

∣XT − Y ∆T

)

≤ K5 ∆12 ,

where the constantK5 does not depend on∆.

c© Copyright E. Platen NS of SDEs Chap. 5 229

A Simulation Example

• Black-Scholes SDE

dXt = µXt dt+ σXt dWt

• exact solution

XT = X0 exp

(

µ− σ2

2

)

T + σWT

c© Copyright E. Platen NS of SDEs Chap. 5 230

absolute error

ε(∆) = E(|XT − Y ∆N |)

default parameters:

X0 = 1, µ = 0.06, σ = 0.2 andT = 1

5000 simulations

fitted line

ln(ε(∆)) = −3.86933 + 0.46739 ln(∆)

c© Copyright E. Platen NS of SDEs Chap. 5 231

-4 -3 -2 -1 0

Log -dt

-6

-5.5

-5

-4.5

-4Log-Strong

Error

Figure 5.2: Log-log plot of the absolute errorε(∆) for an Euler Scheme

againstln(∆).

c© Copyright E. Platen NS of SDEs Chap. 5 232

Milstein Scheme

Milstein (1974)

• Milstein scheme

d = m = 1

Yn+1 = Yn + a∆ + b∆W +1

2b b′

(∆W )2 − ∆

orderγ = 1.0 of strong convergence

c© Copyright E. Platen NS of SDEs Chap. 5 233

• multi-dimensional Milstein scheme

m= 1 andd ∈ 1, 2, . . .

Y kn+1 = Y k

n + ak ∆ + bk ∆W +

(

d∑

ℓ=1

bℓ∂bk

∂xℓ

)

1

2

(∆W )2 − ∆

c© Copyright E. Platen NS of SDEs Chap. 5 234

• general multi-dimensional Milstein scheme

d,m ∈ 1, 2, . . .

kth component

Y kn+1 = Y k

n + ak ∆ +m∑

j=1

bk,j∆W j +m∑

j1,j2=1

Lj1bk,j2I(j1,j2)

Ito integralsI(j1,j2)

• alternatively

Y kn+1 = Y k

n + ak ∆ +

m∑

j=1

bk,j∆W j +

m∑

j1,j2=1

Lj1bk,j2J(j1,j2)

c© Copyright E. Platen NS of SDEs Chap. 5 235

Stratonovich integralsJ(j1,j2)

j1 6= j2 j1, j2 ∈ 1, 2, . . . ,m

J(j1,j2) = I(j1,j2) =

∫ τn+1

τn

∫ s1

τn

dW j1s2 dW

j2s1

cannot be simply expressed by∆W j1 and∆W j2

I(j1,j1) =1

2

(∆W j1)2 − ∆

and J(j1,j1) =1

2

(

∆W j1)2

for j1 ∈ 1, 2, . . . ,m

c© Copyright E. Platen NS of SDEs Chap. 5 236

Commutative Noise

• commutativity condition

Lj1bk,j2 = Lj2bk,j1

for all j1, j2 ∈ 1, 2, . . . ,m, k ∈ 1, 2, . . . , d and

(t, x) ∈ [0, T ]×ℜd

• satisfied for Black-Scholes SDEs

additive noise

single Wiener process

c© Copyright E. Platen NS of SDEs Chap. 5 237

• Milstein scheme under commutative noise

Y kn+1 = Y k

n +ak ∆+

m∑

j=1

bk,j∆W j +1

2

m∑

j1,j2=1

Lj1bk,j2∆W j1∆W j2

for k ∈ 1, 2, . . . , d

no double Wiener integrals

c© Copyright E. Platen NS of SDEs Chap. 5 238

A Black-Scholes Example

• correlated Black-Scholes dynamics

d = m = 2

• first risky security

dX1t = X1

t

[

r dt+ θ1(θ1 dt+ dW 1t ) + θ2(θ2 dt+ dW 2

t )]

= X1t

[(

r +1

2

(

(θ1)2 + (θ2)2)

)

dt

+ θ1 dW 1t + θ2 dW 2

t

]

c© Copyright E. Platen NS of SDEs Chap. 5 239

• second risky security

dX2t = X2

t

[

r dt+ (θ1 − σ1,1) (θ1 dt+ dW 1t )]

= X2t

[(

r + (θ1 − σ1,1)

(

1

2θ1 +

1

2σ1,1

))

dt

+(θ1 − σ1,1) dW 1t

]

c© Copyright E. Platen NS of SDEs Chap. 5 240

=⇒

L1 b1,2 =2∑

k=1

bk,1∂

∂xkb1,2 = θ1X1

t θ2

=

2∑

k=1

bk,2∂

∂xkb1,1 = L2 b1,1

and

L1 b2,2 =

2∑

k=1

bk,1∂

∂xkb2,2 = 0 =

2∑

k=1

bk,2∂

∂xkb2,1 = L2 b2,1

=⇒ commutativity condition satisfied

=⇒ Milstein scheme :

c© Copyright E. Platen NS of SDEs Chap. 5 241

Y 1n+1 = Y 1

n + Y 1n

(

r +1

2

(

(θ1)2 + (θ2)2)

∆ + θ1 ∆W 1 + θ2 ∆W 2

+1

2(θ1)2(∆W 1)2 +

1

2(θ2)2(∆W 2)2 + θ1 θ2 ∆W 1 ∆W 2

)

Y 2n+1 = Y 2

n + Y 2n

((

r +1

2(θ1 − σ1,1) (θ1 + σ1,1)

)

+(θ1 − σ1,1)∆W 1 +1

2(θ1 − σ1,1)2 (∆W 1)2

)

( may produce negative trajectories )

c© Copyright E. Platen NS of SDEs Chap. 5 242

A Square Root Process Example

• square root process of dimensionν

dXt =ν

(

1

η−Xt

)

dt+√Xt dW

1t

X0 = 1η

for ν > 2

• Milstein

Yn+1 = Yn +ν

(

1

η− Yn

)

∆ +√Yn ∆W +

1

4

(

∆W 2 − ∆)

c© Copyright E. Platen NS of SDEs Chap. 5 243

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100

Figure 5.3: Square root process simulated by the Milstein scheme.

c© Copyright E. Platen NS of SDEs Chap. 5 244

Approximate Double Wiener Integrals

Forj1 6= j2 with j1, j2 ∈ 1, 2, . . . ,m approximate

J(j1,j2) = I(j1,j2) by

Jp(j1,j2)

= ∆

(

1

2ξj1ξj2 +

√p (µj1,p ξj2 − µj2,p ξj1)

)

+∆

p∑

r=1

1

r

(

ζj1,r(√

2 ξj2 + ηj2,r

)

− ζj2,r(√

2 ξj1 + ηj1,r

))

where

p =1

12− 1

2π2

p∑

r=1

1

r2

c© Copyright E. Platen NS of SDEs Chap. 5 245

ξj , µj,p, ηj,r andζj,r

independentN(0, 1)

ξj =1√∆

∆W j

for j ∈ 1, 2, . . . ,m, r ∈ 1, . . . p andp ∈ 1, 2, . . . if

p = p(∆) ≥ K

=⇒γ = 1.0

c© Copyright E. Platen NS of SDEs Chap. 5 246

Convergence Theorem

E(|X0|2

)

< ∞

E

(

∣X0 − Y ∆0

2) 1

2

≤ K1 ∆12

c© Copyright E. Platen NS of SDEs Chap. 5 247

|a(t, x) − a(t, y)| ≤ K2 |x− y|∣

∣bj1(t, x) − bj1(t, y)

∣ ≤ K2 |x− y|∣

∣Lj1bj2(t, x) − Lj1bj2(t, y)

∣ ≤ K2 |x− y|

|a(t, x)| +∣

∣Lja(t, x)

∣ ≤ K3 (1 + |x|)∣

∣bj1(t, x)

∣+∣

∣Ljbj2(t, x)

∣ ≤ K3 (1 + |x|)∣

∣LjLj1bj2(t, x)

∣ ≤ K3 (1 + |x|)

c© Copyright E. Platen NS of SDEs Chap. 5 248

and

|a(s, x) − a(t, x)| ≤ K4 (1 + |x| ) |s− t| 12∣

∣bj1(s, x) − bj1(t, x)

∣ ≤ K4 (1 + |x| ) |s− t| 12∣

∣Lj1bj2(s, x) − Lj1bj2(t, x)

∣ ≤ K4 (1 + |x| ) |s− t| 12

for all s, t ∈ [0, T ], x, y ∈ ℜd, j ∈ 0, . . .,m andj1, j2 ∈ 1, 2, . . . ,m.

Then the Milstein scheme converges with strong orderγ = 1.0

E(∣

∣XT − Y ∆T

)

≤ K5 ∆.

Kloeden & Platen (1999).

c© Copyright E. Platen NS of SDEs Chap. 5 249

A Simulation Study

-4 -3 -2 -1 0

Log -dt

-9

-8

-7

-6

-5Log-Strong

Error

Figure 5.4: Log-log plot of the absolute error against log-step size for a

Milstein scheme.c© Copyright E. Platen NS of SDEs Chap. 5 250

• linear regression

ln(ε(∆)) = −4.91021 + 0.95 ln(∆)

c© Copyright E. Platen NS of SDEs Chap. 5 251

Order 1.5 Strong Taylor Scheme

• simulation tasks that require more accurate schemes

extreme log-returns

• including further multiple stochastic integrals

• order 1.5 strong Taylor scheme

d = m = 1

c© Copyright E. Platen NS of SDEs Chap. 5 252

Yn+1 = Yn + a∆ + b∆W +1

2b b′

(∆W )2 − ∆

+ a′ b∆Z +1

2

(

a a′ +1

2b2 a′′

)

∆2

+

(

a b′ +1

2b2 b′′

)

∆W ∆ − ∆Z

+1

2b(

b b′′ + (b′)2)

1

3(∆W )2 − ∆

∆W

c© Copyright E. Platen NS of SDEs Chap. 5 253

• double integral

∆Z = I(1,0) =

∫ τn+1

τn

∫ s2

τn

dWs1 ds2

Gaussian

E(∆Z) = 0

E((∆Z)2) =1

3∆3

E(∆Z∆W ) =1

2∆2

c© Copyright E. Platen NS of SDEs Chap. 5 254

• two independentN(0, 1)

U1 andU2

=⇒∆W = U1

√∆, ∆Z =

1

2∆

32

(

U1 +1√3U2

)

• triple Wiener integral

I(1,1,1) =1

2

1

3(∆W 1)2 − ∆

∆W 1

scaled monic Hermite polynomial

c© Copyright E. Platen NS of SDEs Chap. 5 255

• multi-dimensional order 1.5 strong Taylor scheme

d ∈ 1, 2, . . . andm = 1

Y kn+1 = Y k

n + ak ∆ + bk ∆W

+1

2L1 bk (∆W )2 − ∆ + L1 ak ∆Z

+L0 bk ∆W ∆ − ∆Z +1

2L0 ak ∆2

+1

2L1 L1 bk

1

3(∆W )2 − ∆

∆W

c© Copyright E. Platen NS of SDEs Chap. 5 256

• general multi-dimensional order 1.5 strong Taylor scheme

d,m ∈ 1, 2, . . .

Y kn+1 = Y k

n + ak ∆ +1

2L0 ak ∆2

+

m∑

j=1

(bk,j∆W j + L0 bk,j I(0,j) + Lj ak I(j,0))

+

m∑

j1,j2=1

Lj1 bk,j2 I(j1,j2) +

m∑

j1,j2,j3=1

Lj1 Lj2 bk,j3 I(j1,j2,j3)

in case of additive noise simplifies considerably

strong orderγ = 1.5

c© Copyright E. Platen NS of SDEs Chap. 5 257

Approximate Multiple Stochastic Integrals

Let ξj , ζj,1, . . . , ζj,p, ηj,1, . . . , ηj,p, µj,p andφj,p

be independentN(0, 1)

for j, j1, j2, j3 ∈ 1, 2, . . . ,m and somep ∈ 1, 2, . . .

set

I(j) = ∆W j =√∆ ξj, I(j,0) =

1

2∆(√

∆ ξj + aj,0

)

with

aj,0 = −√2∆

π

p∑

r=1

1

rζj,r − 2

∆ p µj,p

c© Copyright E. Platen NS of SDEs Chap. 5 258

where

p =1

12− 1

2π2

p∑

r=1

1

r2

I(0,j) = ∆W j ∆ − I(j,0), I(j,j) =1

2

(∆W j)2 − ∆

I(j,j,j) =1

2

1

3(∆W j)2 − ∆

∆W j

Ip(j1,j2) =1

2∆ ξj1 ξj2 − 1

2

√∆(ξj1 aj2,0 − ξj2 aj1,0) +Ap

j1,j2∆

c© Copyright E. Platen NS of SDEs Chap. 5 259

Order 2.0 Strong Taylor Scheme

• use Stratonovich-Taylor expansion

d=m= 1

Yn+1 = Yn + a∆ + b∆W +1

2!b b′(∆W )2 + b a′ ∆Z

+1

2a a′ ∆2 + a b′∆W ∆ − ∆Z

+1

3!b(

b b′)′

(∆W )3 +1

4!b(

b(

b b′)′)′

(∆W )4

+ a(

b b′)′J(0,1,1) + b

(

a b′)′J(1,0,1) + b

(

b a′)′ J(1,1,0)

c© Copyright E. Platen NS of SDEs Chap. 5 260

Approximate Multiple Stratonovich Integrals

∆W = Jp(1) =

√∆ ζ1

∆Z = Jp(1,0) =

1

2∆(√

∆ ζ1 + a1,0

)

Jp(1,0,1) =

1

3!∆2ζ21 − 1

4∆ a2

1,0 +1

π∆

32 ζ1 b1 − ∆2Bp

1,1

Jp(0,1,1) =

1

3!∆2ζ21 − 1

2π∆

32 ζ1 b1 +∆2Bp

1,1 −1

4∆

32 a1,0 ζ1 +∆2 Cp

1,1

Jp(1,1,0) =

1

3!∆2ζ21 +

1

4∆ a2

1,0− 1

2π∆

32 ζ1 b1+

1

4∆

32 a1,0 ζ1−∆2 Cp

1,1

c© Copyright E. Platen NS of SDEs Chap. 5 261

with

a1,0 = − 1

π

√2∆

p∑

r=1

1

rξ1,r − 2

∆p µ1,p

p =1

12− 1

2π2

p∑

r=1

1

r2

b1 =

2

p∑

r=1

1

r2η1,r +

∆αp φ1,p

αp =π2

180− 1

2π2

p∑

r=1

1

r4

Bp1,1 =

1

4π2

p∑

r=1

1

r2(

ξ21,r + η21,r

)

c© Copyright E. Platen NS of SDEs Chap. 5 262

and

Cp1,1 = − 1

2π2

p∑

r,l=1r 6=l

r

r2 − l2

(

1

lξ1,r ξ1,ℓ − l

rη1,r η1,ℓ

)

ζ1, ξ1,r η1,r, µ1,p andφ1,p ∼ N(0, 1) i.i.d.

c© Copyright E. Platen NS of SDEs Chap. 5 263

Multi-dimensional Order 2.0 Strong Taylor Scheme

m= 1

Y kn+1 = Y k

n + ak ∆ + bk ∆W +1

2!L1 bk (∆W )2 + L1 ak ∆Z

+1

2L0ak ∆2 + L0bk ∆W ∆ − ∆Z

+1

3!L1L1bk (∆W )3 +

1

4!L1L1L1bk (∆W )4

+L0L1bk J(0,1,1) + L1L0bk J(1,0,1) + L1L1ak J(1,1,0)

c© Copyright E. Platen NS of SDEs Chap. 5 264

• general multi-dimensional order 2.0 strong Taylor scheme

Y kn+1 = Y k

n + ak ∆ +1

2L0ak ∆2

+

m∑

j=1

(

bk,j ∆W j + L0bk,jJ(0,j) + Ljak J(j,0)

)

+

m∑

j1,j2=1

(

Lj1bk,j2J(j1,j2) + L0Lj1bk,j2J(0,j1,j2)

+Lj1L0bk,j2J(j1,0,j2) + Lj1Lj2ak J(j1,j2,0)

)

+

m∑

j1,j2,j3=1

Lj1Lj2bk,j3J(j1,j2,j3)

+

m∑

j1,j2,j3,j4=1

Lj1Lj2Lj3bk,j4J(j1,j2,j3,j4)

c© Copyright E. Platen NS of SDEs Chap. 5 265

Convergence Theorem

• hierarchical set

Aγ =

α ∈ M : ℓ(α) + n(α) ≤ 2 γ or ℓ(α) = n(α) = γ +1

2

c© Copyright E. Platen NS of SDEs Chap. 5 266

• order γ strong Taylor approximation

Y ∆t = Y ∆

nt+

α∈Aγ\vIα[

fα(

τnt , Y∆nt

)]

τnt,t

=∑

α∈Aγ

Iα[

fα(

τnt , Y∆nt

)]

τnt,t

for γ ∈ 0.5, 1.0, 1.5, 2.0, . . .

stochastic interpolation

c© Copyright E. Platen NS of SDEs Chap. 5 267

Theorem

Y ∆ = Y ∆t , t ∈ [0, T ] orderγ strong Taylor approximation

γ ∈ 0.5, 1.0, 1.5, 2.0, . . .

|fα(t, x) − fα(t, y)| ≤ K1 |x− y|

for all α ∈ Aγ , t ∈ [0, T ] andx, y ∈ ℜd,

f−α ∈ C1,2 and fα ∈ Hα

for all α ∈ Aγ ∪ B (Aγ) and

|fα(t, x)| ≤ K2 (1 + |x|)

c© Copyright E. Platen NS of SDEs Chap. 5 268

for all α ∈ Aγ ∪ B (Aγ), t ∈ [0, T ] andx ∈ ℜd. Then

E

(

sup0≤t≤T

∣Xt − Y ∆t

2 ∣∣A0

)

≤ K3

(

1 + |X0|2)

∆2γ +K4

∣X0 − Y ∆0

2

,

whereK1,K2,K3, andK4 do not depend on∆.

c© Copyright E. Platen NS of SDEs Chap. 5 269

Derivative Free Strong Schemes

• similar to Runge-Kutta schemes for ODEs

Explicit Order 1.0 Strong Schemes

Platen (1984)

d=m= 1

Yn+1 = Yn + a∆ + b∆W +1

2√∆

b(τn, Υn) − b

(∆W )2 − ∆

with supporting value

Υn = Yn + a∆ + b√∆

c© Copyright E. Platen NS of SDEs Chap. 5 270

• multi-dimensional Platen scheme

m = 1

Y kn+1 = Y k

n + ak ∆ + bk ∆W

+1

2√∆

(

bk(τn, Υn) − bk)

(

(∆W )2 − ∆)

with the vector supporting value

Υn = Yn + a∆ + b√∆

c© Copyright E. Platen NS of SDEs Chap. 5 271

• general multi-dimensional case

Y kn+1 = Y k

n + ak ∆ +

m∑

j=1

bk,j ∆W j

+1√∆

m∑

j1,j2=1

(

bk,j2(

τn, Υj1n

)

− bk,j2)

I(j1,j2)

with

Υjn = Yn + a∆ + bj

√∆

for j ∈ 1, 2, . . .

c© Copyright E. Platen NS of SDEs Chap. 5 272

• commutative noise

Y kn+1 = Y k

n + ak ∆ +1

2

m∑

j=1

(

bk,j(

τn, Υn

)

+ bk,j)

∆W j

with

Υn = Yn + a∆ +m∑

j=1

bj ∆W j

strong orderγ = 1.0

c© Copyright E. Platen NS of SDEs Chap. 5 273

ln(ε(∆)) = −4.71638 + 0.946112 ln(∆)

-4 -3 -2 -1 0

Log -dt

-9

-8

-7

-6

-5Log-Strong

Error

Figure 5.5: Log-log plot of the absolute error for a Platen scheme.

c© Copyright E. Platen NS of SDEs Chap. 5 274

• two stage Runge-Kutta methodγ = 1.0

m = d = 1

Burrage (1998)

Yn+1 = Yn +(

a(Yn) + 3 a(Yn)) ∆

4

+1

4

(

b(Yn) + 3 b(Yn))

∆W

with

Yn = Yn +2

3(a(Yn)∆ + b(Yn)∆W )

c© Copyright E. Platen NS of SDEs Chap. 5 275

Explicit Order 1.5 Strong Schemes

Platen (1984)

d = m = 1

with

Υ± = Yn + a∆ ± b√∆

and

Φ± = Υ+ ± b(Υ+)√∆

c© Copyright E. Platen NS of SDEs Chap. 5 276

Yn+1 = Yn + b∆W +1

2√∆

(

a(Υ+) − a(Υ−))

∆Z

+1

4

(

a(Υ+) + 2a+ a(Υ−))

+1

4√∆

(

b(Υ+) − b(Υ−)) (

(∆W )2 − ∆)

+1

2∆

(

b(Υ+) − 2b+ b(Υ−)) (

∆W∆ − ∆Z)

+1

4∆

(

b(Φ+) − b(Φ−) − b(Υ+) + b(Υ−))

×(

1

3(∆W )2 − ∆

)

∆W

c© Copyright E. Platen NS of SDEs Chap. 5 277

• order1.5 Platen scheme

Y kn+1 = Y k

n + ak ∆ +

m∑

j=1

bk,j ∆W j

+1

2√∆

m∑

j2=0

m∑

j1=1

(

bk,j2(

Υj1+

)

− bk,j2(

Υj1−

) )

I(j1,j2)

+1

2∆

m∑

j2=0

m∑

j1=1

(

bk,j2(

Υj1+

)

− 2bk,j2 + bk,j2(

Υj1−

))

I(0,j2)

+1

2∆

m∑

j1,j2,j3=1

(

bk,j3(

Φj1,j2+

)

− bk,j3(

Φj1,j2−

)

− bk,j3(

Υj1+

)

+ bk,j3(

Υj1−

))

I(j1,j2,j3)

c© Copyright E. Platen NS of SDEs Chap. 5 278

with

Υj± = Yn +

1

ma∆ ± bj

√∆

and

Φj1,j2± = Υj1

+ ± bj2(

Υj1+

) √∆

where we interpretbk,0 asak

c© Copyright E. Platen NS of SDEs Chap. 5 279

A Simulation Study

-4 -3 -2 -1 0

Log -dt

-12

-10

-8

-6

-4

Log-Strong

Error

1.5 Taylor

R -K

Milstein

Euler

Figure 5.6: Log-log plot of the absolute error for various strong schemes.

c© Copyright E. Platen NS of SDEs Chap. 5 280

Method CPU Time

Euler 3.5 Seconds

Milstein 4.1 Seconds

1.0 Strong Platen 4.1 Seconds

1.5 Strong Taylor 4.4 Seconds

Table 2: Computational times for various strong methods.

500000 time steps

c© Copyright E. Platen NS of SDEs Chap. 5 281

Numerical Stability

• ability of a scheme to control the propagation

of initial and roundoff errors

• numerical stability has higher priority than

a potentially high strong order

c© Copyright E. Platen NS of SDEs Chap. 5 282

DeterministicA-Stability

• one-step method

Yn+1 = Yn + Ψ(τn, Yn, Yn+1,∆)∆

ordinary differential equation

dx

dt= a(t, x)

a(t, x) satisfies Lipschitz condition

c© Copyright E. Platen NS of SDEs Chap. 5 283

• numerically stable

if there exist positive constants∆0 andM such that

|Yn − Yn| ≤ M |Y0 − Y0|

n ∈ 0, 1, . . . , N, ∆ < ∆0

and any two solutionsY , Y

corresponding to the initial valuesY0 Y0, respectively

• asymptotically numerically stable

if there exist∆0 andM such that

limn→∞

|Yn − Yn| ≤ M |Y0 − Y0|

for any twoY , Y

c© Copyright E. Platen NS of SDEs Chap. 5 284

• test equation

dxt

dt= λxt

with λ ∈ ℜ

c© Copyright E. Platen NS of SDEs Chap. 5 285

numerical scheme in recursive form

Yn+1 = G(λ∆)Yn

• A-stability region:

thoseλ∆ ∈ ℜ for which

|G(λ∆)| < 1

c© Copyright E. Platen NS of SDEs Chap. 5 286

• explicit Euler scheme

Yn+1 = Yn + a(tn, Yn)∆

Yn+1 = (1 + λ∆)Yn

A-stability region

open unit interval centered at−1 and ending at 0 since

|G(λ∆)| = |1 + λ∆|

c© Copyright E. Platen NS of SDEs Chap. 5 287

-2 -1 0

-1

-0.5

0.5

1

Figure 5.7: Region ofA-stability for the deterministic Euler scheme.

c© Copyright E. Platen NS of SDEs Chap. 5 288

• implicit Euler scheme

Yn+1 = Yn + a(tn+1, Yn+1)∆

Yn+1 = Yn + λ∆Yn+1

(1 − λ∆)Yn+1 = Yn

G(λ∆) =1

1 − λ∆

|G(λ∆)| = 1

|1 − λ∆|exterior of an interval with center at1 beginning at 0

• scheme is calledA-stable if it covers at least the left half axis

c© Copyright E. Platen NS of SDEs Chap. 5 289

StochasticA-Stability

• test equation

dXt = λXt dt+ dWt

λ ∈ ℜ

c© Copyright E. Platen NS of SDEs Chap. 5 290

• discrete time approximation

Yn+1 = GA(λ∆)Yn + Zn,

Zn does not depend onY0, Y1, . . . , Yn, Yn+1

c© Copyright E. Platen NS of SDEs Chap. 5 291

• A-stability region

real numbersλ∆ for which

|GA(λ∆)| < 1

If A-stability region covers left half of the real axis

=⇒ thenA-stable

c© Copyright E. Platen NS of SDEs Chap. 5 292

Drift Implicit Euler Scheme

• drift implicit Euler scheme

strong orderγ = 0.5

d = m = 1

Yn+1 = Yn + a (τn+1, Yn+1) ∆ + b∆W

c© Copyright E. Platen NS of SDEs Chap. 5 293

• family of drift implicit Euler schemes

Yn+1 = Yn + αa (τn+1, Yn+1) + (1 − α) a ∆ + b∆W

degree of implicitness α ∈ [0, 1]

for α= 0 explicit Euler scheme

for α= 1 drift implicit Euler scheme

c© Copyright E. Platen NS of SDEs Chap. 5 294

• general multi-dimensional

family of drift implicit Euler schemes

Y kn+1 = Y k

n +(

αkak (τn+1, Yn+1) + (1 − αk) a

k)

+

m∑

j=1

bk,j ∆W j

αk ∈ [0, 1], k ∈ 1, 2, . . . , d

c© Copyright E. Platen NS of SDEs Chap. 5 295

• for test equation

Yn+1 = Yn +(

αλYn+1 + (1 − α)λYn

)

∆ + ∆Wn

Yn+1 = GA(λ∆)Yn + ∆Wn (1 − αλ∆)−1

transfer function

GA(λ∆) = (1 − αλ∆)−1 (1 + (1 − α)λ∆)

c© Copyright E. Platen NS of SDEs Chap. 5 296

Yn corresponding discrete time approximation that starts at initial valueY0

Yn+1 − Yn+1 = GA(λ∆) (Yn − Yn)

= (GA(λ∆))n (Y0 − Y0)

as long as

|GA(λ∆)| < 1

the initial error(Y0 − Y0) is decreased

=⇒ λ∆ ∈(

− 2

1 − 2α, 0

)

for α ≥ 12

A-stable

c© Copyright E. Platen NS of SDEs Chap. 5 297

Drift Implicit Milstein Scheme

d = m = 1

• It o version

Yn+1 = Yn + a (τn+1, Yn+1) ∆ + b∆W +1

2b b′(

(∆W )2 − ∆)

c© Copyright E. Platen NS of SDEs Chap. 5 298

• Stratonovich version

Yn+1 = Yn + a (τn+1, Yn+1) ∆ + b∆W +1

2b b′(∆W )2

adjusted Stratonovich drift a= a− 12b b′

both schemes are different

c© Copyright E. Platen NS of SDEs Chap. 5 299

• multi-dimensional case withd=m ∈ 1, 2, . . . andcommutative noise

Y kn+1 = Y k

n +

αk ak (τn+1, Yn+1) + (1 − αk) a

k

+

m∑

j=1

bk,j ∆W j

+1

2

m∑

j1,j2=1

Lj1bk,j2

∆W j1∆W j2 − 1j1=j2∆

and

Y kn+1 = Y k

n +

αk ak (τn+1, Yn+1) + (1 − αk) a

k

+

m∑

j=1

bk,j ∆W j +1

2

m∑

j1,j2=1

Lj1bk,j2∆W j1∆W j2

c© Copyright E. Platen NS of SDEs Chap. 5 300

• general drift implicit Milstein scheme

Ito version

Y kn+1 = Y k

n +(

αk ak (τn+1, Yn+1) + (1 − αk) a

k)

+

m∑

j=1

bk,j ∆W j +

m∑

j1,j2=1

Lj1bk,j2I(j1,j2)

c© Copyright E. Platen NS of SDEs Chap. 5 301

Stratonovich version

Y kn+1 = Y k

n +(

αk ak (τn+1, Yn+1) + (1 − αk) a

k)

+

m∑

j=1

bk,j ∆W j +

m∑

j1,j2=1

Lj1bk,j2J(j1,j2)

αk ∈ [0, 1] for k ∈ 1,. . ., d

multiple stochastic integralsI(j1,j2) andJ(j1,j2)

approximated

c© Copyright E. Platen NS of SDEs Chap. 5 302

Drift Implicit Order 1.0 Strong Runge-Kutta Scheme

d=m= 1

Yn+1 = Yn + a (τn+1, Yn+1) ∆ + b∆W

+1

2√∆

(

b(

τn, Υn

)− b) (

(∆W )2 − ∆)

with supporting value

Υ = Yn + a∆ + b√∆

c© Copyright E. Platen NS of SDEs Chap. 5 303

• family of drift implicit order 1.0 strong Runge-Kutta schem es

Y kn+1 = Y k

n +(

αk a (τn+1, Yn+1) + (1 − αk) ak)

+m∑

j=1

bk,j ∆W j

+1√∆

m∑

j1,j2=1

(

bk,j2(

τn, Υj1n

)

− bk,j2)

I(j1,j2)

with

Υjn = Yn + a∆ + bj

√∆

for j ∈ 1, 2, . . . ,mαk ∈ [0, 1] for k ∈ 1, 2, . . . , d

c© Copyright E. Platen NS of SDEs Chap. 5 304

• for commutative noise

Y kn+1 = Y k

n +(

αk ak (τn+1, Yn+1) + (1 − αk) a

k)

+1

2

m∑

j=1

(

bk,j(

τn, Ψn

)

+ bk,j)

∆W j

with

Ψn = Yn + a∆ +

m∑

j=1

bj ∆W j

αk ∈ [0, 1] for k ∈ 1, 2, . . . , d

c© Copyright E. Platen NS of SDEs Chap. 5 305

Alternative Implicit Methods

• implicit methods are important

• overcome a range of numerical instabilities

• the above strong schemes do not provide implicit diffusion terms

=⇒ important limitation

• drift implicit methods are well adapted for small noise and additive noise

for relatively large multiplicative noise

implicit diffusion terms seem unavoidable

c© Copyright E. Platen NS of SDEs Chap. 5 306

• illustration with multiplicative noise

dXt = σXt dWt

• explicit strong methods have large errors for not too small time step sizes

• very small time step size may require unrealistic computational time

• cannot apply drift implicit schemes

c© Copyright E. Platen NS of SDEs Chap. 5 307

• balanced implicit methods

Milstein, Platen & Schurz (1998)

m = d = 1

Yn+1 = Yn + a∆ + b∆W + (Yn − Yn+1)Cn

where

Cn = c0(Yn)∆ + c1(Yn) |∆W |

c0, c1 positive, real valued uniformly bounded functions

strong orderγ = 0.5

c© Copyright E. Platen NS of SDEs Chap. 5 308

• low order strong convergence

price to pay for numerical stability

• family of specific methods providing a balance between approximating diffusion

terms

c© Copyright E. Platen NS of SDEs Chap. 5 309

Simulation Study for the Balanced Method

• Euler scheme

Yn+1 = Yn + σ Yn ∆W

• no simple stochastic counterpart of deterministic implicit Euler method since

Yn+1 = Yn + σ Yn+1 ∆W

Yn+1 =Yn

1 − σ∆W

fails because

E|(1 − σ∆W )−1| = +∞

c© Copyright E. Platen NS of SDEs Chap. 5 310

• partially implicit scheme

Yn+1 = Yn +

(

σ∆W +σ2

2(∆W )2

)

Yn − σ2

2Yn+1 ∆

• balanced implicit method

Yn+1 = Yn + σ Yn ∆W + σ (Yn − Yn+1) |∆W |

=⇒ implicitness also in diffusion term

c© Copyright E. Platen NS of SDEs Chap. 5 311

• explicit solution

XT = exp

σWT − σ2

2T

X0

• absolute error

εT (∆) = E(|XT − YN |)

c© Copyright E. Platen NS of SDEs Chap. 5 312

Figure 5.8: Estimated absolute errorεT (∆) of the Euler method at timeT

for time step sizes∆ = 2−4 and2−5.

c© Copyright E. Platen NS of SDEs Chap. 5 313

Figure 5.9: Absolute error for the partially implicit method.

c© Copyright E. Platen NS of SDEs Chap. 5 314

Figure 5.10: Absolute error for the balanced implicit method.

c© Copyright E. Platen NS of SDEs Chap. 5 315

The General Balanced Method and its Convergence

• d-dimensional SDE

dXt = a(t,Xt) dt+

m∑

j=1

bj(t,Xt) dWjt

• family of balanced implicit methods

Yn+1 = Yn+a(τn, Yn)∆+

m∑

j=1

bj(τn, Yn)∆Wjn+Cn(Yn−Yn+1)

c© Copyright E. Platen NS of SDEs Chap. 5 316

where

Cn = c0(τn, Yn)∆ +

m∑

j=1

cj(τn, Yn) |∆W jn|

c0, c1, . . . , cm

d× d-matrix-valued uniformly bounded functions

c© Copyright E. Platen NS of SDEs Chap. 5 317

• assume that for any sequence of real(αi) with α0 ∈ [0, α], α1 ≥ 0, . . .,

αm ≥ 0, whereα ≥ ∆

matrix

M(t, x) = I + α0 c0(t, x) +

m∑

j=1

aj cj(t, x)

has an inverse

|(M(t, x))−1| ≤ K < ∞

c© Copyright E. Platen NS of SDEs Chap. 5 318

Theorem (Milstein-Platen-Schurz)

The balanced implicit method converges with strong orderγ = 0.5, that is for all

k ∈ 0, 1, . . . , N and step size∆ = TN

,N ∈ 1, 2, . . . one has

E(|Xτk − Yk|

∣A0

) ≤ (

E(|Xτk − Yk|2

∣A0

))12

≤ K(

1 + |X0|2)

12 ∆

12 ,

whereK does not depend on∆.

c© Copyright E. Platen NS of SDEs Chap. 5 319

Predictor-Corrector Euler Scheme

• corrector

Yn+1 = Yn +(

θ aη(Yn+1) + (1 − θ) aη(Yn))

∆n

+(

η b(Yn+1) + (1 − η) b(Yn))

∆Wn

aη = a− η b b′

• predictor

Yn+1 = Yn + a(Yn)∆n + b(Yn)∆Wn

θ, η ∈ [0, 1] degree of implicitness

c© Copyright E. Platen NS of SDEs Chap. 5 320

Strong Approximation of SDEs with Jumps

Some Jump Diffusions in Finance

• Merton model Merton (1976)

dSt = St− (a dt+ σ dWt + dYt)

• compound Poisson process

Yt =

Nt∑

k=1

ξk

with

dYt = ξNt dNt

c© Copyright E. Platen NS of SDEs Chap. 5 321

• Poisson process

N = Nt, t ∈ [0, T ] with intensityλ > 0

jump sizes

i.i.d. random variablesξ1, ξ2, . . .

• explicit solution

St = S0 exp

(

a− 1

2σ2

)

t+ σWt

Nt∏

k=1

(ξk + 1)

c© Copyright E. Platen NS of SDEs Chap. 5 322

• compound Poisson process

jump size

∆Yτk = Yτk − Yτk− = ξk

• asset price jump size

∆Sτk = Sτk − Sτk− = Sτk− ξk

=⇒Sτk = Sτk− (ξk + 1)

=⇒ extension of the Black-Scholes model

c© Copyright E. Platen NS of SDEs Chap. 5 323

• for ξ1 = −1

default of the stock

• for ξk = δ − 1, k ∈ 1, 2, . . . with δ ∈ [0, 1]

δ recovery rate of a stock

c© Copyright E. Platen NS of SDEs Chap. 5 324

• scalar jump diffusion

dXt = a(t,Xt) dt+ b(t,Xt) dWt + c(t−, Xt−) dNt

at a jump timeτ

Xτ = Xτ− + c(τ−, Xτ−)

• multi-dimensional jump diffusion

interacting factorsX1t , . . . , X

dt

independent standard Wiener processesW 1, . . . ,Wm

c© Copyright E. Platen NS of SDEs Chap. 5 325

n Poisson processes with intensitiesλ1(t,Xt), . . . , λn(t,Xt)

SDE

dXit = ai(t,Xt) dt+

m∑

k=1

bi,k(t,Xt) dWkt

+

n∑

ℓ=1

ci,ℓ(t−, Xt−) dN ℓt

i ∈ 1, 2, . . . , d

credit risk, operational risk and insurance modeling

c© Copyright E. Platen NS of SDEs Chap. 5 326

Random Jump Size

• Poisson jump measurepℓϕℓ

(·, ·)

• mark set E = ℜ\0

ϕℓ(E) < ∞

ℓ ∈ 1, 2, . . . , d

c© Copyright E. Platen NS of SDEs Chap. 5 327

jumps arrive at timeτ1 < τ2 < . . . with marksv1, v2, . . .

Nℓt

k=1

ci,ℓ(vk) as∫ t

0

Eci,ℓ(v) pℓ

ϕℓ(dv, dt)

∫ t

0

Eci,ℓ(v)

(

pℓϕℓ

(dv, dt) − ϕℓ(dv) dt)

(A, P )-martingale

c© Copyright E. Platen NS of SDEs Chap. 5 328

• jump diffusion SDE

dXit = ai(t,Xt) dt+

m∑

k=1

bi,k(t,Xt) dWkt

+n∑

ℓ=1

Eci,ℓ(v, t−, Xt−) pℓ

ϕℓ(dv, dt)

Xiτ = Xi

τ− + ci,ℓ(v, τ−, Xτ−).

(A, P )-martingale measure

qℓϕℓ(dv, dt) = pℓ

ϕℓ(dv, dt) − ϕℓ(dv) dt

c© Copyright E. Platen NS of SDEs Chap. 5 329

• Levy process models

Barndorff-Nielsen (1998)

Madan & Seneta (1990)

• Affine jump-diffusions

Duffie, Pan & Singleton (2000)

• interest rate term structure

Bjork, Kabanov & Runggaldier (1997)

Glasserman & Merener (2003)

c© Copyright E. Platen NS of SDEs Chap. 5 330

Discrete Time Approximation with Jump Times

• discrete time approximation of jump diffusions

Platen (1982a, 1984)

Platen & Rebolledo (1985)

Maghsoodi & Harris (1987)

Mikulevicius & Platen (1988)

Maghsoodi (1996, 1998)

Kubilius & Platen (2002)

Glasserman & Merener (2003)

Bruti-Liberati & Platen (2007)

c© Copyright E. Platen NS of SDEs Chap. 5 331

• jump adapted time discretization

ti with t0 < t1 < . . .

superposition of the random jump timesτ1, τ2, . . . of the Poisson processes

pℓϕℓ

(E, [0, ·]) and a deterministic grid

can be precomputed

• maximum step size is∆ > 0

ti+1 − ti ≤ ∆ a.s

c© Copyright E. Platen NS of SDEs Chap. 5 332

Jump-Adapted Time Discretization

t0 t1 t2 t3 = T

regular

τ1

r

τ2

r jump times

t0 t1 t2 t3 t4 t5 = T

r r jump-adapted

c© Copyright E. Platen NS of SDEs Chap. 5 333

Jump-Adapted Strong Approximations

jump-adapted time discretization⇓

jump times included in time discretization

• jump-adapted Euler scheme

Ytn+1− = Ytn + a(Ytn)∆tn + b(Ytn)∆Wtn

and

Ytn+1= Ytn+1− + c(Ytn+1−)∆pn

• γ = 0.5

c© Copyright E. Platen NS of SDEs Chap. 5 334

Euler Scheme

d = m = n = 1

Yti+1− = Yti + a (ti+1 − ti) + b(

Wti+1−Wti

)

jump part

Yti+1= Yti+1− +

Ec(v, ti+1−, Yti+1−) pϕ(dv, ti+1)

• multi-dimensional

Euler scheme

Y iti+1− = Y i

ti + ai (ti+1 − ti) +

m∑

k=1

bi,k(

W kti+1

−W kti

)

c© Copyright E. Platen NS of SDEs Chap. 5 335

with

Y iti+1

= Y iti+1− +

n∑

ℓ=1

Eci,ℓ(v, ti+1−, Yti+1−) pℓ

ϕℓ(dv, ti+1)

for i ∈ 1, 2, . . . , d

Platen (1982a)

γ = 0.5

c© Copyright E. Platen NS of SDEs Chap. 5 336

Order 1.0 Taylor Scheme

Y iti+1− = Y i

ti + ai (ti+1 − ti) +

m∑

k=1

bi,k(

W kti+1

−W kti

)

+

m∑

j1,j2=1

Lj1 bi,j2 I(j1,j2)ti,ti+1

with

Y iti+1

= Y iti+1− +

n∑

ℓ=1

Eci,ℓ(v, ti+1−, Yti+1−) pℓ

ϕℓ(dv, ti+1)

for i ∈ 1, 2, . . . , d

c© Copyright E. Platen NS of SDEs Chap. 5 337

• if noise is commutative =⇒ scheme simplifies

Platen (1982a)

γ = 1.0

c© Copyright E. Platen NS of SDEs Chap. 5 338

Merton SDE :µ = 0.05, σ = 0.2,ψ = −0.2, λ = 10,X0 = 1, T = 1

0 0.2 0.4 0.6 0.8 1T

0

0.2

0.4

0.6

0.8

1X

Figure 5.11: Plot of a jump-diffusion path.

c© Copyright E. Platen NS of SDEs Chap. 5 339

0 0.2 0.4 0.6 0.8 1T

-0.00125

-0.001

-0.00075

-0.0005

-0.00025

0

0.00025

0.0005Error

Figure 5.12: Plot of the strong error for Euler(red) and1.0 Taylor(blue)

scheme.

c© Copyright E. Platen NS of SDEs Chap. 5 340

Merton SDE :µ = −0.05, σ = 0.1, λ = 1,X0 = 1, T = 0.5

-10 -8 -6 -4 -2 0Log2dt

-25

-20

-15

-10

Log 2Error

15TaylorJA

1TaylorJA

1Taylor

EulerJA

Euler

Figure 5.13: Log-log plot of strong error versus time step size.

c© Copyright E. Platen NS of SDEs Chap. 5 341

Exercises of Chapter 5, 6 and 7

5.1 Write down for the linear SDE

dXt = (µXt + η) dt+ γ Xt dWt

withX0 = 1 the Euler scheme and the Milstein scheme.

5.2 Determine for the Vasicek short rate model

drt = γ(r − rt) dt+ β dWt

the Euler and Milstein schemes. What are the differences between the resulting

two schemes?

5.3 Write down for the SDE in Exercise 5.1 the order 1.5 strongTaylor scheme.

5.4 Derive for the Black-Scholes SDE

dXt = µXt dt+ σXt dWt

withX0 = 1 the explicit order 1.0 strong scheme.

c© Copyright E. Platen NS of SDEs Chap. 5 342

11 Monte Carlo Simulation of SDEs

Introduction to Monte Carlo Simulation

• classical Monte Carlo methods

Hammersley & Handscomb (1964)

Fishman (1996)

• Monte Carlo methods for SDEs

Kloeden & Platen (1999)

Kloeden, Platen & Schurz (2003)

Milstein (1995), Glasserman (2004)

c© Copyright E. Platen NS of SDEs Chap. 11 465

Weak Convergence Criterion

• CP (ℜd,ℜ) set of all polynomialsg : ℜd → ℜ

• SDE

dXt = a(t,Xt) dt+

m∑

j=1

bj(t,Xt) dWjt

• a discrete time approximationY ∆ converges with weak orderβ > 0 toX at

time T as∆ → 0 if for eachg ∈ CP (ℜd,ℜ) there exists a constantCg,

which does not depend on∆ and∆0 ∈ [0, 1] such that

µ(∆) = |E(g(XT )) − E(g(Y ∆T ))| ≤ Cg ∆β

for each∆ ∈ (0,∆0)

• absolute weak error criterion

c© Copyright E. Platen NS of SDEs Chap. 11 466

Systematic and Statistical Error

• functional

u = E(g(XT ))

• weak approximationsY ∆

• raw Monte Carlo estimate

uN,∆ =1

N

N∑

k=1

g(Y ∆T (ωk))

N independent simulated realizations

c© Copyright E. Platen NS of SDEs Chap. 11 467

Y ∆T (ω1), Y

∆T (ω2), . . . , Y

∆T (ωN)

ωk ∈ Ω for k ∈ 1, 2, . . . , N

• discrete time weak approximationY ∆T

c© Copyright E. Platen NS of SDEs Chap. 11 468

• weak error

µN,∆ = uN,∆ − E(g(XT ))

• systematic error µsys

• statistical error µstat

µN,∆ = µsys+ µstat

c© Copyright E. Platen NS of SDEs Chap. 11 469

• systematic error

µsys = E(µN,∆)

= E

(

1

N

N∑

k=1

g(Y ∆T (ωk))

)

− E(g(XT ))

= E(g(Y ∆T )) − E(g(XT ))

µ(∆) = |µsys|

c© Copyright E. Platen NS of SDEs Chap. 11 470

• statistical error

Central Limit Theorem

asymptotically Gaussian with mean zero and variance

Var(µstat) = Var(µN,∆) =1

NVar(g(Y ∆

T ))

deviation

Dev(µstat) =√

Var(µstat) =1√N

Var(g(Y ∆T ))

decreases at slow rate1√N

asN → ∞

may need an extremely large numberN of sample paths

c© Copyright E. Platen NS of SDEs Chap. 11 471

Confidence Intervals

• statistical error is halved by a fourfold increase inN

• Monte Carlo approach is very general

• high-dimensional functionals

• do usually not know the variance

of raw Monte Carlo estimates

c© Copyright E. Platen NS of SDEs Chap. 11 472

• form batches

average of each batch

approximately Gaussian

Studentt confidence intervals

• length of a confidence interval

proportional to the square root of the variance

reformulate the random variable

same mean but a much smaller variance

• variance reduction techniques

c© Copyright E. Platen NS of SDEs Chap. 11 473

Example of Raw Monte Carlo Simulation

u = E(g(X))

X ∼ N(0, 1)

g(X) =(

exp

r∆ + σ√∆X

)2

r = 0.05, σ = 0.2, ∆ = 1

u = E(

exp

2(

r∆ + σ√∆X

))

= exp(

r + σ2) 2∆ ≈ 1.197

c© Copyright E. Platen NS of SDEs Chap. 11 474

• Raw Monte Carlo estimators

uN =1

N

N∑

i=1

exp

2(

r∆ + σ√∆X(ωi)

)

N ∈ 1, 2, . . . , 2000

asymptotically normal

c© Copyright E. Platen NS of SDEs Chap. 11 475

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0 200 400 600 800 1000 1200 1400 1600 1800 2000

^u_Nu

Figure 11.1: Raw Monte Carlo estimates in dependence on the number of

simulations.c© Copyright E. Platen NS of SDEs Chap. 11 476

Normalized Monte Carlo Error

ZN =(uN − u)

Var(g(X))

√N ∼ N (0, 1)

CLT

Var(g(X)) = exp4∆ (r + 2σ2) (1 − exp−4∆σ2) ≈ 0.25.

c© Copyright E. Platen NS of SDEs Chap. 11 477

-4

-3

-2

-1

0

1

2

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Figure 11.2: Normalized raw Monte Carlo error.

c© Copyright E. Platen NS of SDEs Chap. 11 478

-4

-3

-2

-1

0

1

2

3

9000 9200 9400 9600 9800 10000

Figure 11.3: Independent realizations of normalized Monte Carlo errors.

c© Copyright E. Platen NS of SDEs Chap. 11 479

Weak Taylor Schemes

Euler and Simplified Weak Euler Scheme

• Euler scheme

Y kn+1 = Y k

n + ak ∆ +

m∑

j=1

bk,j ∆W jn

∆W jn = W j

τn+1−W j

τn

truncated Wagner-Platen expansion

weak convergenceβ = 1.0

=⇒ weak orderβ = 1.0 Taylor scheme

c© Copyright E. Platen NS of SDEs Chap. 11 480

• simplified weak Euler scheme

Y kn+1 = Y k

n + ak ∆ +

M∑

j=1

bk,j ∆W jn

∆W jn independentAτn+1

-measurable random variables with

∣E(

∆W jn

)∣

∣+

E

(

(

∆W jn

)3)∣

+

E

(

(

∆W jn

)2)

− ∆

≤ K∆2

=⇒ β = 1.0

• two-point distributed random variable

P(

∆W jn = ±

√∆)

=1

2

c© Copyright E. Platen NS of SDEs Chap. 11 481

• Simulation Example

SDE

dXt = aXt dt+ bXt dWt

a = 1.5, b = 0.01 andT = 1

test functiong(X) = x

N = 16, 000, 000

=⇒

confidence intervals of negligible length

• absolute weak errors

µ(∆) = |E(XT ) − E(YN)|

c© Copyright E. Platen NS of SDEs Chap. 11 482

-5 -4 -3 -2 -1 0Log2-dt

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

Log2-WeakErrors

Weak Error

Simp Euler

Euler

Figure 11.4: Log-log plot of the weak error for an SDE with multiplicative

noise for the Euler and simplified Euler schemes.

c© Copyright E. Platen NS of SDEs Chap. 11 483

Weak Order 2.0 Taylor Scheme

further multiple stochastic integrals

• weak order 2.0 Taylor schemeone-dimensional cased = m = 1

Yn+1 = Yn + a∆ + b∆Wn +1

2b b′(

(∆Wn)2 − ∆

)

+ a′ b∆Zn +1

2

(

a a′ +1

2a′′b2

)

∆2

+

(

a b′ +1

2b′′b2

)

(

∆Wn ∆ − ∆Zn

)

∆Zn = I(1,0) =

∫ τn+1

τn

∫ s

τn

dWz ds

generate pair of correlated Gaussian random variables∆Wn and∆Zn

c© Copyright E. Platen NS of SDEs Chap. 11 484

• simplified weak order 2.0 Taylor scheme

Yn+1 = Yn + a∆ + b∆W +1

2b b′

(

(

∆W)2

− ∆

)

+1

2

(

a′ b+ a b′ +1

2b′′b2

)

∆W ∆

+1

2

(

a a′ +1

2a′′b2

)

∆2

c© Copyright E. Platen NS of SDEs Chap. 11 485

∣E(

∆W)∣

∣+

E

(

(

∆W)3)∣

+

E

(

(

∆W)5)∣

+

E

(

(

∆W)2)

− ∆

+

E

(

(

∆W)4)

− 3∆2

≤ K∆3

• three-point distributed random variable

P(

∆W = ±√3∆

)

=1

6, P

(

∆W = 0)

=2

3

c© Copyright E. Platen NS of SDEs Chap. 11 486

• weak order 2.0 Taylor scheme with scalar noise

d ∈ 1, 2, . . . withm = 1

Y kn+1 = Y k

n + ak ∆ + bk ∆W +1

2L1bk

(

(∆W )2 − ∆)

+1

2L0ak ∆2 + L0bk

(

∆W ∆ − ∆Z)

+ L1ak ∆Z

c© Copyright E. Platen NS of SDEs Chap. 11 487

• weak order 2.0 Taylor scheme

d,m ∈ 1, 2, . . .

Y kn+1 = Y k

n + ak ∆ +1

2L0ak ∆2

+m∑

j=1

(

bk,j∆W j + L0bk,j I(0,j) + Ljak I(j,0)

)

+

m∑

j1,j2=1

Lj1bk,j2 I(j1,j2)

c© Copyright E. Platen NS of SDEs Chap. 11 488

• simplified weak order 2.0 Taylor scheme

Y kn+1 = Y k

n + ak ∆ +1

2L0ak ∆2

+

m∑

j=1

(

bk,j +1

2∆(

L0bk,j + Ljak)

)

∆W j

+1

2

m∑

j1,j2=1

Lj1bk,j2(

∆W j1∆W j2 + Vj1,j2

)

c© Copyright E. Platen NS of SDEs Chap. 11 489

• two-point distributed random variables

P (Vj1,j2 = ±∆) =1

2

for j2 ∈ 1, . . ., j1 − 1,

Vj1,j1 = −∆

and

Vj1,j2 = −Vj2,j1

for j2 ∈ j1 + 1, . . .,m andj1 ∈ 1, 2, . . . ,m

β = 2.0

c© Copyright E. Platen NS of SDEs Chap. 11 490

Weak Order 3.0 Taylor Scheme

• weak order 3.0 Taylor scheme

d,m ∈ 1, 2, . . .

Y kn+1 = Y k

n + ak ∆ +

m∑

j=1

bk,j∆W j +

m∑

j=0

Ljak I(j,0)

+

m∑

j1=0

m∑

j2=1

Lj1bk,j2 I(j1,j2) +

m∑

j1,j2=0

Lj1Lj2ak I(j1,j2,0)

+

m∑

j1,j2=0

m∑

j3=1

Lj1Lj2bk,j3 I(j1,j2,j3)

c© Copyright E. Platen NS of SDEs Chap. 11 491

• simplified weak order 3.0 Taylor scheme

m = 1, d = 1

Yn+1 = Yn + a∆ + b∆W +1

2L1b

(

(

∆W)2

− ∆

)

+L1a∆Z +1

2L0a∆2 + L0b

(

∆W ∆ − ∆Z)

+1

6

(

L0L0b+ L0L1a+ L1L0a)

∆W ∆2

+1

6

(

L1L1a+ L1L0b+ L0L1b)

(

(

∆W)2

− ∆

)

+1

6L0L0a∆3 +

1

6L1L1b

(

(

∆W)2

− 3∆

)

∆W

c© Copyright E. Platen NS of SDEs Chap. 11 492

∆W ∼ N(0,∆), ∆Z ∼ N

(

0,1

3∆3

)

E(

∆W ∆Z)

=1

2∆2

c© Copyright E. Platen NS of SDEs Chap. 11 493

Forβ = 3.0 we can set approximately

I(1) = ∆W 1, I(1,0) ≈ ∆Z, I(0,1) ≈ ∆∆W − ∆Z

I(1,1) ≈ 1

2

(

(

∆W)2

− ∆

)

I(0,0,1) ≈ I(0,1,0) ≈ I(1,0,0) ≈ 1

6∆2∆W

I(1,1,0) ≈ I(1,0,1) ≈ I(0,1,1) ≈ 1

6∆

(

(

∆W)2

− ∆

)

I(1,1,1) ≈ 1

6∆W

(

(

∆W)2

− 3∆

)

where∆W and∆Z

are correlated Gaussian random variables

c© Copyright E. Platen NS of SDEs Chap. 11 494

Hofmann (1994)

=⇒ additive noise,β = 3.0, m ∈ 1, 2, . . .

I(0) = ∆, I(j) = ξj√∆, I(0,0) =

∆2

2, I(0,0,0) =

∆3

6

I(j,0) ≈ 1

2

(

ξj + ϕj1√3∆

)

∆32 , I(j,0,0) ≈ I(0,j,0) ≈ ∆

52

6ξj

I(j1,j2,0) ≈ ∆2

6

(

ξj1 ξj2 +Vj1,j2

)

independent four point distributed random variables

ξ1, . . . , ξm

c© Copyright E. Platen NS of SDEs Chap. 11 495

P

(

ξj = ±√

3 +√6

)

=1

12 + 4√6

P

(

ξj = ±√

3 −√6

)

=1

12 − 4√6

independent three point distributed random variables

ϕ1, . . . , ϕm

independent two-point distributed random variables

Vj1,j2

c© Copyright E. Platen NS of SDEs Chap. 11 496

• multi-dimensional case

d,m ∈ 1, 2, . . .

additive noise

weak order3.0 Taylor scheme

c© Copyright E. Platen NS of SDEs Chap. 11 497

Y kn+1 = Y k

n + ak ∆ +

m∑

j=1

bk,j ∆W j +1

2L0ak ∆2 +

1

6L0L0ak ∆3

+

m∑

j=1

(

Ljak ∆Zj + L0bk,j(

∆W j∆ − ∆Zj)

+1

6

(

L0L0bk,j + L0Ljak + LjL0ak)

∆W j ∆2

)

+1

6

m∑

j1,j2=1

Lj1Lj2ak(

∆W j1∆W j2 − Ij1=j2 ∆)

c© Copyright E. Platen NS of SDEs Chap. 11 498

∆W j and∆Zj

independent pairs of

correlated Gaussian random variables

c© Copyright E. Platen NS of SDEs Chap. 11 499

Weak Order 4.0 Taylor Scheme

Wagner-Platen expansion=⇒

• weak order4.0 Taylor scheme

d,m ∈ 1, 2, . . .

Y kn+1 = Y k

n +

4∑

ℓ=1

m∑

j1,...,jℓ=0

Lj1 · · ·Ljℓ−1 bk,jℓ I(j1,...,jℓ)

β = 4.0

Platen (1984)

c© Copyright E. Platen NS of SDEs Chap. 11 500

• simplified weak order 4.0 Taylor scheme for additive noise

Yn+1 = Yn + a∆ + b∆W +1

2L0a∆2 + L1a∆Z

+L0b(

∆W ∆ − ∆Z)

+1

3!

(

L0L0b+ L0L1a)

∆W ∆2

+L1L1a

(

2∆W ∆Z − 5

6

(

∆W)2

∆ − 1

6∆2

)

+1

3!L0L0a∆3 +

1

4!L0L0L0a∆4

c© Copyright E. Platen NS of SDEs Chap. 11 501

+1

4!

(

L1L0L0a+ L0L1L0a+ L0L0L1a + L0L0L0b)

∆W ∆3

+1

4!

(

L1L1L0a+ L0L1L1a+ L1L0L1a)

(

(

∆W)2

− ∆

)

∆2

+1

4!L1L1L1a∆W

(

(

∆W)2

− 3∆

)

∆W ∼ N(0,∆), ∆Z ∼ N(0,1

3∆3)

E(∆W ∆Z) =1

2∆2

c© Copyright E. Platen NS of SDEs Chap. 11 502

A Simulation Study

• SDE with additive noise

dXt = aXt dt+ b dWt

X0 = 1, a = 1.5, b = 0.01 andT = 1

g(X) = x

c© Copyright E. Platen NS of SDEs Chap. 11 503

-5 -4 -3 -2 -1 0

Log2-dt

-20

-15

-10

-5

0

Log2-WeakErrors

Weak Error

4Taylor

3Taylor

2Taylor

Euler

Figure 11.5: Log-log plot of the weak error for an SDE with additive noise

using weak Taylor schemes.

c© Copyright E. Platen NS of SDEs Chap. 11 504

• SDE with multiplicative noise

dXt = aXt dt+ bXt dWt

g(X) = x

c© Copyright E. Platen NS of SDEs Chap. 11 505

-5 -4 -3 -2 -1 0

Log2-dt

-15

-10

-5

0Log2-WeakErrors

Weak Error

4Taylor

3Taylor

2Taylor

Euler

Figure 11.6: Log-log plot of the weak error for an SDE with multiplicative

noise using weak Taylor schemes.

c© Copyright E. Platen NS of SDEs Chap. 11 506

Convergence Theorem

• Wagner-Platen expansion

• It o coefficient functions

f(t, x) ≡ x

fα(t, x) = Lj1 · · ·Ljℓ−1 bjℓ(x)

α = (j1, . . . , jℓ) ∈ Mm, m ∈ 1, 2, . . .

c© Copyright E. Platen NS of SDEs Chap. 11 507

• multiple It o integral

Iα,τn,τn+1=

∫ τn+1

τn

∫ sℓ

τn

· · ·∫ s2

τn

dW j1s1 . . . dW

jℓ−1sℓ−1

dW jℓsℓ

dW 0s = ds

c© Copyright E. Platen NS of SDEs Chap. 11 508

• hierarchical set

Γβ = α ∈ Mm : l(α) ≤ β

• time discretization

0 = τ0 < τ1 < . . . τn < . . .

• weak Taylor scheme of orderβ

Yn+1 = Yn +∑

α∈Γβ\vfα (τn, Yn) Iα,τn,τn+1

=∑

α∈Γβ

fα (τn, Yn) Iα,τn,τn+1

Y0 = X0

c© Copyright E. Platen NS of SDEs Chap. 11 509

Theorem

For someβ ∈ 1, 2, . . . and autonomousX letY ∆ be a weak Taylor scheme of

orderβ. Suppose thata andb are Lipschitz continuous with componentsak, bk,j

∈ C2(β+1)P

(ℜd,ℜ) for all k ∈ 1, 2, . . . , d andj ∈ 0, 1, . . . ,m, and that

thefα satisfy a linear growth bound

|fα(t, x)| ≤ K (1 + |x|) ,

for all α ∈ Γβ, x ∈ ℜd and t ∈ [0, T ], whereK < ∞. Then for eachg ∈C2(β+1)P

(ℜd,ℜ) there exists a constantCg, which does not depend on∆, such

that

µ(∆) =∣

∣E (g (XT )) − E(

g(

Y ∆T

))∣

∣ ≤ Cg ∆β,

that isY ∆ converges with weak orderβ toX at timeT as∆ → 0.

c© Copyright E. Platen NS of SDEs Chap. 11 510

Derivative Free Weak Approximations

Explicit Weak Order 2.0 Scheme

• explicit weak order 2.0 scheme

m = 1 andd ∈ 1, 2, . . .

Yn+1 = Yn +1

2

(

a(

Υ)

+ a)

+1

4

(

b(

Υ+)

+ b(

Υ−)

+ 2b)

∆W

+1

4

(

b(

Υ+)

− b(

Υ−))

(

(

∆W)2

− ∆

)

∆12

c© Copyright E. Platen NS of SDEs Chap. 11 511

with supporting values

Υ = Yn + a∆ + b∆W

and

Υ± = Yn + a∆ ± b√∆

∆W Gaussian or three-point distributed

P(

∆W = ±√3∆)

=1

6and P

(

∆W = 0)

=2

3

c© Copyright E. Platen NS of SDEs Chap. 11 512

• multi-dimensional explicit weak order 2.0 scheme

d,m ∈ 1, 2, . . .

Yn+1 = Yn +1

2

(

a(

Υ)

+ a)

+1

4

m∑

j=1

[

(

bj(

Rj+

)

+ bj(

Rj−

)

+ 2bj)

∆W j

+

m∑

r=1r 6=j

(

bj(

Ur+

)

+ bj(

Ur−)− 2bj

)

∆W j ∆− 12

]

c© Copyright E. Platen NS of SDEs Chap. 11 513

+1

4

m∑

j=1

[

(

bj(

Rj+

)

− bj(

Rj−

)

)(

(

∆W j)2

− ∆

)

+

m∑

r=1r 6=j

(

bj(

Ur+

)− bj(

Ur−)

)

(

∆W j∆W r + Vr,j

)

]

∆− 12

c© Copyright E. Platen NS of SDEs Chap. 11 514

with supporting values

Υ = Yn + a∆ +

m∑

j=1

bj ∆W j, Rj± = Yn + a∆ ± bj

√∆

and

U j± = Yn ± bj

√∆

∆W j andVr,j as before

c© Copyright E. Platen NS of SDEs Chap. 11 515

• additive noise

=⇒

Yn+1 = Yn +1

2

a

(

Yn + a∆ +

m∑

j=1

bj ∆W j

)

+ a

+m∑

j=1

bj ∆W j

c© Copyright E. Platen NS of SDEs Chap. 11 516

Explicit Weak Order 3.0 Schemes

• explicit weak order 3.0 scheme

d ∈ 1, 2, . . . withm = 1

Yn+1 = Yn + a∆ + b∆W +1

2

(

a+ζ + a−

ζ − 3

2a− 1

4

(

a+ζ + a−

ζ

)

)

+

2

(

1√2

(

a+ζ − a−

ζ

)

− 1

4

(

a+ζ − a−

ζ

)

)

ζ∆Z

+1

6

[

a(

Yn +(

a+ a+ζ

)

∆ + (ζ + ) b√∆)

− a+ζ − a+

+ a]

×[

(ζ + ) ∆W√∆ + ∆ + ζ

(

(

∆W)2

− ∆

)]

c© Copyright E. Platen NS of SDEs Chap. 11 517

with

a±φ = a

(

Yn + a∆ ± b√∆φ

)

and

a±φ = a

(

Yn + 2a∆ ± b√2∆φ

)

∆W ∼N(0,∆) and ∆Z ∼N(0, 13∆3)

E(∆W∆Z) =1

2∆2

P (ζ = ±1) = P ( = ±1) =1

2

c© Copyright E. Platen NS of SDEs Chap. 11 518

• explicit weak order 3.0 scheme for scalar noise

Yn+1 = Yn + a∆ + b∆W +1

2Ha ∆ +

1

∆Hb ∆Z

+

2

∆Ga ζ∆Z +

1√2∆

Gb ζ

(

(

∆W)2

− ∆

)

+1

6F++

a

(

∆ + (ζ + )√∆∆W + ζ

(

(

∆W)2

− ∆

))

+1

24

(

F++b + F−+

b + F+−b + F−−

b

)

∆W

c© Copyright E. Platen NS of SDEs Chap. 11 519

+1

24√∆

(

F++b − F−+

b + F+−b − F−−

b

)

(

(

∆W)2

− ∆

)

ζ

+1

24∆

(

F++b + F−−

b − F−+b − F+−

b

)

(

(

∆W)2

− 3

)

∆W ζ

+1

24√∆

(

F++b + F−+

b − F+−b − F−−

b

)

(

(

∆W)2

− ∆

)

c© Copyright E. Platen NS of SDEs Chap. 11 520

with

Hg = g+ + g− − 3

2g − 1

4

(

g+ + g−)

,

Gg =1√2

(

g+ − g−)

− 1

4

(

g+ − g−)

,

F+±g = g

(

Yn +(

a+ a+)

∆ + b ζ√∆ ± b+

√∆)

− g+

− g(

Yn + a∆ ± b √∆)

+ g

F−±g = g

(

Yn +(

a+ a−)

∆ − b ζ√∆ ± b−

√∆)

− g−

−g(

Yn + a∆ ± b √∆)

+ g

c© Copyright E. Platen NS of SDEs Chap. 11 521

where

g± = g(

Yn + a∆ ± b ζ√∆)

and

g± = g(

Yn + 2 a∆ ±√2 b ζ

√∆)

with g being equal to eithera or b.

c© Copyright E. Platen NS of SDEs Chap. 11 522

Extrapolation Methods

Weak Order 2.0 Extrapolation

• equidistant time discretizations

• simulate functional

E(

g(

Y ∆T

))

using Euler scheme

with step size∆

• repeat with the double step size2∆

=⇒E(

g(

Y 2∆T

))

c© Copyright E. Platen NS of SDEs Chap. 11 523

• combine these two functionals

=⇒• weak order 2.0 extrapolation

V ∆g,2(T ) = 2E

(

g(

Y ∆T

))

− E(

g(

Y 2∆T

))

Talay & Tubaro (1990)

Richardson extrapolation

c© Copyright E. Platen NS of SDEs Chap. 11 524

• example

geometric Brownian motion

dXt = aXt dt+ bXt dWt

X0 = 0.1, a = 1.5 andb = 0.01

Richardson extrapolationV ∆g,2(T )

g(x) = x

=⇒ absolute weak error

µ(∆) =∣

∣V∆g,2(T ) − E (g (XT ))

β = 2.0

c© Copyright E. Platen NS of SDEs Chap. 11 525

-12

-11

-10

-9

-8

-7

-6

-6 -5.5 -5 -4.5 -4 -3.5 -3

time

Figure 11.7: Log-log plot for absolute weak error of Richardson extrapola-

tion against step size.

c© Copyright E. Platen NS of SDEs Chap. 11 526

Higher Weak Order Extrapolation

• weak order 4.0 extrapolation

V ∆g,4(T ) =

1

21

[

32E(

g(

Y ∆T

))

− 12E(

g(

Y 2∆T

))

+ E(

g(

Y 4∆T

))

]

c© Copyright E. Platen NS of SDEs Chap. 11 527

-13

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

-4 -3.5 -3 -2.5 -2

time

Figure 11.8: Log-log plot for absolute weak error of weak order 4.0 extra-

polation.c© Copyright E. Platen NS of SDEs Chap. 11 528

Implicit and Predictor Corrector Methods

• numerical stability has highest priority

Drift Implicit Euler Scheme

d,m ∈ 1, 2, . . .

Yn+1 = Yn + a (τn+1, Yn+1)∆ +

m∑

j=1

bj (τn, Yn)∆Wj

P(

∆W j = ±√∆)

=1

2

c© Copyright E. Platen NS of SDEs Chap. 11 529

• family of drift implicit simplified Euler schemes

Yn+1 = Yn +(

(1 − α) a (τn, Yn) + αa (τn+1, Yn+1))

+

m∑

j=1

bj (τn, Yn)∆Wj

α degree of drift implicitness

A-stable forα ∈ [0.5, 1]

region ofA-stability

circle of radiusr = (1 − 2α)−1 centered at−r

c© Copyright E. Platen NS of SDEs Chap. 11 530

Fully Implicit Euler Scheme

simplified schemes allow

implicit diffusion coefficient term

• fully implicit weak Euler scheme

Yn+1 = Yn + a (Yn+1)∆ + b (Yn+1)∆W

a = a− b b′

c© Copyright E. Platen NS of SDEs Chap. 11 531

• family of implicit weak Euler schemes

Yn+1 = Yn +(

α aη (τn+1, Yn+1) + (1 − α) aη (τn, Yn))

+m∑

j=1

(

η bj (τn+1, Yn+1) + (1 − η) bj (τn, Yn))

∆W j

aη = a− η

m∑

j1,j2=1

d∑

k=1

bk,j1∂bj2

∂xk

for α, η ∈ [0, 1]

c© Copyright E. Platen NS of SDEs Chap. 11 532

Implicit Weak Order 2.0 Taylor Scheme

Yn+1 = Yn + a (Yn+1)∆ + b∆W

− 1

2

(

a (Yn+1) a′ (Yn+1) +

1

2b2 (Yn+1) a

′′ (Yn+1)

)

∆2

+1

2b b′

(

(

∆W)2

− ∆

)

+1

2

(

−a′ b+ a b′ +1

2b′′b2

)

∆W ∆

P(

∆W = ±√3∆)

=1

6and P

(

∆W = 0)

=2

3

Milstein (1995)

c© Copyright E. Platen NS of SDEs Chap. 11 533

• family of implicit weak order 2.0 Taylor schemes

Yn+1 = Yn +(

αa (τn+1, Yn+1) + (1 − α) a)

+1

2

m∑

j1,j2=1

Lj1bj2(

∆W j1∆W j2 + Vj1,j2

)

+

m∑

j=1

(

bj +1

2

(

L0bj + (1 − 2α)Lja)

)

∆W j

+1

2(1 − 2α)

(

β L0a+ (1 − β)L0a (τn+1, Yn+1))

∆2

α = 0.5 =⇒

c© Copyright E. Platen NS of SDEs Chap. 11 534

Yn+1 = Yn +1

2

(

a (τn+1, Yn+1) + a)

+

m∑

j=1

bj ∆W j +1

2

m∑

j=1

L0bj ∆W j ∆

+1

2

m∑

j1,j2=1

Lj1bj2(

∆W j1∆W j2 + Vj1,j2

)

c© Copyright E. Platen NS of SDEs Chap. 11 535

Implicit Weak Order 2.0 Scheme

m = 1

Platen (1995)

• implicit weak order 2.0 scheme

Yn+1 = Yn +1

2(a+ a (Yn+1))∆

+1

4

(

b(

Υ+)

+ b(

Υ−)

+ 2 b)

∆W

+1

4

(

b(

Υ+)

− b(

Υ−))

(

(

∆W)2

− ∆

)

∆− 12

c© Copyright E. Platen NS of SDEs Chap. 11 536

with supporting values

Υ± = Yn + a∆ ± b√∆

∆W can be chosen as before

c© Copyright E. Platen NS of SDEs Chap. 11 537

• implicit weak order 2.0 scheme

d,m ∈ 1, 2, . . .

c© Copyright E. Platen NS of SDEs Chap. 11 538

Yn+1 = Yn +1

2(a+ a (Yn+1))∆

+1

4

m∑

j=1

[

bj(

Rj+

)

+ bj(

Rj−

)

+ 2bj

+

m∑

r=1r 6=j

(

bj(

Ur+

)

+ bj(

Ur−)− 2bj

)

∆− 12

]

∆W j

+1

4

m∑

j=1

[

(

bj(

Rj+

)

− bj(

Rj−

)

) (

(

∆W j)2

− ∆

)

+

m∑

r=1r 6=j

(

bj(

Ur+

)− bj(

Ur−)

)

(

∆W j∆W r + Vr,j

)

]

∆− 12

c© Copyright E. Platen NS of SDEs Chap. 11 539

supporting values

Rj± = Yn + a∆ ± bj

√∆

and

U j± = Yn ± bj

√∆

A-stable

β = 2.0

c© Copyright E. Platen NS of SDEs Chap. 11 540

Weak Order 1.0 Predictor-Corrector Methods

• modified trapezoidal method of weak orderβ = 1.0

corrector

Yn+1 = Yn +1

2

(

a(

Yn+1

)

+ a)

∆ + b∆W

predictor

Yn+1 = Yn + a∆ + b∆W

P(

∆W = ±√∆)

=1

2

c© Copyright E. Platen NS of SDEs Chap. 11 541

• family of weak order 1.0 predictor-corrector methods

corrector

Yn+1 = Yn +(

α aη

(

τn+1, Yn+1

)

+ (1 − α) aη (τn, Yn))

+

m∑

j=1

(

η bj(

τn+1, Yn+1

)

+ (1 − η) bj (τn, Yn))

∆W j

for α, η ∈ [0, 1], where

aη = a− η

m∑

j1,j2=1

d∑

k=1

bk,j1∂bj2

∂xk

c© Copyright E. Platen NS of SDEs Chap. 11 542

and predictor

Yn+1 = Yn + a∆ +

m∑

j=1

bj ∆W j

c© Copyright E. Platen NS of SDEs Chap. 11 543

Weak Order 2.0 Predictor-Corrector Methods

• weak order 2.0 predictor-corrector method

corrector

Yn+1 = Yn +1

2

(

a(

Yn+1

)

+ a)

∆ + Ψn

with

Ψn = b∆W +1

2b b′

(

(

∆W)2

− ∆

)

+1

2

(

a b′ +1

2b2 b′′

)

∆W ∆

c© Copyright E. Platen NS of SDEs Chap. 11 544

and as predictor

Yn+1 = Yn + a∆ + Ψn

+1

2a′ b∆W ∆ +

1

2

(

a a′ +1

2a′′b2

)

∆2

P(

∆W = ±√3∆)

=1

6and P

(

∆W = 0)

=2

3

c© Copyright E. Platen NS of SDEs Chap. 11 545

• general multi-dimensional case

corrector

Yn+1 = Yn +1

2

(

a(

τn+1, Yn+1

)

+ a)

∆ + Ψn

where

Ψn =

m∑

j=1

(

bj +1

2L0bj∆

)

∆W j

+1

2

m∑

j1,j2=1

Lj1bj2(

∆W j1 ∆W j2 + Vj1,j2

)

and predictor

Yn+1 = Yn + a∆ + Ψn +1

2L0a∆2 +

1

2

m∑

j=1

Lja∆W j ∆

c© Copyright E. Platen NS of SDEs Chap. 11 546

• derivative free weak order 2.0 predictor-corrector method

corrector

Yn+1 = Yn +1

2

(

a(

Yn+1

)

+ a)

∆ + φn

where

φn =1

4

(

b(

Υ+)

+ b(

Υ−)

+ 2 b)

∆W

+1

4

(

b(

Υ+)

− b(

Υ−))

(

(

∆W)2

− ∆

)

∆− 12

with supporting values

Υ± = Yn + a∆ ± b√∆

c© Copyright E. Platen NS of SDEs Chap. 11 547

and with predictor

Yn+1 = Yn +1

2

(

a(

Υ)

+ a)

∆ + φn

with the supporting value

Υ = Yn + a∆ + b∆W

c© Copyright E. Platen NS of SDEs Chap. 11 548

• multi-dimensional generalization

corrector

Yn+1 = Yn +1

2

(

a(

Yn+1

)

+ a)

∆ + φn

c© Copyright E. Platen NS of SDEs Chap. 11 549

where

φn =1

4

m∑

j=1

[

bj(

Rj+

)

+ b(

Rj−

)

+ 2 bj

+m∑

r=1r 6=j

(

bj(

Ur+

)

+ b(

Ur−)− 2 bj

)

∆− 12

]

∆W j

+1

4

m∑

j=1

[

(

bj(

Rj+

)

− b(

Rj−

))

(

(

∆W)2

− ∆

)

+

m∑

r=1r 6=j

(

bj(

Ur+

)− b(

Ur−)

)(

∆W j ∆W r + Vr,j

)

]

∆− 12

c© Copyright E. Platen NS of SDEs Chap. 11 550

supporting values

Rj± = Yn + a∆ ± bj

√∆ and U j

± = Yn ± bj√∆

c© Copyright E. Platen NS of SDEs Chap. 11 551

predictor

Yn+1 = Yn +1

2

(

a(

Υ)

+ a)

∆ + φn

supporting value

Υ = Yn + a∆ +

m∑

j=1

bj ∆W j

local error

Zn+1 = Yn+1 − Yn+1

c© Copyright E. Platen NS of SDEs Chap. 11 552

Weak Approximation with Jumps

Platen (1982a)

Mikulevicius & Platen (1988)

Kubilius & Platen (2002)

Bruti-Liberati & Platen (2006)

Jump Diffusion

• SDE

Xt = x+

∫ t

0

a(Xs) ds+

∫ t

0

b(Xs) dWs

+

∫ t

0

Ec(v,Xs) qϕ(dv, ds)

c© Copyright E. Platen NS of SDEs Chap. 11 553

mark set E = ℜ\0

• jump martingale measure

qϕ(dv, ds) = pϕ(dv, ds) − ϕ(dv) ds

intensity measureϕ(dv)ds

ϕ(E) < ∞

c© Copyright E. Platen NS of SDEs Chap. 11 554

• simulation of functionals

u(s, y) = E(

g(Xs,yT )

∣As

)

c© Copyright E. Platen NS of SDEs Chap. 11 555

• Kolmogorov backward equation

∂su(s, y) +

d∑

i=1

ai(y)∂

∂yiu(s, y)

+1

2

d∑

i,r=1

m∑

j=1

bi,j(y) br,j(y)∂2

∂yi ∂yru(s, y)

+

E

(

u(s, y + c(v, y)) − u(s, y)

−d∑

i=1

ci(v, y)∂

∂yiu(s, y)

)

ϕ(dv) = 0

c© Copyright E. Platen NS of SDEs Chap. 11 556

for all (s, y) ∈ (0, T ) × ℜd with

u(T, y) = g(y)

for y ∈ ℜd

c© Copyright E. Platen NS of SDEs Chap. 11 557

Jump Adapted Time Discretization

• absolute weak error criterion

µ(∆) =∣

∣E(g(X0,yT )) − E(g(YT ))

∣ ≤ K∆β

• Poisson process

pϕ = pϕ(E, [0, t]), t ∈ [0, T ]

finite intensity ϕ(E) < ∞

generates a sequence of jump times

c© Copyright E. Platen NS of SDEs Chap. 11 558

• jump adapted time discretization with maximum

step size∆ > 0

0 = τ0 < τ1 < . . . < τnT = T

including all jump times ofpϕ

nt = maxn ∈ 0, 1, . . . : tn ≤ t

maxn∈1,...,nT

(τn − τn−1) ≤ ∆

c© Copyright E. Platen NS of SDEs Chap. 11 559

Jump Adapted Weak Euler Scheme

Yτn+1− = Yτn + a(Yτn) (τn+1 − τn) + b(Yτn) (Wτn+1−Wτn)

−∫

Ec(v, Yτn)ϕ(du) (τn+1 − τn),

Yτn+1= Yτn+1− +

Ec(v, Yτn+1−) pϕ(dv, τn+1)

for n ∈ 0, 1, . . . , nT − 1 andY0 = x

β = 1

simplified weak Euler scheme can be used

to approximate diffusion part

c© Copyright E. Platen NS of SDEs Chap. 11 560

Second Order Weak Schemes

d = m = 1

Yτn+1− = Yτn + a(Yτn) (τn+1 − τn) + b(Yτn)∆W

+ b(Yτn) b′(Yτn)

1

2

(

(∆W )2 − (τn+1 − τn))

+ b(Yτn) a′(Yτn)∆Z

+

(

a(Yτn) b′(Yτn) +

1

2b(Yτn)

2 b′′(Yτn)

)

× (∆W (τn+1 − τn) − ∆Z)

+

(

a(Yτn) a′(Yτn) +

1

2b(Yτn)

2 a′′(Yτn)

)

(τn+1 − τn)2

2

Yτn+1= Yτn+1− +

Ec(v, Yτn+1−) pϕ(dv, τn+1)

c© Copyright E. Platen NS of SDEs Chap. 11 561

for n ∈ 0, 1, . . . , nT − 1

with Y0 = x, a = a− ∫

E c dϕ

∆W =

∫ τn+1

τn

dWs ∼ N(0, τn+1 − τn)

∆Z =

∫ τn+1

τn

∫ s2

τn

dWs1 ds2 ∼ N

(

0,(τn+1 − τn)

3

3

)

E(∆W ∆Z) =(τn+1 − τn)

2

2

c© Copyright E. Platen NS of SDEs Chap. 11 562

Jump Adapted Weak Taylor Approximations

• Wagner-Platen expansion

hierarchical set

Aβ = α ∈ Mm : l(α) ≤ β

c© Copyright E. Platen NS of SDEs Chap. 11 563

• jump adapted weak Taylor approximation of order β

Yτn+1− =∑

α∈Aβ

Iα(fα(Yτn))τn,τn+1

Yτn+1= Yτn+1− +

Ec(v, Yτn+1−) pϕ(dv, τn+1)

n ∈ 0, 1, . . . , nT − 1, with Y0 = x

f(x) = x

c© Copyright E. Platen NS of SDEs Chap. 11 564

Theorem (Mikulevicius-Platen)

Let be given a functiong ∈ C2(β+1)P (ℜd,ℜ), a time discretizationτnn∈0,1,...

with maximum step size∆ > 0 and a corresponding jump adapted weak Taylor ap-

proximationY of orderβ.

(i) a, b andc are2(β+1)-times continuously differentiable, where the derivatives

are uniformly bounded.

(ii) For all α ∈ Mm with l(α) ≤ β andy ∈ ℜd it holds|fα(y)| ≤ K (1 +

|y|).Then the jump adapted weak Taylor approximationY of order β converges with

weak orderβ, which means that

|E(g(XT )) − E(g(YT ))| ≤ C∆β,

whereC is a constant not depending on∆.

c© Copyright E. Platen NS of SDEs Chap. 11 565

Exercises of Chapter 11

11.1 Verify that the two point distributed random variable∆W with

P (∆W = ±√∆) =

1

2

satisfies the moment conditions∣

∣E(

∆W)∣

∣+

E

(

(

∆W)3)∣

+

E

(

(

∆W)2)

− ∆

≤ K∆2.

11.2 Prove that the three point distributed random variable∆W with

P(

∆W = ±√3∆

)

=1

6and P

(

∆W = 0)

=2

3

satisfies the moment conditions∣

∣E(

∆W)∣

∣+

E

(

(

∆W)3)∣

+

E

(

(

∆W)5)∣

+

+

E

(

(

∆W)2)

− ∆

+

E

(

(

∆W)4)

− 3∆2

≤ K∆3.

c© Copyright E. Platen NS of SDEs Chap. 11 566

11.3 For the Black-Scholes model with SDE

dXt = µXt dt+ σXt dWt

for t ∈ [0, T ] with X0 = 0 andW a standard Wiener process write down

a simplified Euler scheme. Which weak order of convergence does this scheme

achieve ?

11.4 For the BS model in Exercise 11.3 describe a simplified weak order 2.0 method.

11.5 For the BS model in Exercise 11.3 construct a drift implicit Euler scheme.

11.6 For the BS model in Exercise 11.3 describe a fully implicit Euler scheme.

c© Copyright E. Platen NS of SDEs Chap. 11 567

14 Numerical Stability

• roundoff and truncation errors

• propagation of errors

• numerical stability priority over higher order

c© Copyright E. Platen NS of SDEs Chap. 14 568

• specially designed test equations

Hernandez & Spigler (1992, 1993)

Milstein (1995)

Kloeden& Pl. (1999)

Saito & Mitsui(1993a, 1993b, 1996)

Hofmann& Pl. (1994, 1996)

Higham (2000)

c© Copyright E. Platen NS of SDEs Chap. 14 569

• linear test dynamics

Xt = X0 exp

(1 − α)λ t+√

α |λ|Wt

α, λ ∈ ℜ

=⇒

P(

limt→∞

Xt = 0)

= 1 ⇐⇒ (1 − α)λ < 0

c© Copyright E. Platen NS of SDEs Chap. 14 570

• linear It o SDE

dXt =

(

1 − 3

)

λXt dt+√

α |λ|Xt dWt

• corresponding Stratonovich SDE

dXt = (1 − α)λXt dt+√

α |λ|Xt dWt

• α = 0 no randomness

• α = 23

Ito SDE no drift =⇒ martingale

• α = 1 Stratonovich SDE no drift

c© Copyright E. Platen NS of SDEs Chap. 14 571

Definition 14.1 Y = Yt, t ≥ 0 is calledasymptotically stableif

P(

limt→∞

|Yt| = 0)

= 1.

impact of perturbations declines asymptotically over time

c© Copyright E. Platen NS of SDEs Chap. 14 572

• stability region Γ

those pairs(λ∆, α) ∈ (−∞, 0) × [0, 1) for which approximationY

asymptotically stable

c© Copyright E. Platen NS of SDEs Chap. 14 573

• transfer function

Yn+1

Yn

= Gn+1(λ∆, α)

Y asymptotically stable ⇐⇒

E(ln(Gn+1(λ∆, α))) < 0

Higham (2000)

c© Copyright E. Platen NS of SDEs Chap. 14 574

• Euler scheme

Yn+1 = Yn + a(Yn)∆ + b(Yn)∆Wn

Gn+1(λ∆, α) =

1 +

(

1 − 3

)

λ∆ +√

|αλ|∆Wn

∆Wn ∼ N (0,∆)

c© Copyright E. Platen NS of SDEs Chap. 14 575

Figure 14.1: A-stability region for the Euler scheme.

c© Copyright E. Platen NS of SDEs Chap. 14 576

• semi-drift-implicit predictor-corrector Euler method

Yn+1 = Yn +1

2

(

a(Yn+1) + a(Yn))

∆ + b(Yn)∆Wn

Yn+1 = Yn + a(Yn)∆ + b(Yn)∆Wn

Gn+1(λ∆, α) =

1 + λ∆

(

1 − 3

)

1 +1

2

(

λ∆

(

1 − 3

)

+√

−αλ∆Wn

)

+√

−αλ∆Wn

c© Copyright E. Platen NS of SDEs Chap. 14 577

Figure 14.2: A-stability region for semi-drift-implicit predictor-corrector Eu-

ler method.

c© Copyright E. Platen NS of SDEs Chap. 14 578

• drift-implicit predictor-corrector Euler method

Yn+1 = Yn + a(Yn+1)∆ + b(Yn)∆Wn

Yn+1 = Yn + a(Yn)∆ + b(Yn)∆Wn

Gn+1(λ∆, α) =

1 + λ∆

(

1 − 3

)

1 + λ∆

(

1 − 3

)

+√

−αλ∆Wn

+√

−αλ∆Wn

c© Copyright E. Platen NS of SDEs Chap. 14 579

Figure 14.3: A-stability region for drift-implicit predictor-corrector Euler

method.

c© Copyright E. Platen NS of SDEs Chap. 14 580

• semi-implicit diffusion predictor-corrector Euler metho d

Yn+1 = Yn + a 12(Yn)∆ +

1

2

(

b(Yn+1) + b(Yn))

∆Wn

Yn+1 = Yn + a(Yn)∆ + b(Yn)∆Wn

Gn+1(λ∆, α) =

1 + λ∆(1 − α) +√

−αλ∆Wn

×

1 +1

2

(

λ∆

(

1 − 3

)

+√

−αλ∆Wn

)∣

c© Copyright E. Platen NS of SDEs Chap. 14 581

Figure 14.4: A-stability region for the predictor-corrector Euler method with

θ = 0 andη = 12

.

c© Copyright E. Platen NS of SDEs Chap. 14 582

• symmetric predictor-corrector Euler method

Yn+1 = Yn+1

2

(

a 12(Yn+1) + a 1

2(Yn)

)

∆+1

2

(

b(Yn+1) + b(Yn))

∆Wn

Yn+1 = Yn + a(Yn)∆ + b(Yn)∆Wn

Gn+1(λ∆, α) =

1 + λ∆(1 − α)

1 +1

2

(

λ∆

(

1 − 3

)

+√

−αλ∆Wn

)

+√

−αλ∆Wn

1 +1

2

(

λ∆

(

1 − 3

)

+√

−αλ∆Wn

)∣

c© Copyright E. Platen NS of SDEs Chap. 14 583

Figure 14.5: A-stability region for the symmetric predictor-corrector Euler

method.

c© Copyright E. Platen NS of SDEs Chap. 14 584

Gn+1(λ∆, α) =

1 + λ∆

(

1 − 1

)

1 + λ∆

(

1 − 3

)

+√

−αλ∆Wn

+√

−αλ∆Wn

1 + λ∆

(

1 − 3

)

+√

−αλ∆Wn

=

1 +

1 + λ∆

(

1 − 3

)

+√

−αλ∆Wn

×

λ∆

(

1 − 1

)

+√

−αλ∆Wn

c© Copyright E. Platen NS of SDEs Chap. 14 585

Figure 14.6: A-stability region for fully implicit predictor-corrector Euler

method.

c© Copyright E. Platen NS of SDEs Chap. 14 586

0

5

10

15

20

25

30

35

40

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

time

exact solutionpredictor corrector

Figure 14.7: Exact solution and approximate solution generated by the sym-

metric predictor-corrector Euler scheme.c© Copyright E. Platen NS of SDEs Chap. 14 587

p-Stability

Pl. & Shi (2008)

Definition 14.2 For p > 0 a processY = Yt, t > 0 is calledp-stableif

limt→∞

E(|Yt|p) = 0.

Forα ∈ [0, 11+p/2

) andλ < 0 test SDE isp-stable.

c© Copyright E. Platen NS of SDEs Chap. 14 588

• Stability region those triplets(λ∆, α, p) for which Y is p-stable.

c© Copyright E. Platen NS of SDEs Chap. 14 589

For λ∆ < 0,α ∈ [0, 1) andp > 0 Y p-stable ⇐⇒

E((Gn+1(λ∆, α))p) < 1

• for p > 0

=⇒

E(ln(Gn+1(λ∆, α))) ≤ 1

pE((Gn+1(λ∆, α))p − 1) < 0

=⇒ asymptotically stable

c© Copyright E. Platen NS of SDEs Chap. 14 590

00.2

0.40.6

0.81

Α

-10-8-6-4-2

0

ΛD

0

0.5

1

1.5

2

p

Figure 14.8: Stability region for the Euler scheme.

c© Copyright E. Platen NS of SDEs Chap. 14 591

Figure 14.9: Paths of exact solution, Euler scheme with∆ = 0.2 and Euler

scheme with∆ = 5.

c© Copyright E. Platen NS of SDEs Chap. 14 592

00.2

0.40.6

0.81

Α

-10-8-6-4-2

0

ΛD

0

0.5

1

1.5

2

p

Figure 14.10: Stability region for semi-drift-implicit predictor-corrector Eu-

ler method.

c© Copyright E. Platen NS of SDEs Chap. 14 593

00.2

0.40.6

0.81

Α

-10-8-6-4-2

0

ΛD

0

0.5

1

1.5

2

p

Figure 14.11: Stability region for drift-implicit predictor-corrector Euler

method.

c© Copyright E. Platen NS of SDEs Chap. 14 594

00.2

0.40.6

0.81

Α

-10-8-6-4-2

0

ΛD

0

0.5

1

1.5

2

p

Figure 14.12: Stability region for the predictor-correctorEuler method with

θ = 0 andη = 12

.

c© Copyright E. Platen NS of SDEs Chap. 14 595

00.2

0.40.6

0.81

Α

-10-8-6-4-2

0

ΛD

0

0.5

1

1.5

2

p

Figure 14.13: Stability region for the symmetric predictor-corrector Euler

method.

c© Copyright E. Platen NS of SDEs Chap. 14 596

00.2

0.40.6

0.81

Α

-10-8-6-4-2

0

ΛD

0

0.5

1

1.5

2

p

Figure 14.14: Stability region for fully implicit predictor-corrector Euler

method.

c© Copyright E. Platen NS of SDEs Chap. 14 597

Stability of Some Implicit Methods

• semi-drift implicit Euler scheme

Yn+1 = Yn +1

2(a(Yn+1) + a(Yn))∆ + b(Yn)∆Wn

• full-drift implicit Euler scheme

Yn+1 = Yn + a(Yn+1)∆ + b(Yn)∆Wn

solve algebraic equation

c© Copyright E. Platen NS of SDEs Chap. 14 598

00.2

0.40.6

0.81

Α

-10-8-6-4-2

0

ΛD

0

0.5

1

1.5

2

p

Figure 14.15: Stability region for semi-drift implicit Euler method.

c© Copyright E. Platen NS of SDEs Chap. 14 599

00.2

0.40.6

0.81

Α

-10-8-6-4-2

0

ΛD

0

0.5

1

1.5

2

p

Figure 14.16: Stability region for full-drift implicit Euler method.

c© Copyright E. Platen NS of SDEs Chap. 14 600

• balanced implicit Euler method

Milstein, Pl.& Schurz (1998)

Yn+1 = Yn+

(

1 − 3

)

λYn∆+√

α|λ|Yn∆Wn+c|∆Wn|(Yn−Yn+1)

c© Copyright E. Platen NS of SDEs Chap. 14 601

00.2

0.40.6

0.81

Α

-10-8-6-4-2

0

ΛD

0

0.5

1

1.5

2

p

Figure 14.17: Stability region for a balanced implicit Eulermethod.

c© Copyright E. Platen NS of SDEs Chap. 14 602

00.2

0.40.6

0.81

Α

-10-8-6-4-2

0

ΛD

0

0.5

1

1.5

2

p

Figure 14.18: Stability region for the simplified symmetric Euler method.

c© Copyright E. Platen NS of SDEs Chap. 14 603

00.2

0.40.6

0.81

Α

-10-8-6-4-2

0

ΛD

0

0.5

1

1.5

2

p

Figure 14.19: Stability region for the simplified symmetric implicit Euler

Scheme.

c© Copyright E. Platen NS of SDEs Chap. 14 604

00.2

0.40.6

0.81

Α

-10-8-6-4-2

0

ΛD

0

0.5

1

1.5

2

p

Figure 14.20: Stability region for the simplified fully implicit Euler Scheme.

c© Copyright E. Platen NS of SDEs Chap. 14 605

16 Variance Reduction Techniques

Various Variance Reduction Methods

• classical

Hammersley & Handscomb (1964)

Ermakov (1975), Boyle (1977)

Maltz & Hitzl (1979), Rubinstein (1981)

Ermakov & Mikhailov (1982), Ripley (1983)

Kalos & Whitlock (1986), Bratley, Fox & Schrage (1987)

Chang (1987),Wagner (1987)

Law & Kelton (1991), Ross (1990)

c© Copyright E. Platen NS of SDEs Chap. 16 632

• stochastic differential equations

Boyle (1977)

Boyle, Broadie & Glasserman (1997)

Broadie & Glasserman (1997b), Fu (1995)

Grant, Vora & Weeks (1997), Joy, Boyle & Tan (1996)

Glasserman (2004)

Longstaff & Schwartz (2001)

Milstein (1988), Kloeden & Platen (1999)

Hofmann, Platen & Schweizer (1992), Heath (1995)

Goldman, Heath, Kentwell & Platen (1995)

Fournie, Lasry & Touzi (1997)

Newton (1994)

c© Copyright E. Platen NS of SDEs Chap. 16 633

Antithetic Variates

• probability space

(Ω,AT ,A, P ) whereΩ = C([t0, T ],ℜ2)

ω(t) = (ω1(t), ω2(t))⊤ ∈ ℜ2 for t ∈ [t0, T ]

• coordinate mappings

W 1t (ω) = ω1(t) andW 2

t (ω) = ω2(t)

dXt0,xt = a

(

t,Xt0,xt

)

dt+ b(

t,Xt0,xt

)

dWt

c© Copyright E. Platen NS of SDEs Chap. 16 634

Forω ∈ Ω, defineω ∈ Ω by ω(t) = (−ω1(t),−ω2(t))⊤, t ∈ [t0, T ]

h(

Xt0,xT

)

(ω) = h(

Xt0,xT

)

(ω)

• unbiased estimator

h(

Xt0,xT

)

=1

2

(

h(

Xt0,xT

)

+ h(

Xt0,xT

))

=⇒

Var(

h(

Xt0,xT

))

=1

4

(

Var(

h(

Xt0,xT

))

+ Var(

h(

Xt0,xT

))

+ 2 Cov(

h(

Xt0,xT

)

, h(

Xt0,xT

)))

c© Copyright E. Platen NS of SDEs Chap. 16 635

Stratified Sampling

• set of events

Ai ⊆ AT , i ∈ 1, 2, . . . , N

N⋃

i=1

Ai = Ω, Ai ∩Aj = ∅

for i, j ∈ 1, 2, . . . , N, P (Ai) = 1N

A = σ Ai, i ∈ 1, 2, . . . , N

c© Copyright E. Platen NS of SDEs Chap. 16 636

• random variable

Z : Ω → ℜ

• restriction ofZ toAi

ZAi(ω) = Z(ω) for ω ∈ Ai

c© Copyright E. Platen NS of SDEs Chap. 16 637

• unbiased estimator forE(Z)

Z =1

N

N∑

i=1

ZAi

whereZAi independent

E(Z) =1

N

N∑

i=1

E(ZAi) =

N∑

i=1

Ai

Z dP =

Ω

Z dP = E(Z)

independence

=⇒

c© Copyright E. Platen NS of SDEs Chap. 16 638

Var(Z) =

N∑

i=1

Var(ZAi)

N2

=1

NE(Var(Z

∣A))

≤ 1

NVar(Z)

c© Copyright E. Platen NS of SDEs Chap. 16 639

Example: simplified weak Euler approximationY ∆

∆Wk two-point distributed

two-point variates withN time steps

underlying sample space

=⇒ΩN = −1, 10,1,...,N−1

‘path’ for Wk

given by∆Wk(ω) = ωk

√∆

probabilitiesPN(ω) = 12N

only a tiny fraction of these paths can be sampled

c© Copyright E. Platen NS of SDEs Chap. 16 640

A stratified Monte Carlo estimation could consist of exhausting all pathsω ∈ ΩN

up to timetN′ and then sampling randomly;

reduces duplicate traversals of the early nodes of the lattice.

c© Copyright E. Platen NS of SDEs Chap. 16 641

Measure Transformation Method

see Kloeden & Platen (1999)

• d-dimensional diffusion

dXs,xt = a(t,Xs,x

t ) dt+

m∑

j=1

bj(t,Xs,xt ) dW j

t

on(Ω,AT ,A, P )

• approximate the functional

u(s, x) = E(

g(Xs,xT )

∣As

)

c© Copyright E. Platen NS of SDEs Chap. 16 642

• Kolmogorov backward equation

L0 u(s, x) = 0

for (s, x) ∈ (0, T ) × ℜd with

u(T, y) = g(y)

L0 =∂

∂s+

d∑

k=1

ak ∂

∂xk+

1

2

d∑

k,ℓ=1

m∑

j=1

bk,j bℓ,j∂2

∂xk ∂xℓ

c© Copyright E. Platen NS of SDEs Chap. 16 643

• Girsanov transformation

W jt = W j

t −∫ t

0

dj(

z, X0,xz

)

dz

dj denotes given, rather flexible real-valued function

• Radon-Nikodym derivative

dP

dP=

Θt

Θ0

c© Copyright E. Platen NS of SDEs Chap. 16 644

• SDE

dX0,xt = a

(

t, X0,xt

)

dt+

m∑

j=1

bj(

t, X0,xt

)

dW jt

=

a(

t, X0,xt

)

−m∑

j=1

bj(

t, X0,xt

)

dj(

t, X0,xt

)

dt

+m∑

j=1

bj(

t, X0,xt

)

dW jt

• Radon-Nikodym derivative process

Θt = Θ0 +

m∑

j=1

∫ t

0

Θz dj(

z, X0,xz

)

dW jz

(A, P )-martingale

c© Copyright E. Platen NS of SDEs Chap. 16 645

• diffusion processX0,x with respect toP

same drift and diffusion coefficients asXs,x

=⇒

E(

g(

X0,xT

))

=

Ω

g(

X0,xT

)

dP

=

Ω

g(

X0,xT

)

dP

=

Ω

g(

X0,xT

) ΘT

Θ0dP

= E

(

g(

X0,xT

) ΘT

Θ0

)

c© Copyright E. Platen NS of SDEs Chap. 16 646

• unbiased estimator

g(

X0,xT

) ΘT

Θ0

no particular choice ofdj made so far

c© Copyright E. Platen NS of SDEs Chap. 16 647

• ideally choosedj in the form

dj(t, x) = − 1

u(t, x)

d∑

k=1

bk,j(t, x)∂u(t, x)

∂xk

then it can be shown that

u(

t, X0,xt

)

Θt = u(0, x)Θ0

for all t ∈ [0, T ]

=⇒u(0, x) = g

(

X0,xT

) ΘT

Θ0

c© Copyright E. Platen NS of SDEs Chap. 16 648

=⇒

g(

X0,xT

) ΘT

Θ0

is not random

c© Copyright E. Platen NS of SDEs Chap. 16 649

• guess a functionu

dj(t, x) = − 1

u(t, x)

d∑

k=1

bk,j(t, x)∂u(t, x)

∂xk

• used unbiased estimator

g(

X0,xT

) ΘT

Θ0

E

(

g(

X0,xT

) ΘT

Θ0

)

= E(

g(

X0,xT

))

c© Copyright E. Platen NS of SDEs Chap. 16 650

Control Variates and Integral Representations

Clewlow & Carverhill (1992, 1994)

Basic Control Variate Method

• valuation martingale

Mt = u(

t,Xt0,xt

)

= E(

h(

Xt0,xT

) ∣

∣ At

)

construct an accurate and fast estimate of

E(h(Xt0,xT )) = u(t0, x)

c© Copyright E. Platen NS of SDEs Chap. 16 651

• control variate

findY with known meanE(Y )

• unbiased estimator

Z = h(Xt0,xT ) − α(Y − E(Y ))

α ∈ ℜ

E(Z) = E(h(Xt0,xT ))

c© Copyright E. Platen NS of SDEs Chap. 16 652

• known valuation function

u(

t, Xt0,xt

)

= E(

h(

Xt0,xT

) ∣

∣ At

)

Xt0,x approximatesXt0,xT

• unbiased estimator

ZT = h(

Xt0,xT

)

− α(

h(

Xt0,xT

)

− E(

h(

Xt0,xT

)))

= u(

T,Xt0,xT

)

− α(

u(

T, Xt0,xT

)

− u(t0, x))

variance can be reduced

c© Copyright E. Platen NS of SDEs Chap. 16 653

Var(ZT ) = Var(

h(

Xt0,xT

))

+ α2 Var(

h(

Xt0,xT

))

− 2αCov(

h(

Xt0,xT

)

, h(

Xt0,xT

))

minimize the variance

αmin =Cov

(

h(

Xt0,xT

)

, h(

Xt0,xT

))

Var(

h(

Xt0,xT

))

c© Copyright E. Platen NS of SDEs Chap. 16 654

Example: Stochastic Volatility

• SDE

dSt = σt St dW1t

dσt = (κ− σt) dt+ ξ σt dW2t

(Ω,AT ,A, P )

• European call payoff

h(ST ) = (ST −K)+

c© Copyright E. Platen NS of SDEs Chap. 16 655

• adjusted price process

dSt = σtSt dW1t

dσt = (κ− σt) dt

• adjusted valuation function

u(t, St, σt) = E(

(ST −K)+∣

∣At

)

• unbiased variate

ZT = (ST −K)+ − α((ST −K)+ − E(ST −K)+)

= (ST −K)+ − α((ST −K)+ − u(t0, s, σ))

unbiased variance reduced estimator

c© Copyright E. Platen NS of SDEs Chap. 16 656

Variance Reduction via Integral Representations

Heath & Platen (2002)

The HP Variance Reduced Estimator

• SDE

dXs,xt = a(t,Xs,x

t ) dt+

m∑

j=1

bj(t,Xs,xt ) dW j

t

• first exit time

τ = inft ≥ s : (t,Xs,xt

) 6∈ [s, T ) × Γ

c© Copyright E. Platen NS of SDEs Chap. 16 657

• operators

L0 f(t, x) =∂f(t, x)

∂t+

d∑

i=1

ai(t, x)∂f(t, x)

∂xi

+1

2

d∑

i,k=1

m∑

j=1

bi,j(t, x) bk,j(t, x)∂2f(t, x)

∂xi ∂xk

and

Lj f(t, x) =

d∑

i=1

bi,j(t, x)∂f(t, x)

∂xi

for (t, x) ∈ (0, T ) × Γ

c© Copyright E. Platen NS of SDEs Chap. 16 658

• valuation function

u(t, x) = E(

h(τ,Xt,xτ )

)

for (t, x) ∈ [0, T ] × Γ

assume

Mt = E(

h(

τ,X0,xτ

) ∣

∣At

)

square integrable(A, P )-martingale

c© Copyright E. Platen NS of SDEs Chap. 16 659

martingale representation theorem

=⇒

Mt = u(t,X0,xt∧τ )

= u(0, x) +

m∑

j=1

∫ t∧τ

0

ξjs dWjs

for t ∈ [0, T ]

c© Copyright E. Platen NS of SDEs Chap. 16 660

• given an approximation

u : [0, T ] × Γ → ℜ to u

u ∈ C1,2([0, T ] × Γ)

with

M jt =

∫ t∧τ

0

Lj u(s,X0,xs ) dW j

s

square integrable(A, P )-martingale

c© Copyright E. Platen NS of SDEs Chap. 16 661

u(τ,X0,xτ ) = u(τ,X0,x

τ ) = h(τ,X0,xτ )

=⇒

u(τ,X0,xτ ) = u(0, x) +

∫ τ

0

L0 u(t,X0,xt ) dt

+m∑

j=1

∫ τ

0

Lj u(t,X0,xt ) dW j

t

c© Copyright E. Platen NS of SDEs Chap. 16 662

=⇒

u(0, x) = E(

h(τ,X0,xτ )

)

= E(

u(τ,X0,xτ )

)

= u(0, x) + E

(∫ τ

0

L0 u(t,X0,xt ) dt

)

= u(0, x) +

∫ T

0

E(

1t<τL0 u(t,X0,x

t ))

dt

• unbiased estimator for u(0, x)

Zτ = u(0, x) +

∫ τ

0

L0 u(t,X0,xt ) dt

HP estimator

c© Copyright E. Platen NS of SDEs Chap. 16 663

Variance of the HP Estimator

Zτ = u(τ,X0,xτ ) −

m∑

j=1

∫ τ

0

Lj u(t,X0,xt ) dW j

t

= u(τ,X0,xτ ) −

m∑

j=1

∫ τ

0

Lj u(t,X0,xt ) dW j

t

= u(0, x) +

m∑

j=1

∫ τ

0

(

ξjt − Lj u(t,X0,xt )

)

dW jt

=⇒

c© Copyright E. Platen NS of SDEs Chap. 16 664

Var(Zτ ) = E

m∑

j=1

∫ τ

0

(

ξjt − Lj u(t,X0,xt )

)

dW jt

2

=

m∑

j=1

∫ T

0

E

(

1t<τ(

ξjt − Lj u(t,X0,xt )

)2)

dt

c© Copyright E. Platen NS of SDEs Chap. 16 665

• integrands

ξjt = Lj u(t,X0,xt )

=⇒

Var(Zτ ) =

m∑

j=1

∫ T

0

E

(

1t<τ(

(Lj u− Lj u) (t,X0,xt )

)2)

dt

if a good approximationu tou can be found,

so thatLj u is close toLj u

variance will be small

c© Copyright E. Platen NS of SDEs Chap. 16 666

• unbiased estimator

Zτ,α = u(τ,X0,xτ ) − α

m∑

j=1

∫ τ

0

Lj u(t,X0,xt ) dW j

t

= Zτ + (1 − α)

m∑

j=1

∫ τ

0

Lj u(t,X0,xt ) dW j

t

c© Copyright E. Platen NS of SDEs Chap. 16 667

An Example for the Heston Model

• SDEs

dSs,x1

t = uSs,x1

t dt+

vs,x2

t Ss,x1

t dW 1t

dvs,x2

t = κ(

θ − vs,x2

t

)

dt

+ ξ

vs,x2

t

(

dW 1t +

1 − 2 dW 2t

)

c© Copyright E. Platen NS of SDEs Chap. 16 668

• equivalent risk neutral martingale measure

dSs,x1

t = r Ss,x1

t dt+

vs,x2

t Ss,x1

t dW 1t

dvs,x2

t = κ(

θ − vs,x2

t

)

dt

+ ξ

vs,x2

t

(

dW 1t +

1 − 2 dW 2t

)

for t ∈ [s, T ] ands ∈ [0, T ], whereθ = θ − ξ (µ−r)κ

and

dW 1t =

µ− r√vt

dt+ dW 1t

dW 2t = dW 2

t

c© Copyright E. Platen NS of SDEs Chap. 16 669

• option price

c(0, x) = e−rT u(0, x)

where

u(0, x) = E(

(S0,x1

T −K)+)

• approximation

dSs,x1

t = r Ss,x1

t dt+

vs,x2

t Ss,x1

t dW 1t

dvs,x2

t = κ(

θ − vs,x2

t

)

dt

explicitly computed

vs,x2

t = θ + (x2 − θ) e−κ(t−s)

c© Copyright E. Platen NS of SDEs Chap. 16 670

Black-Scholes price

u(t, x) = E(

(St,x1

T −K)+)

= er(T−t)BS(x1,K, r, σt, T − t)

where

σt =

1

T − t

∫ T

t

vt,x2

z dz

=

θ − (x2 − θ)e−κ(T−t) − 1

κ(T − t)

c© Copyright E. Platen NS of SDEs Chap. 16 671

=⇒

(L0 − L0) f(t, x) = ξ x2

(

∂2f(t, x)

∂x1 ∂x2+

1

2ξ∂2f(t, x)

∂(x2)2

)

(L0 − L0) u(t, x) = ξ x2 er(T−t)

[

∂2BS(x1,K, r, σt, T − t)

∂x1 ∂σt

∂σt

∂x2

+1

∂2BS(x1,K, r, σt, T − t)

∂σ2t

(

∂σt

∂x2

)2

+∂BS(x1,K, r, σt, T − t)

∂σt

∂2σt

∂(x2)2

]

∂BS

∂σt,

∂2BS

∂x1 ∂σt,

∂2BS

∂σ2t

,∂σt

∂x2and

∂2σt

∂(x2)2

can be computed

c© Copyright E. Platen NS of SDEs Chap. 16 672

Monte Carlo Simulation

0 = τ0 < τ1 < . . . < τN = T, ∆ =T

N

• predictor-corrector method of weak order 1.0

Yn+1 = Yn +(

α a(τn+1, Yn+1) + (1 − α) a(τn, Yn))

+

m∑

j=1

(

η bj(τn+1, Yn+1) + (1 − η) bj(τn, Yn))

∆W jn

for n ∈ 0, 1, . . . , N−1 with predictor

Yn+1 = Yn + a(τn, Yn)∆ +

m∑

j=1

bj ∆W jn

c© Copyright E. Platen NS of SDEs Chap. 16 673

and modified drift coefficient values

a(τn, Yn) = a(τn, Yn) − ηd∑

i=1

m∑

j=1

bi,j(τn, Yn)∂bj(τn, Yn)

∂xi

α, η ∈ [0, 1] and∆W jn

Gaussian random two-point distributed random variables

Simulation Results

• raw Monte Carlo

intrinsic value(S0,x1

t −K)+

c© Copyright E. Platen NS of SDEs Chap. 16 674

0 0.1 0.2 0.3 0.4 0.5

10

20

30

40

50

Figure 16.1: Simulated outcomes for the intrinsic value(S0,x1

t −K)+, t ∈[0, T ].

c© Copyright E. Platen NS of SDEs Chap. 16 675

0 0.1 0.2 0.3 0.4 0.5

6.6

6.65

6.7

6.75

Figure 16.2: Simulated outcomes for the estimatorZt, t ∈ [0, T ].

c© Copyright E. Platen NS of SDEs Chap. 16 676

80

90

100

110

120

S0.005

0.01

0.015

0.02

0.025

v

-0.75-0.5

-0.25

0

0.25

80

90

100

110S

Figure 16.3: Diffusion operator values(L − L0) u as a function of asset

priceS and squared volatilityv.

c© Copyright E. Platen NS of SDEs Chap. 16 677

80

100

120K

0

0.1

0.2

0.3

0.4

t

-0.1-0.05

0

0.05

80

100

120K

Figure 16.4: Price differences between the Heston and corresponding Black-

Scholes model as a function of strikeK and timet.

c© Copyright E. Platen NS of SDEs Chap. 16 678

80 90 100 110 120 130

-0.15

-0.1

-0.05

0

0.05

Figure 16.5: Prices and corresponding error bounds as a function of strike

K.

c© Copyright E. Platen NS of SDEs Chap. 16 679

80

100

120K

0

0.1

0.2

0.3

0.4

t

0.2

0.21

0.22

80

100

120K

Figure 16.6: Implied volatility term structure for the Heston model.

c© Copyright E. Platen NS of SDEs Chap. 16 680

Exercises of Chapter 16

16.1 Construct an antithetic variance reduction method, where you have to simulate

the expectationE(1 + Z + 12(Z)2) for a standard Gaussian random variable

Z ∼ N(0, 1). For this purpose combine the raw Monte Carlo estimate

V +N =

1

N

N∑

k=1

(

1 + Z(ωk) +1

2(Z(ωk))

2

)

that uses outcomes ofZ with the antithetic one

V −N =

1

N

N∑

k=1

(

1 − Z(ωk) +1

2(−Z(ωk))

2

)

that uses in parallel the same outcomes with a negative sign.Demonstrate the

variance reduction that can be achieved for the estimator

VN =1

2(V +

N + V −N )

instead of using onlyV +N . Is VN an unbiased estimator?

c© Copyright E. Platen NS of SDEs Chap. 16 681

16.2 For calculating the expectationE((1 + Z + 12(Z)2)) use the control variate

V ∗N =

1

N

N∑

k=1

(1 + Z(ωk)) .

Analyze the variance reduction that can be achieved by the estimate

VN = V +N + α(γ − V ∗

N)

for α ∈ ℜ. For which choice ofγ ∈ ℜ one obtains an unbiased estimate? For

whichα ∈ ℜ one achieves the minimum variance ?

16.3 Check for the measure transformation variance reduction method andg(z) =

z2 thatg(X0,xT ) θT

θ0is non-random and equals

u(t, x) = E(

g(

X0,xT

) ∣

∣At

)

for t = 0, assuming the linear SDEs

dX0,xT = αX0,x

T dt+ βX0,xT dWt

c© Copyright E. Platen NS of SDEs Chap. 16 682

and

dX0,xT = α X0,x

T dt+ β X0,xT dWt

for t ∈ [0, T ] withX0,xT = X0,x

T = x0, where

dWt = dWt − d(t, X0,xt ) dt

and

dθt = θt d(t, X0,xt ) dWt

with

d(t, X0,xt ) = − β X0,x

t

u(t, X0,xt )

∂u(t, X0,xt )

∂x.

c© Copyright E. Platen NS of SDEs Chap. 16 683

16.4 Formulate a drift implicit simplified weak Euler schemefor the two-factor Hes-

ton model

dXt = (rd − rf)Xt + k√vtXt dW

1t

dvt = κ (vt − v) dt+ p√vt(

dW 1t +

1 − 2 dW 2t

)

,

for t ∈ [0, T ] with t ∈ [0, T ∗]X0 > 0 andv0 > 0, whereW 1 andW 2

are independent standard Wiener processes.

16.5 Consider the Heston model of Exercise 16.4 for = 0. Make also the diffusion

term in theX component of the simplified weak Euler scheme implicit and

correct appropriately the drift term in the resulting scheme.

c© Copyright E. Platen NS of SDEs Chap. 16 684

ReferencesAbramowitz, M. & I. A. Stegun (Eds.) (1972).Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New

York.

Ait-Sahalia, Y. (2002). Maximum likelihood estimation of discretely sampled diffusions: A closed-form approximation approach.Econometrica70,223–262.

Andersen, L. (2008). Simple and efficient simulation of the Heston stochastic volatility model.J. Comput. Finance11(3), 1–42.

Artzner, P., F. Delbaen, J. M. Eber, & D. . Heath (1997). Thinking coherently.Risk10, 68–71.

Barndorff-Nielsen, O. (1998). Processes of normal inverse Gaussian type.Finance Stoch.2(1), 41–68.

Barrett, R., M. Berry, T. F. Chan, J. Demmel, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, & H. van der Vorst (1994).Templates for the Solution ofLinear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia.

Basle (1996a).Amendment to the Capital Accord to Incorporate Market Risks. Basle Committee on Banking and Supervision, Basle, Switzerland.

Basle (1996b).Modifications to the Market Risk Amendment. Basle Committee on Banking and Supervision, Basle, Switzerland.

Beskos, A., O. Papaspiliopoulos, & G. Roberts (2007). Monte-Carlo maximum likelihood estimation for discretely observed diffusion processes.University of Warwick and Lanchester University (working paper).

Bibby, B. M., M. Jacobsen, & M. Sørensen (2003). Estimating functions for discretely sampled diffusion-type models. In Y. Ait-Sahalia and L. P.Hansen (Eds.),Handbook of Financial Economics, Chapter 4, pp. 203–268. Amsterdam: North Holland.

Bjork, T., Y. Kabanov, & W. J. Runggaldier (1997). Bond market structure in the presence of marked point processes.Math. Finance7, 211–239.

Boyle, P. P. (1977). A Monte Carlo approach.J. Financial Economics4, 323–338.

Boyle, P. P. (1988). A lattice framework for option pricing with two state variables.J. Financial and Quantitative Analysis23, 1–12.

Boyle, P. P., M. Broadie, & P. Glasserman (1997). Monte Carlo methods for security pricing. Computational financial modelling.J. Econom. Dynam.Control 21(8-9), 1267–1321.

Brandt, M. & P. Santa-Clara (2002). Simulated likelihood estimation of diffusions with application to exchange rate dynamics in incomplete markets.J. Financial Economics63(2), 161–210.

Bratley, P., B. L. Fox, & L. Schrage (1987).A Guide to Simulation(2nd ed.). Springer.

Broadie, M. & J. Detemple (1997). The valuation of American options on multiple assets.Math. Finance7(3), 241–286.

c© Copyright E. Platen References 892

Broadie, M. & P. Glasserman (1997a). Estimating security price derivatives using simulation.Management Science42(2), 269–285.

Broadie, M. & P. Glasserman (1997b). Pricing American - style securities using simulation. Computational financial modelling.J. Econom. Dynam.Control 21(8-9), 1323–1352.

Broadie, M. & O. Kaya (2006). Exact simulation of stochastic volatility and other affine jump diffusion processes.Oper. Res.54, 217–231.

Bru, M.-F. (1991). Wishart processes.J. Theoret. Probab.4(4), 725–751.

Bruti-Liberati, N. & E. Platen (2004). On the efficiency of simplified weak Taylor schemes for Monte Carlo simulation in finance. InComputationalScience - ICCS 2004, Volume 3039 ofLecture Notes in Comput. Sci., pp. 771–778. Springer.

Bruti-Liberati, N. & E. Platen (2006). On weak predictor-corrector schemes for jump-diffusion processes in finance. Technical report, University ofTechnology, Sydney. QFRC Research Paper 179.

Bruti-Liberati, N. & E. Platen (2007). Strong approximations of stochastic differential equations with jumps.J. Comput. Appl. Math.205(2), 982–1001.

Burrage, P. M. (1998).Runge-Kutta methods for stochastic differential equations. Ph. D. thesis, University of Queensland, Brisbane, Australia.

Carr, P. (1993). Deriving derivatives of derivative securities. CornellUniversity, Ithaca, (working paper).

Chang, C. C. (1987). Numerical solution of stochastic differential equations withconstant diffusion coefficients.Math. Comp.49, 523–542.

Christensen, B. J., R. Poulsen, & M. Sørensen (2001). Optimal inference in diffusion models of the short rate of interest. Technical report, Universityof Aarhus, Centre for Analytical Finance. Working Paper No. 102.

Clark, J. M. C. (1970). The representation of functionals of Brownian motion by stochastic integrals.Ann. Math. Statist.41, 1281–1295.

Clark, J. M. C. & R. J. Cameron (1980). The maximum rate of convergence of discrete approximations for stochastic differential equations. InB. Grigelionis (Ed.),Stochastic Differential Systems, Volume 25 ofLecture Notes in Control and Inform. Sci., pp. 162–171. Springer.

Clewlow, L. & A. Carverhill (1992). Efficient Monte Carlo valuation and hedging of contingent claims. Technical report, Financial Options ResearchCenter, University of Warwick. 92/30.

Clewlow, L. & A. Carverhill (1994). Quicker on the curves.Risk7(5).

Colwell, D. B., R. J. Elliott, & P. E. Kopp (1991). Martingale representation and hedging policies.Stochastic Process. Appl.38, 335–345.

Cox, J. C., S. A. Ross, & M. Rubinstein (1979). Option pricing: A simplified approach.J. Financial Economics7, 229–263.

Craddock, M. & E. Platen (2004). Symmetry group methods for fundamental solutions.J. of Differential Equations207(2), 285–302.

Davis, M. H. A. (1980). Functionals of diffusion processes as stochastic integrals.Math. Proc. Cambridge Philos. Soc.87, 157–166.

c© Copyright E. Platen References 893

Dembo, A. & O. Zeitouni (1986). Parameter estimation of partially observed continuous time stochastic processes via the EM algorithm.StochasticProcess. Appl.23, 91–113. Erratum,31, pp. 167–169, 1989.

Duffie, D., J. Pan, & K. Singleton (2000). Transform analysis and option pricing for affine jump diffusions.Econometrica68, 1343–1376.

Elerain, O., S. Chib, & N. Shephard (2001). Likelihood inference for discretely observed non-linear diffusions.Econometrica69, 959–993.

Elliott, R. J., P. Fischer, & E. Platen (1999). Hidden Markov filtering fora mean reverting interest rate model. In38th IEEE CDC meeting in Phoenix,pp. 2782–2787. IEEE Control Systems Society.

Elliott, R. J. & M. Kohlmann (1988). A short proof of a martingale representation result.Statist. Probab. Lett.6, 327–329.

Embrechts, P., A. McNeal, & D. Straumann (1999). Correlation: Pitfalls andalternatives.Risk12(5), 69–71.

Engel, D. (1982). The multiple stochastic integral.Mem. Amer. Math. Soc.38, 265.

Eraker, B. (2001). MCMC analysis of diffusion models with application to finance. J. Bus. Econom. Statist.19(2), 177–191.

Ermakov, S. M. (1975).Die Monte Carlo-Methode und verwandte Fragen. Hochschulbucher fur Mathematik, Band 72. VEB Deutscher Verlag derWissenschaften, Berlin. (in German) Translated from Russian by E. Schincke and M. Schleiff.

Ermakov, S. M. & G. A. Mikhailov (1982).Statistical Modeling(2nd ed.). Nauka, Moscow.

Fergusson, K. & E. Platen (2006). On the distributional characterization of log-returns of a world stock index.Appl. Math. Finance13(1), 19–38.

Fischer, P. & E. Platen (1999). Applications of the balanced method to stochastic differential equations in filtering.Monte Carlo Methods Appl.5(1),19–38.

Fishman, G. S. (1996).Monte Carlo: Concepts, Algorithms and Applications. Springer Ser. Oper. Res. Springer.

Florens-Zmirou, D. (1989). Approximate discrete-time schemes for statistics of diffusion processes.Stochastics20(4), 547–557.

Follmer, H. & A. Schiedt (2002).Stochastic Finance. An Introduction In Discrete Time, Volume 27 ofde Gruyter Studies in Mathematics. Walter deGruyter& Co., Berlin.

Fournie, E., J. M. Lasry, & N. Touzi (1997). Monte Carlo methods for stochastic volatility models. InNumerical Methods in Finance, pp. 146–164.Cambridge Univ. Press, Cambridge.

Fu, M. C. (1995). Pricing of financial derivatives via simulation. In C. Alexopoulus, K. Kang, W. Lilegdon, and D. Goldsman (Eds.),Proceedings ofthe 1995 Winter Simulation Conference. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers.

Fujisaki, M., G. Kallianpur, & H. Kunita (1972). Stochastic differential equations for the non-linear filtering problem.Osaka J. Math.9, 19–40.

Giannelli, M. & J. A. Primbs (2001). On applications of the Ito-Taylor expansions to finance: Hedging and Value-at-Risk problems. CaliforniaInstitute of Technology, Pasadena (working paper).

c© Copyright E. Platen References 894

Gibson, M. S. (2001). Incorporating event risk into Value at Risk. Discussion Paper Federal Reserve Board, Washington(http:\\www.gloriamundi.org).

Glasserman, P. (2004).Monte Carlo Methods in Financial Engineering, Volume 53 ofAppl. Math.Springer.

Glasserman, P. & N. Merener (2003). Numerical solution of jump-diffusion LIBOR market models.Finance Stoch.7(1), 1–27.

Gleser, L. J. (1976). A canonical representation for the noncentral Wishart distribution useful for simulation.J. Amer. Statist. Assoc.71(355), 690–695.

Goldman, D., D. Heath, G. Kentwell, & E. Platen (1995). Valuation of multi-factor interest rate dependent contingent claims. In E. Platen (Ed.),Workshop on Stochastic and Finance, pp. 153–170. Australian National University, Canberra. FMRR 004-95.

Gourieroux, C. & R. Sufana (2004). Derivative pricing with multivariate stochastic volatility: Application to credit risk. Working paper CREST.

Grant, D., D. Vora, & D. Weeks (1997). Path-dependent options: Extending the Monte Carlo simulation approach.Management Science43(11),1589–1602.

Hammersley, J. M. & D. C. Handscomb (1964).Monte Carlo Methods. Methuen, London.

Haussmann, U. (1978). Functionals of Ito processes as stochastic integrals.SIAM J. Control Optim.16, 252–269.

Heath, D. (1995).Valuation of derivative securities using stochastic analytic and numerical methods. Ph. D. thesis, ANU, Canberra.

Heath, D. & E. Platen (2002). A variance reduction technique based on integral representations.Quant. Finance2(5), 362–369.

Hernandez, D. B. & R. Spigler (1992).A-stability of implicit Runge-Kutta methods for systems with additive noise.BIT 32, 620–633.

Hernandez, D. B. & R. Spigler (1993). Convergence and stability of implicit Runge-Kutta methods for systems with multiplicative noise.BIT 33,654–669.

Heston, S. L. & G. Zhou (2000). On the rate of convergence of discrete-time contingent claims.Math. Finance10(1), 53–75.

Heyde, C. C. (1997).Quasi-Likelihood and Its Application. A General Approach to Optimal Parameter Estimation. Springer Ser. Statist. Springer.

Higham, D. J. (2000). Mean-square and asymptotic stability of numerical methods forstochastic ordinary differential equations.SIAM J. Numer.Anal.38, 753–769.

Hofmann, N. (1994).Beitrage zur schwachen Approximation stochastischer Differentialgleichungen. Ph. D. thesis, Dissertation A, Humboldt Uni-versitat Berlin.

Hofmann, N. & E. Platen (1994). Stability of weak numerical schemes for stochastic differential equations.Comput. Math. Appl.28(10-12), 45–57.

Hofmann, N. & E. Platen (1996). Stability of superimplicit numerical methods forstochastic differential equations.Fields Inst. Commun.9, 93–104.

c© Copyright E. Platen References 895

Hofmann, N., E. Platen, & M. Schweizer (1992). Option pricing under incompleteness and stochastic volatility.Math. Finance2(3), 153–187.

Joy, C., P. P. Boyle, & K. S. Tan (1996). Quasi Monte Carlo methods in numericalfinance.Management Science42(6), 926–938.

Kalman, R. E. & R. S. Bucy (1961). New results in linear filtering and prediction theory.Trans. ASME Ser. D. J. Basic Engrg.83, 95–108.

Kalos, M. H. & P. A. Whitlock (1986).Monte Carlo Methods. Vol. I. Basics. Wiley, New York.

Kamrad, B. & P. Ritchken (1991). Multinomial approximating models for options withk state variables.Management Science37, 1640–1652.

Kelly, L., E. Platen, & M. Sørensen (2004). Estimation for discretely observed diffusions using transform functions. InStochastic Methods and Their

Applications, Volume 41A ofJ. Appl. Probab., pp. 99–118. Applied Prob. Trust.

Kessler, M. & M. Sørensen (1999). Estimating equations based on eigenfunctions fora discretely observed diffusion process.Bernoulli5, 299–314.

Kloeden, P. E. & E. Platen (1992). Higher order implicit strong numerical schemes for stochastic differential equations.J. Statist. Phys.66(1/2),283–314.

Kloeden, P. E. & E. Platen (1999).Numerical Solution of Stochastic Differential Equations, Volume 23 ofAppl. Math.Springer. Third printing, (firstedition (1992)).

Kloeden, P. E., E. Platen, & H. Schurz (2003).Numerical Solution of SDEs Through Computer Experiments. Universitext. Springer. Third correctedprinting, (first edition (1994)).

Kloeden, P. E., E. Platen, H. Schurz, & M. Sørensen (1996). On effects of discretization on estimators of drift parameters for diffusion processes.J.

Appl. Probab.33, 1061–1076.

Kubilius, K. & E. Platen (2002). Rate of weak convergence of the Euler approximation for diffusion processes with jumps.Monte Carlo Methods

Appl.8(1), 83–96.

Kushner, H. J. (1977).Probability Methods for Applications in Stochastic Control and for Elliptic Equations. Academic Press, New York.

Kushner, H. J. & G. DiMasi (1978). Approximation for functionals and optimal control on jump diffusion processes.J. Math. Anal. Appl.63(3),772–800.

Kutoyants, Y. (1984).Parameter Estimation for Stochastic Processes. Helderman Verlag Berlin.

Lamberton, D. & B. Lapeyre (2007).Introduction to Stochastic Calculus Applied to Finance(2nd ed.). Chapman& Hall, London. Translation fromFrench.

Law, A. M. & W. D. Kelton (1991).Simulation Modeling and Analysis(2nd ed.). McGraw-Hill, New York.

Le Breton, A. (1976). On continuous and discrete sampling for parameter estimation in diffusion type processes.Math. Prog. Study5, 124–144.

c© Copyright E. Platen References 896

Liptser, R. & A. N. Shiryaev (2001).Statistics of Random Processes: II. Applications(2nd, revised and expanded ed.), Volume 6 ofAppl. Math.

Springer.

Longstaff, F. A. & E. S. Schwartz (2001). Valuing American options by simulations: A simple least-squares approach.Rev. Financial Studies14(1),113–147.

Madan, D. & E. Seneta (1990). The variance gamma (V.G.) model for share market returns.J. Business63, 511–524.

Maghsoodi, Y. (1996). Mean-square efficient numerical solution of jump-diffusion stochastic differential equations.SANKHYA A58(1), 25–47.

Maghsoodi, Y. (1998). Exact solutions and doubly efficient approximations of jump-diffusion Ito equations.Stochastic Anal. Appl.16(6), 1049–1072.

Maghsoodi, Y. & C. J. Harris (1987). In-probability approximation and simulation of nonlinear jump-diffusion stochastic differential equations.IMA

J. Math. Control Inform.4(1), 65–92.

Maltz, F. H. & D. L. Hitzl (1979). Variance reduction in Monte-Carlo computations using multi-dimensional Hermite polynomials.J. Comput.

Phys.32, 345–376.

Maruyama, G. (1955). Continuous Markov processes and stochastic equations.Rend. Circ. Mat. Palermo4, 48–90.

Merton, R. C. (1976). Option pricing when underlying stock returns are discontinuous.J. Financial Economics2, 125–144.

Meyer, G. H. & J. van der Hoek (1997). The valuation of American put options with themethod of lines.Adv. in Futures and Options Research9,265–285.

Mikulevicius, R. & E. Platen (1988). Time discrete Taylor approximations for Itoprocesses with jump component.Math. Nachr.138, 93–104.

Milstein, G. N. (1974). Approximate integration of stochastic differential equations.Theory Probab. Appl.19, 557–562.

Milstein, G. N. (1988).Numerical Integration of Stochastic Differential Equations. Urals Univ. Press, Sverdlovsk. (in Russian).

Milstein, G. N. (1995).Numerical Integration of Stochastic Differential Equations. Mathematics and Its Applications. Kluwer.

Milstein, G. N., E. Platen, & H. Schurz (1998). Balanced implicit methods for stiff stochastic systems.SIAM J. Numer. Anal.35(3), 1010–1019.

Muirhead, R. J. (1982).Aspects of Multivariate Statistical Theory. Wiley, New York.

Newton, N. J. (1986). An asymptotic efficient difference formula for solving stochastic differential equations.Stochastics19, 175–206.

Newton, N. J. (1991). Asymptotically efficient Runge-Kutta methods for a class of Ito and Stratonovich equations.SIAM J. Appl. Math.51, 542–567.

Newton, N. J. (1994). Variance reduction for simulated diffusions.SIAM J. Appl. Math.54(6), 1780–1805.

Ocone, D. L. (1984). Malliavin’s calculus and stochastic integral representation of functions of diffusion processes.Stochastics12(3-4), 161–185.

c© Copyright E. Platen References 897

Pedersen, A. R. (1995). A new approach to maximum likelihood estimation for stochastic differential equations based on discrete observations.Scand. J. Statist.22, 55–71.

Platen, E. (1982a). An approximation method for a class of Ito processes with jump component.Liet. Mat. Rink.22(2), 124–136.

Platen, E. (1982b). A generalized Taylor formula for solutions of stochastic differential equations.SANKHYA A44(2), 163–172.

Platen, E. (1984). Beitrage zur zeitdiskreten Approximation von Itoprozessen. Habilitation, Academy of Sciences, Berlin.

Platen, E. (1995). On weak implicit and predictor-corrector methods.Math. Comput. Simulation38, 69–76.

Platen, E. & N. Bruti-Liberati (2010).Numerical Solution of SDEs with Jumps in Finance. Springer.

Platen, E. & R. Rebolledo (1985). Weak convergence of semimartingales and discretization methods.Stochastic Process. Appl.20, 41–58.

Platen, E. & W. J. Runggaldier (2005). A benchmark approach to filtering in finance.Asia-Pacific Financial Markets11(1), 79–105.

Platen, E. & W. J. Runggaldier (2007). A benchmark approach to portfolio optimization under partial information.Asia-Pacific Financial Mar-

kets14(1-2), 25–43.

Platen, E. & L. Shi (2008). On the numerical stability of simulation methods for SDEs. Technical report, University of Technology, Sydney. QFRCResearch Paper 234.

Platen, E. & G. Stahl (2003). A structure for general and specific market risk.Computational Statistics18(3), 355 – 373.

Platen, E. & W. Wagner (1982). On a Taylor formula for a class of Ito processes.Probab. Math. Statist.3(1), 37–51.

Poulsen, R. (1999). Approximate maximum likelihood estimation of discretely observed diffusion processes. Technical report, University of Aarhus,Centre for Analytical Finance. Working Paper No. 29.

Prakasa Rao, B. L. S. (1999).Statistical Inference for Diffusion Type Processes. Arnold Publishers, Oxford University Press.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, & B. P. Flannery (2002).Numerical Recipes in C++. The Art of Scientific Computing(2nd ed.).Cambridge University Press.

Raviart, P. A. & J. M. Thomas (1983).Introduction to the Numerical Analysis of Partial Differential Equations. Collection of Applied Mathematicsfor the Master’s Degree. Masson, Paris. (in French).

Richtmeyer, R. & K. Morton (1967).Difference Methods for Initial-Value Problems. Interscience, New York.

Ripley, B. D. (1983).Stochastic Simulation. Wiley, New York.

Ross, S. M. (1990).A Course in Simulation. Macmillan.

c© Copyright E. Platen References 898

Rubinstein, R. Y. (1981).Simulation and the Monte Carlo Method. Wiley Ser. Probab. Math. Statist. Wiley, New York.

Saito, Y. & T. Mitsui (1993a). Simulation of stochastic differential equations. Ann. Inst. Statist. Math.45, 419–432.

Saito, Y. & T. Mitsui (1993b). T-stability of numerical schemes for stochastic differential equations.World Sci. Ser. Appl. Anal.2, 333–344.

Saito, Y. & T. Mitsui (1996). Stability analysis of numerical schemes for stochastic differential equations.SIAM J. Numer. Anal.33(6), 2254–2267.

Shaw, W. (1998).Pricing Derivatives with Mathematica. Cambridge University Press.

Smith, G. D. (1985).Numerical Solution of Partial Differential Equations: Finite Difference Methods(3rd ed.). Clarendon Press, Oxford.

Smith, R. D. (2007). An almost exact simulation method for the Heston model.J. Comput. Finance11(1), 115–125.

Sørensen, M. (1997). Estimating functions for discretely observed diffusions: A review. In I. V. Basawa, V. P. Godambe, and R. L. Taylor (Eds.),

Selected Proceedings of the Symposium on Estimating Functions, Volume 32 of IMS Lecture Notes - Monograph Series, pp. 305–325.

Hayward: Institute of Mathematical Statistics.

Studer, M. (2001).Stochastic Taylor Expansions and Saddlepoint Approximations for Risk Management. Ph. D. thesis, ETH Zurich.

Talay, D. & L. Tubaro (1990). Expansion of the global error for numerical schemes solving stochastic differential equations.Stochastic Anal.

Appl.8(4), 483–509.

Tausworthe, R. C. (1965). Random numbers generated by linear recurrence modulo two.Math. Comp.19, 201–209.

Tavella, D. & C. Randall (2000).Pricing Financial Instruments. The Finite Difference Method. Wiley, New York.

Wagner, W. (1987). Unbiased Monte-Carlo evaluation of functionals of solutions of stochastic differential equations variance reduction and numerical

examples. Preprint P-Math-30/87 Inst. Math. Akad. der Wiss. der DDR.

Wagner, W. & E. Platen (1978). Approximation of Ito integral equations. Preprint ZIMM, Akad. Wissenschaften, DDR, Berlin.

Wilmott, P., J. Dewynne, & S. Howison (1993).Option Pricing: Mathematical Models and Computation. Oxford Financial Press.

Wonham, W. M. (1965). Some applications of stochastic differential equations to optimal nonlinear filtering.SIAM J. Control Optim.2, 347–369.

Zakai, M. (1969). On the optimal filtering of diffusion processes.Z. Wahrsch. Verw. Gebiete11, 230–243.

c© Copyright E. Platen References 899

Recommended