PH880 Topics in Physics - WordPress.com · PH880 Topics in Physics Modern Optical Imaging (Fall...

Preview:

Citation preview

PH880 Topics in Physics

Modern Optical Imaging (Fall 2010)Modern Optical Imaging (Fall 2010)

KAIST PH880 10/11/2010

Review of week 6

• Monday

‐ Fluorescent

‐ Fluorescent microscopypy

• WednesdayWednesday‐ Live cell imaging & fluorescent proteins (FPs)

‐ Advanced techniques in fluorescence‐ Advanced techniques in fluorescence

‐ FCS

‐ FRET

‐ etc

KAIST PH880 10/11/2010

Cell structures and functions

n∼1.34‐1.4

n∼1.4‐1.5

KAIST PH880 10/11/2010

FCS: fluorescent correlation spectroscopy

2

( ) ( )( )

I t I t dtG

I

ττ

+= ∫

KAIST PH880 10/11/2010

FRAP, FLIP, and so on

Nature Reviews Molecular Cell Biology 5, 855‐862 (October 2004)

KAIST PH880 10/11/2010

gy , ( )

Overview of week 7

• Monday

‐ Confocal microscopy: principle

‐ Resolution

‐ Setup

• Wednesday‐ Confocal microscopy: applications‐ Confocal microscopy: applications

‐ Spinning disk confocal

Applications‐ Applications

KAIST PH880 10/11/2010

Problems in (wide‐field) fluorescent microscopy 

B i HiImage

Brain Hippocampus

Depth of focus (thickness of image plane)

http://www.olympusfluoview.com

Depth of focus (thickness of image plane)~ 300 nm (for high NA obj lens)c.f. sample thickness: mammalian cell 5‐15 um

Sample For a given 2D fluorescence image, more than 90% of fluorescent is out‐of‐focus light

KAIST PH880 10/11/2010

Optical sectioning is needed

Depth of focus & Depth of fieldDepth of Field : the range of distances (in object space) for which object points are 

Depth of field vs. NAPSF (in x‐z plane) 

imaged with acceptable sharpness with a fixed position of the image plane

Note:Depth of focus refers to image space, and depth of field refers to object space 

KAIST PH880 10/11/2010

(often used interchangeably with each other)

Principle of Confocal Microscopybeam path (reflection geometry)

Wide‐fieldFluorescence

Confocalsectioning

KAIST PH880 10/11/2010Carl Zeiss webpage

Optical Sectioning microscopy

Confocal microscopy‐ Laser scanning confocal microscopy‐ Spinning‐disk confocal microscopyLi i‐ Line scanning

Deconvolution (computational optical microscopy)Deconvolution (computational optical microscopy)

Structured Illumination Microscopy

Optical Projection TomographyOptical Coherent MicroscopyOptical Coherent Microscopy

KAIST PH880 10/11/2010

Principle of Confocal MicroscopyPoint illumination & point detectionPoint illumination & point detection

Pinhole

KAIST PH880 10/11/2010

Principle of Confocal MicroscopyPoint illumination & point detectionPoint illumination & point detection

b i id lLaser beam is ideal: all energy in a 

collimated coherent lplane wave

Point illuminationPoint detection

KAIST PH880 10/11/2010

First confocal microscopypatented in 1961patented in 1961

Prof Marvin Minsky (MIT)Prof. Marvin Minsky (MIT)

KAIST PH880 10/11/2010

History of confocal microscopySummarized from WB Amos et al Biology of the Cell (2003)Summarized from WB Amos et al, Biology of the Cell, (2003)

•The word ’confocal’ has been first used  and confocal microscopy was demonstrated pyexperimentally by (Brakenhoff et al., 1979)

•The underlying physics was understood (Wilson and Sheppard, 1984)

•A spinning Nipknow disk was introduced to illuminate the specimen with multiple points, (Petran et al, 1968)

•The first biologically‐convincing results were obtained by Brakenhoff et al (1985) (images of nuclei in which the chromatin, stained with a fluorescent dye)

Refs:Brakenhoff, G.J., Blom, P., Barends, P., 1979. Confocal scanning microscopy with high‐aperture lenses. J. Microsc. 117, 219–232232.Wilson, T., Sheppard, C., 1980. Theory and Practice of Scanning Optical Microscopy. Academic Press, London.Petran, M., Hadravsky, M., Egger, D., Galambos, R., 1968. Tandem scanning reflected light microscope. J. Opt. Soc. Amer. 58, 661–664Brakenhoff G J van der Voort H TM van Spronsen E A Linnemans WA M Nanninga N 1985 Three dimensional

KAIST PH880 10/11/2010

Brakenhoff, G.J., van der Voort, H.T.M., van Spronsen, E.A., Linnemans, W.A.M., Nanninga, N., 1985. Three‐dimensional chromatin distribution in neuroblastoma cell nuclei shown by confocal scanning laser microscopy. Nature 317, 748–749

Scanning schemes

Ill i ti iS l i Illumination scanningSample scanning

Move specimen

Avoid off‐axis aberrationVibration issue

Off‐axis aberration(astigmatism, coma and field curvature)Little Vibration 

KAIST PH880 10/11/2010JA Conchelloe and JW Litchman, Nature Methods, 2005

Scanning schemes

(slow)

Horizontal: fast scanVertical : slow scan

“4‐f system”(fast)

y

Problems: chromatic aberration in 4‐f system, rotating polygon does not produce

KAIST PH880 10/11/2010WB Amos et al, Biology of the Cell 95 (2003) 335–342

the ideal purely‐rotatory movement, noise issue in the polygon

Scanning schemes

No chromatic aberration: design for all the confocal point‐scanning systems manufactured by Bio‐Rad since 1991

KAIST PH880 10/11/2010WB Amos et al, Biology of the Cell 95 (2003) 335–342

design for all the confocal point scanning systems manufactured by Bio Rad since 1991

Setup for (reflection) fluorescent confocal microscopy

Note: scanning and descanning are done by the same oscillating mirror

KAIST PH880 10/11/2010JA Conchelloe and JW Litchman, Nature Methods, 2005

Photomultiplier tubes (PMT)multiply the current produced by incident light by as much as 100 million times  (i.e., 160 dB), in multiple dynode stages. 

‐photoelectric effect:  electrons are emitted from matter as a consequence of their p qabsorption of energy from photon. ‐Secondary emission: when primary incident particles of sufficient energy (charged electrons or ion) hit some material, the electrons are emitted. 

KAIST PH880 10/11/2010It enables individual photons to be detected (when the incident flux of light is very low.)

Florescence intensity in confocal microscopy

KAIST PH880 10/11/2010JA Conchelloe and JW Litchman, Nature Methods, 2005

3D PSF revisited

When NA < 0.5, 

KAIST PH880 10/11/2010Carl Zeiss, Confocal Laser Scanning Microscopy

Pinhole size

Appropriate size of pinhole: 50‐80% of the diameter of the diffraction limited spot

Smaller pinhole: better sectioning weaker signalSmaller pinhole: better sectioning, weaker signalLarger pinhole: worse sectioning, stronger signal

KAIST PH880 10/11/2010

Resolution in confocal microscopy

Wide‐field Confocal

( )( , , ) ( , , ) ( , , )confocal excitation emission pinholePSF x y z PSF x y z PSF x y z= ⋅

Resolving power of the confocal scanning microscopy in approximately 1.4x betterResolving power of the confocal scanning microscopy in approximately 1.4x betterthen in a wide‐field fluorescence microscopy (When pinhole size is properly chosen)

KAIST PH880 10/11/2010

3D PSF in confocal microscopy

to consider both λexc and λem, a mean wavelength was introduced.

KAIST PH880 10/11/2010Carl Zeiss, Confocal Laser Scanning Microscopy

3D PSF in confocal microscopy

Put together,g ,

,tot lateralFWHM XNAλ

=, 2 2( )

tot axialZFWHM

n n NA

λ=

− −( )

22ZnNA

λ(When NA < 0.5)

Y

X

KAIST PH880 10/11/2010Carl Zeiss, Confocal Laser Scanning Microscopy

Optical sectioning property in confocal microscopy

KAIST PH880 10/11/2010

Summary

Conventional microscopy

Confocal microscopy1 AU < PH <∞

Confocal microscopyPH < 1 AU

Optical slice thickness

not definable(optical sectioning is not 

possible)

Axial resolution(Depth of Field in(Depth of Field in wave optics)

Lateral resolution

PH is the variable object‐side pinhole diameter in μm.

KAIST PH880 10/11/2010

3D fluorescent image from confocal microscopy

1 2D Laser scanning in the specimen1, 2D Laser scanning in the specimen. 2, a) repeat at the same focus  a time series of imageb) step up/down the focus  a 3D image stack

a 3D image stack of pollen

Reconstructed image

KAIST PH880 10/11/2010

3D fluorescent image from confocal microscopy

1 2D Laser scanning in the specimen1, 2D Laser scanning in the specimen. 2, a) repeat at the same focus  a time series of imageb) step up/down the focus  a 3D image stack

a time series experiment with Kaede‐ptransfected cells. 

* With the irradiation of UV light or violet light (350–400 nm), Kaede undergoes irreversible photoconversion from green fluorescence to red fluorescence. 

KAIST PH880 10/11/2010

Contrast in Confocal microscopy

1. Fluorophore: fluorescent dye, protein, quantum dotsfor targeting specific molecule

2. Autofluorescence: show fluorescence without labelingchlorophyll (in plant cells), collagen, elastin, fibrillin, flavin, indolamined l d d l l findolamine dimer, indolamine trimer, lipofuscin, 

NADH (reduced form only), polyphenols (in plant cells), tryptophan

3. Elastic Light Scattering

4. Raman Scattering: confocal Raman scattering

KAIST PH880 10/11/2010

Contrast in Confocal microscopy

Backscattered light and autofluorescence signals combined:ll l & H G2 llcollagen gel & HepG2 cells

Image courtesy:  J. Paul Robinson (Purdue university)

KAIST PH880 10/11/2010

g y ( y)

Summary: Widefield v.s. Scanning confocal

KAIST PH880 10/11/2010DJ Stephens and VJ Allen, Science, 2003

Other optical sectioning technique:Optical Projection TomographyOptical Projection Tomography

KAIST PH880 10/11/2010

Overview of week 7

• Monday

‐ Confocal microscopy: principle

‐ Resolution

‐ Setup

• Wednesday‐ Confocal microscopy: applications‐ Confocal microscopy: applications

‐ Spinning disk confocal

Applications‐ Applications

KAIST PH880 10/11/2010

Reading List (wk 5 day 2)

h ll & i h ( ) i l i i i h d1. Conchello J & Lichtman J (2005) Optical sectioning microscopy. Nature methods 2(12):920‐931.

KAIST PH880 10/11/2010