photoelectric effect/photoemission

Preview:

Citation preview

Liberation of electron using a photon

photoelectric effect/photoemission

Science By The Slice

Xiaoshan Xu

July 22, 2016

PHOTOELECTRIC EFFECT

The complete absorption of a photon by a solid with the emission of an

electron. (Handbook of chemistry and physics, David Lide, 87th edition,

Boca Raton, FL : CRC Press, 2006)

e

eee

ee

ee

ee e e

e

e

Light (𝐼, 𝜈 ) Electron (πΈπ‘˜ , 𝐼𝐸)

Metal: Li, Na, K

Photoelectric effect

https://phet.colorado.edu/en/simulation/photoelectric

𝐼: light intensity

𝜈: light frequency

πΈπ‘˜: kinetic energy of

emitted electron

𝐼𝐸: photoelectric

current

Light (𝐼, 𝜈 )

Electron (πΈπ‘˜ , 𝐼𝐸)

Properties of the photoelectric effect

𝐼𝐸 ∝ 𝐼 (The intensity of light is

proportional to the induced photo

electric current.)

There is an threshold for the light

frequency to generate photocurrent.

The maximum kinetic energy

increases with the light frequencyhttp://hyperphysics.phy-astr.gsu.edu/hbase/mod2.html

Na

Quantization of light: photon

β€’ The energy of the light propagates in discrete wave packets (photons):

𝐸𝑝 = β„Žπœˆ, β„Ž is the Plank constant

β€’ Conservation of energy:

πΈπ‘˜π‘šπ‘Žπ‘₯ = 𝐸𝑝 βˆ’ πœ™ = β„Žπœˆ βˆ’ πœ™

Vacuum level

Metal

πœ™:π‘€π‘œπ‘Ÿπ‘˜ π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘›

ee

ee

e

e

e

e

e

Light (𝐼, 𝜈 )

Measurement of Plank constant

Robert Millikan

β„Ž = 6.6 Γ— 10βˆ’34 Js

http://hyperphysics.phy-astr.gsu.edu/hbase/mod2.html

πΈπ‘˜π‘šπ‘Žπ‘₯ = 𝐸𝑝 βˆ’ πœ™ = β„Žπœˆ βˆ’ πœ™

Work functions of metals (eV)Ag 4.26 – 4.74 Al 4.06 – 4.26 As 3.75

Au 5.1 – 5.47 B ~4.45 Ba 2.52 – 2.7

Be 4.98 Bi 4.31 C ~5

Ca 2.87 Cd 4.08 Ce 2.9

Co 5 Cr 4.5 Cs 2.1

Cu 4.53 – 5.10 Eu 2.5 Fe: 4.67 – 4.81

Ga 4.32 Gd 2.90 Hf 3.9

Hg 4.475 In 4.09 Ir 5.00 – 5.67

K 2.29 La 3.5 Li 2.9

Lu ~3.3 Mg 3.66 Mn 4.1

Mo 4.36 – 4.95 Na 2.36 Nb 3.95 – 4.87

Nd 3.2 Ni 5.04 – 5.35 Os 5.93

Pb 4.25 Pd 5.22 – 5.6 Pt 5.12 – 5.93

Rb 2.261 Re 4.72 Rh 4.98

Ru 4.71 Sb 4.55 – 4.7 Sc 3.5

Se 5.9 Si 4.60 – 4.85 Sm 2.7

Sn 4.42 Sr ~2.59 Ta 4.00 – 4.80

Tb 3.00 Te 4.95 Th 3.4

Ti 4.33 Tl ~3.84 U 3.63 – 3.90

V 4.3 W 4.32 – 5.22 Y 3.1

Yb 2.60 [13] Zn 3.63 – 4.9 Zr 4.05

Visible light:

1.6-3.1 eV

Light: Wave and particle

β€’ Klein–Gordon equation (Relativistic)

βˆ’β„2πœ•2

πœ•π‘‘2πœ“ = βˆ’β„2𝑐2𝛻2 +π‘š2𝑐4 πœ“ = 𝐸2

m=0 for photon:

βˆ’β„2πœ•2

πœ•π‘‘2πœ“ = βˆ’β„2𝑐2𝛻2πœ“ = 𝐸2

πœ“ = Ae𝑖(2πœ‹πœ†π‘₯βˆ’πœ”π‘‘)

, 𝐸 = β„πœ” = β„Žπœˆ

πœ” ≑ 2πœ‹πœˆ, ℏ β‰‘β„Ž

2πœ‹

Light Induced Quantum Transitions

β€’ Transition matrix

𝐻12 = πœ“1 𝐸0π‘’βˆ’π‘–πœ”π‘‘ πœ“2

= πœ“10 𝐸0 πœ“2

0 π‘’βˆ’π‘–(𝐸2βˆ’πΈ1

β„βˆ’πœ”)𝑑

Transition probability

𝑃 𝑑 ∝ ΰΆ±0

𝑑

𝐻12𝑑𝑑

2

∝ ࢱ0

𝑑

π‘’βˆ’π‘–

𝐸2βˆ’πΈ1ℏ

βˆ’πœ” 𝑑𝑑𝑑

2

∝ πœ“10 𝐸0 πœ“2

0 2𝛿(𝐸2 βˆ’ 𝐸1

β„βˆ’ πœ”)

Light eβˆ’π‘–πœ”π‘‘

πœ“1 = πœ“10π‘’βˆ’π‘–

𝐸1ℏ𝑑

πœ“2 = πœ“20π‘’βˆ’π‘–

𝐸2ℏ𝑑

Application of photoelectric effect

β€’ Photoelectric cell for light sensing

β€’ Photomultiplier tube for single-photon

detection

Excitation in an insulator (semiconductor)

Vacuum level

Metal

πœ™:π‘€π‘œπ‘Ÿπ‘˜ π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘›

ee

e

e

e

e

ee

e

Light (𝐼, 𝜈 )

Vacuum level

Insulator

𝐸𝑔: π‘π‘Žπ‘›π‘‘ π‘”π‘Žπ‘

ee

ee

e

e

e

e

e

Light (𝐼, 𝜈 )

π‘‰π‘Žπ‘™π‘’π‘›π‘π‘’ π‘π‘Žπ‘›π‘‘

πΆπ‘œπ‘›π‘‘π‘’π‘π‘‘π‘–π‘œπ‘› π‘π‘Žπ‘›π‘‘ Si

Si

Si

Si

Si

Si

Si

Si

Si

e e e e

e e

e e e e

e e

e

e

e

e

e

e

e

e

e e

ee

Light induced electron-hole pair

Photovotaic effect

ee

ee

e e

ee e e

e

hh

h h

hh

h

hh h

h+++

---

π‘₯

π‘‰π‘‘π‘Ÿπ‘œπ‘

Electric potential

Depletion zone

h

ee

h

+-

Photodetector: charge coupled device (CCD)

Gate

SiO2

p-Si

𝑉𝐺

e

h

PHOTOEMISSION

e

eee

ee

ee

ee e e

e

e

Light (𝐼, 𝜈 ) Electron (πΈπ‘˜ , 𝐼𝐸)

Metal and insulators

Photoemission

Binding energy: 𝐸𝐡 = β„Žπœˆ βˆ’ πΈπ‘˜Binding energy of valence electron

< 100 eV ultraviolet light

Binding energy of core electron:

> keV x-ray

K, n=1

L, n=2M, n=3N, n=4Valence

Vacuum

https://en.wikipedia.org/wiki/X-ray_photoelectron_spectroscopy

Ultraviolet photoelectron spectroscopy (UPS)

http://en.wikipedia.org/wiki/File:ARPESgeneral.png

Fix photon energy

Measure kinetic energy

β€’ Surface sensitive due to small kinetic energy

β€’ Must be in UHV (typically <10-9 Torr)

X-ray photoelectron spectroscopy (XPS)

J. Phys.: Condens. Matter 27 (2015) 175004 .

h-LuFeO3

Auger effect (Secondary photoemission)

β€’ 1st , x-ray excites electron to

conduction band and

generate a core hole

β€’ 2nd , electron recombine

with the hole; the emitted

energy expels another

electronK, n=1

L, n=2M, n=3N, n=4Valence

Vacuum

K, n=1

L, n=2M, n=3N, n=4Valence

Vacuum

X-ray absorption Electron-hole recombination and

emission of another electron

ABSORPTION SPECTROSCOPY

πœ“1 = πœ“10π‘’βˆ’π‘–

𝐸1ℏ𝑑

πœ“2 = πœ“20π‘’βˆ’π‘–

𝐸2ℏ𝑑 𝑃 𝑑 ∝ πœ“1

0 𝐸0 πœ“20

2𝛿(𝐸2 βˆ’ 𝐸1

β„βˆ’ πœ”)

Optical absorption spectroscopy

1.2 1.4 1.6 1.8 2.0 2.20

100

200

300

400

500

600

700

(

cm-1

)

Energy (eV)

300 K

4 K

6A

1g

4T

1g

6A

1g

4T

2g

PHYSICAL REVIEW B 79, 134425 2009

BiFeO3

t2g

eg

Fe3+ 3d5

Spin Parity

Initial 5/2 Even

Final 3/2 Even6A1g

4T1g

Color of BiFeO3 comes from the absorption

X-ray absorption spectroscopy (XAS)

Transmission

Incident x-ray

Secondary

photoemission

(surface sensitive,

a few nm)Fluorescence

e

β€’ Transmission is normally

difficult to measure,

especially for thin films

β€’ Fluorescence spectra is

often distorted by self

absorption

β€’ Photoemission is often

used for its surface

sensitivity, especially for

thin films.

XAS using synchrotron x-ray

β€’ Unlike XPS, UPS, the x-ray

energy is canned, which

requires synchrotron source

β€’ UHV is also necessary

X-ray

e

XAS at Canadian Light Source

Electronic structures by XAS

LuFeO3

hexagonal

orthorhombic

hexagonal

orthorhombic

X-ray magnetic circular dichroism (XMCD)

Stohr, Siegmann, Magnetism From Fundamentals to Nanoscale Dynamics, Springer, 2006.

Photoemission electron microscopy (PEEM)

Fe magnetic domains

Magnetic domains

hexagonal

orthorhombic

hexagonal

orthorhombic

Structural

domains

Thank you for your attention !

Recommended