POLYVALENT BINARY IONIC COMPOUNDS Unit 6: Ch 7.1b & Ch 9.2b

Preview:

Citation preview

POLYVALENT BINARY IONIC COMPOUNDS

Unit 6: Ch 7.1b & Ch 9.2b

CRISS-CROSS METHOD

• Determine the ions • Criss Cross the charges of the ions

= chemical formula• Example: Calcium + Phosphorus

CRISS-CROSS METHOD

• Determine the ions • Criss Cross the charges of the ions

= chemical formula• Example: Calcium + Phosphorus–Ca + P• IONS = Ca2+ + P3-

CRISS-CROSS METHOD

• Determine the ions • Criss Cross the charges of the ions

= chemical formula• Example: Calcium + Phosphorus–Ca + P• IONS = Ca2+ + P3-

Ca3P2

POLYVALENT METALS

• Many but not all transition metals have “multiple personalities”–# of valence electrons varies• Polyvalent

– they can form more than one ion• Roman Numerals are used to signify the

charge

TRANSITION METALS

POLYVALENT TRANSITION METALS

• Metals with more than one possible charge:• Specific charge is indicated in

parenthesis

POLYVALENT METALS & BONDING

• Fe(II) = – Iron (II) + oxygen =

POLYVALENT METALS & BONDING

• Fe(II) = Fe2+

– Iron (II) + oxygen =

POLYVALENT METALS & BONDING

• Fe(II) = Fe2+

– Iron (II) + oxygen =• Fe2+ & O2-

POLYVALENT METALS & BONDING

• Fe(II) = Fe2+

– Iron (II) + oxygen = • Fe2+ & O2- Fe2O2 FeO

POLYVALENT METALS & BONDING

• Fe(II) = Fe2+

– Iron (II) + oxygen =• Fe2+ & O2- Fe2O2 FeO

• Fe(III) = Fe3+

– Iron (III) + oxygen =

POLYVALENT METALS & BONDING

• Fe(II) = Fe2+

– Iron (II) + oxygen =• Fe2+ & O2- Fe2O2 FeO

• Fe(III) = Fe3+

– Iron (III) + oxygen =• Fe3+ & O2-

POLYVALENT METALS & BONDING

• Fe(II) = Fe2+

– Iron (II) + oxygen =• Fe2+ & O2- Fe2O2 FeO

• Fe(III) = Fe3+

– Iron (III) + oxygen =• Fe3+ & O2- Fe2O3

NAMING POLYVALENT IONS

• Stock Name: –Same as Simple Binary Ionic–Plus metal’s oxidation #/charge

(roman numeral) in parentheses• Fe2+ Iron (II) ion• Fe3+ Iron (III) ion

NAMING POLYVALENT IONS

• Classical Name:– Uses root word (typically from Latin name) with

different suffixes for different oxidation #’s/charges

• -ous lower ionic charge• -ic higher ionic charge

– Example:• Iron Ferrum– Fe2+ Ferrous ion–Fe3+ Ferric ion

–Pg 255 List of classical names – Take down the roots of the listed metals!

NAMING POLYVALENT BINARY IONIC COMPOUNDS

• Same as Simple Binary Ionic Compounds– Combine the ion names

• FeO–Stock Name: Iron (II) Oxide–Classical Name: Ferrous Oxide

• Fe2O3

–Stock Name: Iron (III) Oxide–Classical Name: Ferric Oxide

PRACTICE - POLYVALENT COMPOUNDS

• Names to Formulas– Silver (III) Nitride– Silver (II) Nitride

– Vanadium (III) Chloride– Vanadium (II) Chloride

– Lead (IV) Oxide– Lead (II) Oxide

PRACTICE - POLYVALENT COMPOUNDS

• Formula to Name–Have to determine the oxidation

#/Charge of your metal.• Reverse the criss cross (doesn’t always work)– Fe2O3

PRACTICE - POLYVALENT COMPOUNDS

• Formula to Name–Have to determine the oxidation

#/Charge of your metal.• Reverse the criss cross (doesn’t always work)– Fe2O3 Fe3+ and O2-

PRACTICE - POLYVALENT COMPOUNDS

• Formula to Name–Have to determine the oxidation

#/Charge of your metal.• Reverse the criss cross (doesn’t always work)– Fe2O3 Fe3+ and O2-

• Check the anion’s charge against the periodic table

PRACTICE - POLYVALENT COMPOUNDS

• Formula to Name–Have to determine the oxidation

#/Charge of your metal.• Reverse the criss cross (doesn’t always work)– Fe2O3 Fe3+ and O2-

• Check the anion’s charge against the periodic table– O2- is correct So Fe is a 3+

PRACTICE - POLYVALENT COMPOUNDS• Formula to Name–Have to determine the oxidation

#/Charge of your metal.• Reverse the criss cross (doesn’t always work)– Fe2O3 Fe3+ and O2-

• Check the anion’s charge against the periodic table– O2- is correct So Fe is a 3+–Name Iron (III) oxide or Ferric Oxide

PRACTICE - POLYVALENT COMPOUNDS

• Formula to Name–Have to determine the oxidation

#/Charge of your metal.• Reverse the criss cross (doesn’t always work)– FeO

PRACTICE - POLYVALENT COMPOUNDS

• Formula to Name–Have to determine the oxidation

#/Charge of your metal.• Reverse the criss cross (doesn’t always work)– FeO Fe1+ and O1-

PRACTICE - POLYVALENT COMPOUNDS

• Formula to Name–Have to determine the oxidation

#/Charge of your metal.• Reverse the criss cross (doesn’t always work)– FeO Fe1+ and O1-

• Check the anion

PRACTICE - POLYVALENT COMPOUNDS

• Formula to Name–Have to determine the oxidation

#/Charge of your metal.• Reverse the criss cross (doesn’t always work)– FeO Fe1+ and O1-

• Check the anion–O1- is NOT correct Been a reduction

PRACTICE - POLYVALENT COMPOUNDS• Formula to Name–Have to determine the oxidation

#/Charge of your metal.• Reverse the criss cross (doesn’t always work)– FeO Fe1+ and O1-

• Check the anion–O1- is NOT correct Been a reduction

–1:1 ratio – metal started with the same charge as the anion.

PRACTICE - POLYVALENT COMPOUNDS

• Formula to Name–Have to determine the oxidation

#/Charge of your metal.• Reverse the criss cross (doesn’t always work)–SnO3

PRACTICE - POLYVALENT COMPOUNDS

• Formula to Name–Have to determine the oxidation

#/Charge of your metal.• Reverse the criss cross (doesn’t always work)–SnO3 Sn3+ and O1-

PRACTICE - POLYVALENT COMPOUNDS

• Formula to Name–Have to determine the oxidation

#/Charge of your metal.• Reverse the criss cross (doesn’t always work)–SnO3 Sn3+ and O1-

O2-

PRACTICE - POLYVALENT COMPOUNDS

• Formula to Name–Have to determine the oxidation

#/Charge of your metal.• Reverse the criss cross (doesn’t always work)–SnO3 Sn3+ and O1-

O2-

x 2

PRACTICE - POLYVALENT COMPOUNDS

• Formula to Name–Have to determine the oxidation

#/Charge of your metal.• Reverse the criss cross (doesn’t always work)–SnO3 Sn3+ and O1-

Sn6+ O2-

x 2

PRACTICE - POLYVALENT COMPOUNDS

• Formula to Name–Have to determine the oxidation

#/Charge of your metal.• Reverse the criss cross (doesn’t always work)–SnO3 Sn3+ and O1-

Sn6+ O2-

–Name: Tin (VI) Oxide

x 2

Recommended