Power Control, Interference Suppression and Interference Avoidance in Wireless Systems

Preview:

DESCRIPTION

Power Control, Interference Suppression and Interference Avoidance in Wireless Systems. Roy Yates (with S. Ulukus and C. Rose) WINLAB, Rutgers University. CDMA System Model. BS k. BS 1. CDMA Receivers. SIR 1. SIR i. SIR N. CDMA Signals. Power Control: p i - PowerPoint PPT Presentation

Citation preview

1

Power Control,Interference Suppression

and Interference Avoidance

in Wireless Systems

Roy Yates(with S. Ulukus and C. Rose)WINLAB, Rutgers University

2

CDMA System Model

11 sp

22 sp

33 sp

1kh BS k

2kh 3kh44 sp

55 sp

66 sp

14h BS 1

15h 16h

4kh

5kh

3

CDMA Receivers

3c

1c

2c11 sp

22 sp

33 sp

SIR1

SIRi

SIRN

4

CDMA Signals

ijj

tkijkj

itkiiki

ki

ktki

ijj

tkijjkji

tkiiikiki

jkjjjkjk

ph

phSIR

bphbphy

bph

22

2

noiseceInterferen

Signal Desired

][sc

scp

ncscsc

nsr

• Power Control: pi • Interference suppression: cki

• Interference Avoidance: si

5

22

2 :constraint SIR ij

jjtkikj

itki

ii psch

scp

1 iff Feasible G

Gpp :formVector

SIR Constraints

• Feasibility depends on link gains, receiver filters

6

SIR Balancing

• SIR low Increase transmit power• SIR high Decrease transmit power

• [Aein 73, Nettleton 83, Zander 92, Foschini&Miljanic 93]

)())((

)1( tptSIR

tp iki

ii p

7

Power Control + Interference Suppression

• 2 step Algorithm: – [Rashid-Farrokhi, Tassiulas, Liu], [Ulukus, Yates]

– Adapt receiver filter ckj for max SIR

• Given p, use MMSE filter [Madhow, Honig 94]

– Given ckj, use min power to meet SIR target

• Converges to min powers, corresponding MMSE receivers

8

Interference Avoidance

• Old Assumption: Signatures never change

• New Approach: Adapt signatures si to improve SIR– Receiver feedback tells transmitter how to

adapt.

• Application: – Fixed Wireless – Unlicensed Bands

9

MMSE Signature Optimization

ci MMSE receiver filter

Interference

si transmit signal

Capture MoreEnergy

InterferenceSuppressionis unchanged

Match si to ci

10

Optimal Signatures

• IT Sum capacity: [Rupf, Massey]

• User Capacity [Viswanath, Anantharam, Tse]

• BW Constrained Signatures [Parsavand, Varanasi]

11

Simple Assumptions

• N users, processing gain G, N>G

• Signature set: S =[s1 | s2 | … |sN]

• Equal Received Powers: pi = p

• 1 Receiver/Base station• Synchronous system

12

Sum Capacity [Rupf, Massey]

• CDMA sum capacity

SSISSI t

Nt

G

ppC 22sum det(log

21

det(log21

• To maximize CDMA sum capacity– If N G, StS = IN

• N orthonormal sequences

– If N > G, SSt = (N/G) IG • N Welch Bound Equality (WBE) sequences

13

User Capacity

• [Viswanath, Anantharam, Tse]

• Max number of admissible users given– proc gain G, SIR target

• With MMSE receivers: – N < G (1 + 1/ )

• Max achieved with– equal rec’d powers, WBE sequences

14

User Capacity II

• Max achieved withequal rec’d powers pi = pWBE sequences: SSt = (N/G) IG

• MMSE filters: ci=gi(SSt+I) -1si

– gi used to normalize ci

• MMSE filters are matched filters!

15

Welch’s Bound

• For unit energy vectors, a lower bound for maxi,j(si

tsj)2 derived using

k

kGk

j

N

i

N

j

ti

N1

22

1 1

)(

ss

• For k=1, a lower bound on Total Squared Correlation (TSC):

GNj

N

i

N

j

ti /)(TSC 22

1 1

ss

16

Welch’s Bound

GNj

N

i

N

j

ti /)(TSC 22

1 1

ss

• For k=1, a lower bound on TSC:

• If N G, bound is loose– N orthonormal vectors, TSC=N

• If N>G, bound is achieved iff SSt = (N/G) IG

17

WBE Sequences, Min TSC, Optimality

• Min TSC sequences– N orthonormal vectors for N G – WBE sequences for N > G

• For a single cell CDMA system, min TSC sequences maximize– IT sum capacity– User capacity

• Goal: A distributed algorithm that converges to a set of min TSC sequences.

18

Reducing TSC

22 )(2)(TSC jki kj

tik

kj

tjj

tkk

tk

k

sss

A

sssss

• To reduce TSC, replace sk with

– eigenvector of Ak with min eigenvalue (C. Rose)• Ak is the interference covariance matrix and can be

measured

– generalized MMSE filter: (S. Ulukus)

19

MMSE Signature Optimization Algorithm

ci MMSE receiver filter

Interference

si transmit signal

Iterative Algorithm:

Match si to ci

Convergence?

20

MMSE Algorithm

• Replace sk with MMSE filter ck

– Old signatures: S=[s1,…, sk-1,sk,sk, sk+1,…, sN]

– New signatures: S'=[s1,…, sk-1,sk,ck, sk+1,…, sN]

• Theorem: – TSC(S’) TSC(S)

– TSC(S’) =TSC(S) iff ck = sk

21

MMSE Implementation

• Use blind adaptive MMSE detector

• RX i converges to MMSE filter ci

• TX i matches RX: si = ci

– Some users see more interference, others less

– Other users iterate in response

• Longer timescale than adaptive filtering

22

MMSE Iteration

• S(n-1), TSC(n-1) At stage n:– replace s1 TSC1(n)

– replace s2 TSC2(n)…replace sN TSCN(n) = TSC(n)

• TSC(n) is decreasing and lower bounded– TSC(n) converges S(n) S

• Does TSC reach global minimum?

23

MMSE Iteration Properties

• Assumption: Initial S cannot be partitioned into orthogonal subsets– MMSE filter ignores orthogonal interferers– MMSE algorithm preserves orthogonal partitions

• If N G, S orthonormal set• If N > G, S WBE sequences

(apparently)

24

MMSE Convergence Example

Eigenvalues TSC

25

MMSE Iteration: Proof Status

• Theorem: No orthogonal splitting in S(0) no splitting in S(n) for all finite n

– doesn’t say that the limiting S is unpartitioned

• In practice, fixed points of orthogonal partitions are unstable.

26

EigenAlgorithm

• Replace sk with eigenvector ek of Ak with min eigenvalue

– Old signatures: S=[s1,…, sk-1,sk,sk, sk+1,…, sN]

– New signatures: S'=[s1,…, sk-1,sk,ek, sk+1,…, sN]

• Theorem: – TSC(S’) TSC(S)

27

EigenAlgorithm Iteration

• S(n-1), TSC(n-1) At stage n:– replace s1 TSC1(n)

– replace s2 TSC2(n)…replace sN TSCN(n) = TSC(n)

• TSC(n) is decreasing and lower bounded– TSC(n) converges – Wihout trivial signature changes, S(n) S

• Does TSC reach global minimum?

28

EigenAlgorithm Properties

• If N G, – S orthonormal set (in N steps)

• Each ek is a decorrelating filter

• If N > G, S WBE sequences (in practice)– EigenAlgorithm has local minima – Initial partitioning not a problem

29

Stuff to Do

• Asynchronous systems• Multipath Channels• Implementation with blind

adaptive detectors• Multiple receivers

30

Unlicensed Bands

• FCC allocated 3 bands (each 100 MHz) around 5 GHz

• Minimal power/bandwidth rules• No required etiquette• How can or should it be used?

– Dominant uses?

• Non-cooperative system interference

Recommended