Prof. D. Wilton ECE Dept. Notes 16 ECE 2317 Applied Electricity and Magnetism Notes prepared by the...

Preview:

Citation preview

Prof. D. WiltonECE Dept.

Notes 16

ECE 2317 ECE 2317 Applied Electricity and MagnetismApplied Electricity and Magnetism

Notes prepared by the EM group,

University of Houston.

Curl of a VectorCurl of a Vector

0

0

0

1curl lim

1curl lim

1curl lim

x

y

z

CS

CS

CS

x V V drS

y V V drS

z V V drS

, , arbitrary vector functionV x y z

curl vector functionV

x

y

z

Cx

Cy

Cz

S

S

S

Note: Paths are defined according to the “right-hand rule”

, , , ,Cx y z x y z

V drV C

circulationof on

curl,

x Vx

circulation per unit area about etc.

Curl of a Vector (cont.)Curl of a Vector (cont.)

“curl meter” ˆ ˆ ˆ , ,x y z

curl velocityof rotation (in the sense indicated)V

Assume that V represents the velocity of a fluid.

Curl CalculationCurl Calculation

y

z

y

Path Cx :

z 1 2

3

4 Cx

0, , 02

0, , 02

0, 0,2

0, 0,2

x xx y z zC C

z

y

y

yV dr V dx V dy V dz V z

yV z

zV y

zV y

(side 1)

(side 2)

(side 3)

(side 4)

0, , 0 0, , 02 2

0, 0, 0, 0,2 2

x

x

z z

C

y y

yz

yz

C

y yV V

V dr y zy

z zV V

z yz

VVS S

y z

VVV dr S

y z

Curl Calculation (cont.)Curl Calculation (cont.)

Though above calculation is for a path about the origin, just add (x,y,z) to all arguments above to obtain the same result for a path about any point (x,y,z) .

x

yz

C

VVV dr S

y z

0

1curl lim

xCsx V V dr

S

curl yzVV

x Vy z

From the curl definition:

Hence

Curl Calculation (cont.)Curl Calculation (cont.)

Similarly,

y

z

x z

C

y x

C

V VV dr S

z x

V VV dr S

x y

curl y yx xz zV VV VV V

V x y zy z z x x y

Hence,

curl x zV Vy V

z x

curl y xV V

z Vx y

Curl Calculation (cont.)Curl Calculation (cont.)

Note the cyclic nature of the three terms:

x

y z

Del OperatorDel Operator

x y z

x y z

y yx xz z

V x y z xV yV zVx y z

x y z

x y z

V V V

V VV VV Vx y z

y z x z x y

x y zx y z

Del Operator (cont.)Del Operator (cont.)

curl V V

Hence,

ExampleExample

2 2 33 2 2V x xy z y x z z xz

2 20 3 2 3 4 6V x z y z xy z x xyz

2 2 33 2 2x y z

x y z x y z

Vx y z x y z

V V V xy z x z xz

ExampleExample

1

y yx xz z

V x y

V VV VV VV x y z

y z x z x y

V z

x

y

Example (cont.)Example (cont.)

1V z

1 0V z

x

y

Summary of Curl FormulasSummary of Curl Formulas

1 1z zVV V VV V

V zz z

sin1 1 1 1

sin sinr r

V rV rVV V VV r

r r r r r

y yx xz zV VV VV V

V x y zy z x z x y

Stokes’s TheoremStokes’s Theorem

n : chosen from “right-hand rule” applied to the surface

S C

V n dS V dr

“The surface integral of circulation per unit area equals the total circulation.”

C

S (open)n

ProofProofDivide S into rectangular patches that are normal to x, y, or z axes.

i ir

iS

V n dS V n S LHS :

Independently consider the left and right hand sides (LHS and RHS) of Stokes’s theorem:

, ,in x y or z

C

S n S

in

ri

iC

Proof (cont.)Proof (cont.)

S

C

, ,

i

i

ir

C

i

V n S V dr

n x y z

e.g ,

0

1lim

ii Cs

n V V drS

i ir

iS

V n dS V n S LHS :

1i

ii r C

n V V drS

Proof (cont.)Proof (cont.)

Hence,

i

i

iri S

i C C

S C

V n S V n ds

V dr V dr

V n ds V dr

(Interior edge integrals cancel)

S

C

C

ExampleExampleVerify Stokes’s theorem for

V x yA B C

x y

C C

C

C C C

V dr V dx V dy

x dy

I I I

0

0A

C

C

C

I

I

( dy = 0 )

x

= a, z= const

y

CA

CB

C

( x = 0 )

CC

(dz = 0)

V x y

Example (cont.)Example (cont.)

2 2 21

0

21

2

sin2 2

sin 12

2 2

a

B

y

y a y a yI

a

a

a

B

B

C

I x dy

2 2

0

a

BI a y dy

x

= a

y

CB

A

B

2

4

aI

Example (cont.)Example (cont.)

Alternative evaluation(use cylindrical coordinates):

2

0

ˆ

B

B

A

B

A

I V dr

V d a d z dz

V a d

cos ,

cos

V V y x x y

x

x a

2

cos cos

cos

V a

a

Now use:

or

Example (cont.)Example (cont.)

Hence

22 2

0

22

0

22

0

2

cos

1 cos2

2

sin 2

2 4

4

BI a d

a d

a

a

2

4

aI

Example (cont.)Example (cont.)Now Use Stokes’s Theorem:

C S

I V dr V z ds

211

4S S

I z z dS dS A a 2

4

aI

V x y y yx xz zV VV VV V

V x y zy z x z x y

1V z

ˆ( )n z

Rotation Property of CurlRotation Property of Curl

(constant)

S (planar)

n

C

0

1limS

C

V n V drS

The component of curl in any direction measures the rotation (circulation) about that direction

Rotation Property of Curl (cont.)Rotation Property of Curl (cont.)

But

Hence

S C

S

C

V n ds V dr

V n ds V n S

V n S V dr

Stokes’s Th.:

Proof:

Taking the limit: 0

1limS

C

V n V drS

(constant)

S (planar)

n

C

2 22 22 2

0

yx z

A

y yx xz z

AA AV

x y z

V VV VV V

x y x z y x y z z x z y

Vector IdentityVector Identity

0V

y yx xz zV VV VV V

V x y zy z x z x y

Proof:

Vector IdentityVector Identity

Visualization:

0V

1

1ˆ i

iS

nV

V V

ii

Ci

V dr

S

face

0

VV

Flux of out of

iCV ˆ in iS

Edge integrals cancel when summed over closed box!

ExampleExample

Find curl of E:

s0 l0

q

1 2 3

Infinite sheet of charge (side view)

Infinite line charge Point charge

Example (cont.)Example (cont.)

0

0

ˆ2

sE x

y yx xz zE EE EE E

E x y zy z x z x y

0 0 0 0 0 0

0

E x y z

s0

1

x

1 1

0

z zEE E EE E

E zz z

l0

2

0

02E

Example (cont.)Example (cont.)

sin1 1 1 1

sin sin

0

r rE rE rEE E E

E rr r r r r

q

32

04

qE r

r

Example (cont.)Example (cont.)

0E By superposition, the result ,

must be true for any general charge distribution

Faraday’s Law (Differential Form)Faraday’s Law (Differential Form)

0S C

E n dS E dr

Let S S

n

S

0S

E n dS

Hence

Stokes’s Th.:

Let S 0: 0n E S 0n E

small planar surface

(in statics)

Faraday’s Law (cont.)Faraday’s Law (cont.)n

S

0

0

0

x E

y E

z E

0E Hence

0n E

ˆ ˆ ˆLet , , :n x y z

Faraday’s Law (Summary)Faraday’s Law (Summary)

0E

0C

E dr Integral form of Faraday’s law

Differential (point) form of Faraday’s law

Stokes’s theorem

curl definition

Path IndependencePath Independence

0V Assume

A BC1

C2

2

2

C

I V dr 1

1

C

I V dr

1 2I I

Path Independence (cont.)Path Independence (cont.)

Proof

2 1

0C C C S

V d r V n dS

2 1 0I I

A B

C

C = C2 - C1

S is any surface that is attached to C.

(proof complete)

Path Independence (cont.)Path Independence (cont.)

0V

path independence

Stokes’s theorem Definition of curl

0C

V dr

Summary of ElectrostaticsSummary of Electrostatics

0

0vD

E

D E

Faraday’s Law: DynamicsFaraday’s Law: Dynamics

0E In statics,

Experimental Law(dynamics):

BE

t

BE

t

magnetic field Bz (increasing with time)

x

y

electric field E

ˆ 0zBz E

t

(assume that Bz increases with time)

Faraday’s Law: Dynamics (cont.)Faraday’s Law: Dynamics (cont.)

Faraday’s Law: Integral FormFaraday’s Law: Integral Form

BE

t

Apply Stokes’s theorem:

ˆ

ˆ

S C

S

E n dS E dr

Bn dS

t

Faraday’s Law (Summary)Faraday’s Law (Summary)

BE

t

ˆC S

BE dr n dS

t Integral form of Faraday’s law

Differential (point) form of Faraday’s law

Stokes’s Theorem

Faraday’s Law (Experimental Setup)Faraday’s Law (Experimental Setup)

magnetic field B (increasing with time)

x

y+

-V > 0

Note: the voltage drop along the wire is zero

Faraday’s Law (Experimental Setup)Faraday’s Law (Experimental Setup)

x

y+

-V > 0

Note: the voltage drop along the wire is zero

ˆ

0

C S

z

S

BE dr n dS

t

BdS

t

S

C

ˆ( )n z

0V

B

A C

V E dr E dr

Hence

A

B

Differential Form of Differential Form of Maxwell’s EquationsMaxwell’s Equations

0

vD

BE

tB

DH J

t

electric Gauss law

magnetic Gauss law

Faraday’s law

Ampere’s law

Integral Form of Integral Form of Maxwell’s EquationsMaxwell’s Equations

ˆ

ˆ

ˆ 0

ˆ ˆ

v

S V

C S

S

C S S

D n dS dV

dE dr B n dS

dt

B n dS

dH dr J n dS D n dS

dt

electric Gauss law

magnetic Gauss law

Faraday’s law

Ampere’s law

Recommended