SE301:Numerical Methods Topic 6 · 2008. 3. 8. · SE301_Topic 6 Al-Amer2005 ٣ Integration...

Preview:

Citation preview

SE301:Numerical MethodsTopic 6

Numerical Integration

SE301_Topic 6 Al-Amer2005 ١

Dr. Samir Al-Amer Term 063

Lecture 17 Introduction to Numerical

Integration

SE301_Topic 6 Al-Amer2005 ٢

DefinitionsUpper and Lower SumsTrapezoid MethodExamples

SE301_Topic 6 Al-Amer2005 ٣

IntegrationIntegrationDefinite Integrals

Definite Integrals are numbers.

21

2

1

0

1

0

2

==∫xxdx

Indefinite Integrals

Indefinite Integrals of a function are functionsthat differ from each other by a constant.

∫ += cxdxx2

2

SE301_Topic 6 Al-Amer2005 ٤

Fundamental Theorem of CalculusFundamental Theorem of Calculus

for solution form closedNo

for tiveantideriva no is There

) f(x)(x) 'F (i.e. f of tiveantideriva is , intervalan on continuous is If

2

2

∫ −=

=

b

a

x

x

b

a

dxe

e

F(a)F(b)f(x)dx

F[a,b]f

SE301_Topic 6 Al-Amer2005 ٥

The Area Under the CurveThe Area Under the Curve

One interpretation of the definite integral is

Integral = area under the curve

f(x)

∫=b

af(x)dxArea

a b

SE301_Topic 6 Al-Amer2005 ٦

Numerical Integration Methods

Numerical integration Methods Covered in this course

Upper and Lower Sums

Newton-Cotes Methods:

Trapezoid Rule

Simpson Rules

Romberg Method

Gauss Quadrature

SE301_Topic 6 Al-Amer2005 ٧

Upper and Lower SumsUpper and Lower SumsThe interval is divided into subintervals

f(x)

a b3210 xxxx

{ }

{ }{ }

( )

( )ii

n

ii

ii

n

ii

iii

iii

n

xxMPfUsumUpper

xxmPfLsumLower

xxxxfMxxxxfm

Define

bxxxxaPPartition

−=

−=

≤≤=≤≤=

=≤≤≤≤==

+

=

+

=

+

+

1

1

0

1

1

0

1

1

210

),(

),(

:)(max:)(min

...

SE301_Topic 6 Al-Amer2005 ٨

Upper and Lower SumsUpper and Lower Sums

( )

( )

2

2 integral theof Estimate

),(

),(

1

1

0

1

1

0

LUError

UL

xxMPfUsumUpper

xxmPfLsumLower

ii

n

ii

ii

n

ii

−≤

+=

−=

−=

+

=

+

=

f(x)

3210 xxxxa b

SE301_Topic 6 Al-Amer2005 ٩

ExampleExample

3,2,1,041

1,169,

41,

161

169,

41,

161,0

)intervals equalfour (4

1,43,

42,

41,0

1

3210

3210

1

0

2

==−

====

====

=⎭⎬⎫

⎩⎨⎧=

+

iforxx

MMMM

mmmm

n

PPartition

dxx

ii 143

21

410

SE301_Topic 6 Al-Amer2005 ١٠

ExampleExample( )

( )

81

6414

6430

21

3211

6414

6430

21integraltheofEstimate

64301

169

41

161

41),(

),(

6414

169

41

1610

41),(

),(

1

1

0

1

1

0

=⎟⎠⎞

⎜⎝⎛ −<

=⎟⎠⎞

⎜⎝⎛ +=

=⎥⎦⎤

⎢⎣⎡ +++=

−=

=⎥⎦⎤

⎢⎣⎡ +++=

−=

+

=

+

=

Error

PfU

xxMPfUsumUpper

PfL

xxmPfLsumLower

ii

n

ii

ii

n

ii

143

21

410

SE301_Topic 6 Al-Amer2005 ١١

Upper and Lower SumsUpper and Lower Sums

• Estimates based on Upper and Lower Sums are easy to obtain for monotonicfunctions (always increasing or always decreasing).

• For non-monotonic functions, finding maximum and minimum of the function can be difficult and other methods can be more attractive.

SE301_Topic 6 Al-Amer2005 ١٢

Newton-Cotes MethodsIn Newton-Cote Methods, the function is approximated by a polynomial of order nComputing the integral of a polynomial is easy.

( )

1)(...

2)()()(

...)(1122

10

10

+−

++−

+−≈

+++≈

++

∫∫

nabaabaabadxxf

dxxaxaadxxfnn

n

b

a

b

a

nn

b

a

SE301_Topic 6 Al-Amer2005 ١٣

Newton-Cotes MethodsTrapezoid Method (First Order Polynomial are used)

Simpson 1/3 Rule (Second Order Polynomial are used),

( )

( )∫∫

∫∫

++≈

+≈

b

a

b

a

b

a

b

a

dxxaxaadxxf

dxxaadxxf

2210

10

)(

)(

SE301_Topic 6 Al-Amer2005 ١٤

Trapezoid MethodTrapezoid Method

)()()()( axab

afbfaf −−−

+

f(x)

ba ( )2

)()(

2)()(

)()()(

)()()()(

)(

2

afbfab

xab

afbf

xab

afbfaaf

dxaxab

afbfafI

dxxfI

b

a

b

a

b

a

b

a

+−=

−−

+

⎟⎠⎞

⎜⎝⎛

−−

−=

⎟⎠⎞

⎜⎝⎛ −

−−

+≈

=

SE301_Topic 6 Al-Amer2005 ١٥

Trapezoid MethodDerivation-One interval

( )

( )2

)()(

)()(2

)()()()()(

2)()()()()(

)()()()()(

)()()()()(

22

2

afbfab

abab

afbfabab

afbfaaf

xab

afbfxab

afbfaaf

dxxab

afbfab

afbfaafI

dxaxab

afbfafdxxfI

b

a

b

a

b

a

b

a

b

a

+−=

−−−

+−⎟⎠⎞

⎜⎝⎛

−−

−=

−−

+⎟⎠⎞

⎜⎝⎛

−−

−=

⎟⎠⎞

⎜⎝⎛

−−

+−−

−≈

⎟⎠⎞

⎜⎝⎛ −

−−

+≈=

∫∫

SE301_Topic 6 Al-Amer2005 ١٦

Trapezoid MethodTrapezoid Method

f(x)

)(bf

( ))()(2

bfafabArea +−

=

)(af

ba

SE301_Topic 6 Al-Amer2005 ١٧

Trapezoid MethodTrapezoid MethodMultiple Application RuleMultiple Application Rule

f(x)

s trapezoid theof

areas theof sum)(

... segments into dpartitione

is b][a, intervalThe

210

=

=≤≤≤≤=

∫b

a

n

dxxf

bxxxxan

( )1212

2)()( xxxfxfArea −

+=

x3210 xxxx

a b

SE301_Topic 6 Al-Amer2005 ١٨

Trapezoid MethodTrapezoid MethodGeneral Formula and special caseGeneral Formula and special case

( )( ))()(21)(

... equal)y necessarilot segments(nn into divided is interval theIf

11

1

0

210

iiii

n

i

b

a

n

xfxfxxdxxf

bxxxxa

+−≈

=≤≤≤≤=

++

=∑∫

[ ] ⎥⎦

⎤⎢⎣

⎡++≈

=−

∑∫−

=

+

1

10

1

)()()(21)(

allfor points) base spacedEqualiy ( CaseSpecial

n

iin

b

a

ii

xfxfxfhdxxf

ihxx

SE301_Topic 6 Al-Amer2005 ١٩

Example

Given a tabulated values of the velocity of an object.

Obtain an estimate of the distance traveled in the interval [0,3].

Time (s) 0.0 1.0 2.0 3.0

Velocity (m/s) 0.0 10 12 14

Distance = integral of the velocity

∫=3

0)(Distance dttV

SE301_Topic 6 Al-Amer2005 ٢٠

Example 1Example 1

Time (s) 0.0 1.0 2.0 3.0

Velocity (m/s)

0.0 10 12 14

{ }3,2,1,0are points Baselssubinterva3 into

divided is interval The

( )

29)140(2112)(101 Distance

)()(21)(

1

0

1

1

1

=⎥⎦⎤

⎢⎣⎡ +++=

⎥⎦

⎤⎢⎣

⎡++=

=−=

∑−

=

+

n

n

ii

ii

xfxfxfhT

xxhMethodTrapezoid

SE301_Topic 6 Al-Amer2005 ٢١

Estimating the Error Estimating the Error For Trapezoid methodFor Trapezoid method

?accurcy digit decimal 5 to

)sin( compute toneeded

are intervals spacedequally many How

0∫π

dxx

SE301_Topic 6 Al-Amer2005 ٢٢

Error in estimating the integralError in estimating the integralTheoremTheorem

)(''max12

)(12

then)( eapproximat

toused is Method Trapezoid If :Theorem) (width intervals Equal

on continuous is)('' :Assumption

],[

2

''2

a

xfhabError

[a,b]wherefhabError

dxxf

h[a,b]xf

bax

b

−≤

∈−

−=

=

∫ξξ

SE301_Topic 6 Al-Amer2005 ٢٣

ExampleExample

52

52

],[

2

5

0

106

1021

121)(''

)sin()('');cos()(';0;

)(''max12

1021 error ,)sin(

×≤⇒

×≤≤⇒≤

−====

−≤

×≤∫

π

ππ

π

h

hErrorxf

xxfxxfab

xfhabError

thatsohfinddxx

bax

SE301_Topic 6 Al-Amer2005 ٢٤

ExampleExample

x 1.0 1.5 2.0 2.5 3.0

f(x) 2.1 3.2 3.4 2.8 2.7

( )( )

( )⎥⎦

⎤⎢⎣

⎡++=

−=

+−=

=

+

++

=

)()(21)(),(

, allfor :

)()(21),(

)(Compute tomethod TrapezoidUse

0

1

1

1

11

1

0

3

1

n

n

ii

ii

iiii

n

i

xfxfxfhPfT

ixxhCaseSpecial

xfxfxxPfTTrapezoid

dxxf

SE301_Topic 6 Al-Amer2005 ٢٥

ExampleExample

x 1.0 1.5 2.0 2.5 3.0

f(x) 2.1 3.2 3.4 2.8 2.7

( )

( )

9.5

7.21.2218.24.32.35.0

)()(21)()( 0

1

1

3

1

=

⎥⎦⎤

⎢⎣⎡ ++++=

⎥⎥⎦

⎢⎢⎣

⎡++≈ ∑∫

=n

n

ii xfxfxfhdxxf

SE301: Numerical Method

Lecture 18Recursive Trapezoid Method

SE301_Topic 6 Al-Amer2005 ٢٦

Recursive formula is used

SE301_Topic 6 Al-Amer2005 ٢٧

Recursive Trapezoid MethodRecursive Trapezoid Method

f(x)

( ))()(2

)0,0(R

intervaloneonbasedEstimate

bfafababh

+−

=

−=

haa +

SE301_Topic 6 Al-Amer2005 ٢٨

Recursive Trapezoid MethodRecursive Trapezoid Method

f(x)

hahaa 2++

( )

[ ])()0,0(21)0,1(

)()(21)(

2)0,1(R

2

intervals 2on based Estimate

hafhRR

bfafhafab

abh

++=

⎥⎦⎤

⎢⎣⎡ +++

−=

−=

Based on previous estimate

Based on new point

SE301_Topic 6 Al-Amer2005 ٢٩

Recursive Trapezoid MethodRecursive Trapezoid Method

f(x)

[

( )

[ ])3()()0,1(21)0,2(

)()(21

)3()2()(4

)0,2(R

4

hafhafhRR

bfaf

hafhafhafab

abh

++++=

⎥⎦⎤++

+++++−

=

−=

hahaa 42 ++Based on previous estimate

Based on new points

SE301_Topic 6 Al-Amer2005 ٣٠

Recursive Trapezoid MethodRecursive Trapezoid MethodFormulasFormulas

[ ]

( )

n

k

abh

hkafhnRnR

bfafab

n

2

)12()0,1(21)0,(

)()(2

)0,0(R

)1(2

1

−=

⎥⎦

⎤⎢⎣

⎡−++−=

+−

=

∑−

=

SE301_Topic 6 Al-Amer2005 ٣١

Recursive Trapezoid MethodRecursive Trapezoid Method

[ ]

( )

( )

( )

( )⎥⎦

⎤⎢⎣

⎡−++−=

−=

⎥⎦

⎤⎢⎣

⎡−++=

−=

⎥⎦

⎤⎢⎣

⎡−++=

−=

⎥⎦

⎤⎢⎣

⎡−++=

−=

+−

=−=

=

=

=

=

)1(

2

2

1

2

13

2

12

1

1

)12()0,1(21)0,(,

2

..................

)12()0,2(21)0,3(,

2

)12()0,1(21)0,2(,

2

)12()0,0(21)0,1(,

2

)()(2

)0,0(R,

n

kn

k

k

k

hkafhnRnRabh

hkafhRRabh

hkafhRRabh

hkafhRRabh

bfafababh

SE301_Topic 6 Al-Amer2005 ٣٢

Advantages of Recursive TrapezoidRecursive Trapezoid:

Gives the same answer as the standard Trapezoid method. Make use of the available information to reduce computation time.Useful if the number of iterations is not known in advance.

SE301:Numerical Methods19. Romberg Method

SE301_Topic 6 Al-Amer2005 ٣٣

MotivationDerivation of Romberg Method

Romberg MethodExample

When to stop?

SE301_Topic 6 Al-Amer2005 ٣٤

Motivation for Romberg MethodMotivation for Romberg MethodTrapezoid formula with an interval h gives error of the order O(h2)We can combine two Trapezoid estimates with intervals 2h and h to get a better estimate.

SE301_Topic 6 Al-Amer2005 ٣٥

Romberg MethodRomberg Method

dx f(x) ofion approximat theimprove tocombined are

4h,8h,...2h,h,sizeofintervalswith methodTrapezoid using Estimatesb

a∫

First column is obtained using Trapezoid Method

R(0,0)

R(1,0) R(1,1)

R(2,0) R(2,1) R(2,2)

R(3,0) R(3,1) R(3,2) R(3,3)The other elements are obtained using the Romberg Method

SE301_Topic 6 Al-Amer2005 ٣٦

First Column First Column Recursive Trapezoid MethodRecursive Trapezoid Method

[ ]

( )

n

k

abh

hkafhnRnR

bfafab

n

2

)12()0,1(21)0,(

)()(2

)0,0(R

)1(2

1

−=

⎥⎦

⎤⎢⎣

⎡−++−=

+−

=

∑−

=

SE301_Topic 6 Al-Amer2005 ٣٧

Derivation of Romberg MethodDerivation of Romberg Method

[ ] ...)0,1()0,(31)0,()(

2*41

)2(...641

161

41)0,()(

R(n,0)by obtained is estimate accurate More

)1(...)0,1()(

2 method Trapezoid)()0,1()(

66

44

66

44

22

66

44

22

12

+++−−+=

++++=

++++−=

−=+−=

∫ −

hbhbnRnRnRdxxf

giveseqeq

eqhahahanRdxxf

eqhahahanRdxxf

abhwithhOnRdxxf

b

a

b

a

b

a

n

b

a

SE301_Topic 6 Al-Amer2005 ٣٨

Romberg MethodRomberg Method

[ ]

( )

[ ]1,1

)1,1()1,(14

1)1,(),(

)12()0,1(21)0,(

,2

)()(2

)0,0(R

)1(2

1

≥≥

−−−−−

+−=

⎥⎦

⎤⎢⎣

⎡−++−=

−=

+−

=

∑−

=

mnfor

mnRmnRmnRmnR

hkafhnRnR

abh

bfafab

m

k

n

n

R(0,0)

R(1,0) R(1,1)

R(2,0) R(2,1) R(2,2)

R(3,0) R(3,1) R(3,2) R(3,3)

SE301_Topic 6 Al-Amer2005 ٣٩

Property of Romberg MethodProperty of Romberg MethodR(0,0)

R(1,0) R(1,1)

R(2,0) R(2,1) R(2,2)

R(3,0) R(3,1) R(3,2) R(3,3))(),()(

Theorem

22 ++=∫ mb

a

hOmnRdxxf

)()()()( 8642 hOhOhOhOError Level

SE301_Topic 6 Al-Amer2005 ٤٠

Example 1Example 1

[ ] [ ]

[ ]

[ ]31

21

83

31

83)0,0()0,1(

141)0,1()1,1(

1,1

)1,1()1,(14

1)1,(),(

83

41

21

21

21))(()0,0(

21)0,1(,

21

5.01021)()(

2)0,0(,1

Compute

1

1

02

=⎥⎦⎤

⎢⎣⎡ −+=−

−+=

≥≥

−−−−−

+−=

=⎟⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛=++==

=+=+−

==

RRRR

mnfor

mnRmnRmnRmnR

hafhRRh

bfafabRh

dxx

m

0.5

3/8 1/3

SE301_Topic 6 Al-Amer2005 ٤١

0.5

3/8 1/3

11/32 1/3 1/3

Example 1 cont.Example 1 cont.

[ ]

[ ]

[ ]31

31

31

151

31)1,1()1,2(

141)1,2()2,2(

31

83

3211

31

3211)0,1()0,2(

141)0,1()1,2(

)1,1()1,(14

1)1,(),(

3211

169

161

41

83

21))3()(()0,1(

21)0,2(,

41

2

1

=⎥⎦⎤

⎢⎣⎡ −+=−

−+=

=⎥⎦⎤

⎢⎣⎡ −+=−

−+=

−−−−−

+−=

=⎟⎠⎞

⎜⎝⎛ ++⎟

⎠⎞

⎜⎝⎛=++++==

RRRR

RRRR

mnRmnRmnRmnR

hafhafhRRh

m

SE301_Topic 6 Al-Amer2005 ٤٢

When do we stop?When do we stop?

R(4,4)at STOP examplefor steps ofnumber given aafter

or )1,1()1,( ε≤−−−− mnRmnR

ifSTOP

SE301:Numerical Methods20. Gauss Quadrature

SE301_Topic 6 Al-Amer2005 ٤٣

MotivationGeneral integration formula

Read 22.3-22.3

SE301_Topic 6 Al-Amer2005 ٤٤

MotivationMotivation

( )

⎩⎨⎧

=−=

=

=

⎥⎦

⎤⎢⎣

⎡++=

∑∫

∑∫

=

=

nandihnih

cwhere

xfcdxxf

xfxfxfhdxxf

i

n

iii

b

a

n

ini

b

a

05.01,...,2,1

)()(

as expressed becan It

)()(21)()(

Method Trapezoid

0

1

10

SE301_Topic 6 Al-Amer2005 ٤٥

General Integration FormulaGeneral Integration Formula

integral theofion approximat good gives formula that thesoselect wedo How

:Problem::

)()(0

ii

ii

n

iii

b

a

xandc

NodesxWeightsc

xfcdxxf ∑∫=

=

SE301_Topic 6 Al-Amer2005 ٤٦

Lagrange InterpolationLagrange Interpolation

∫∑∫

∫ ∑∫∫

∫∫

=≈⇒

⎟⎠

⎞⎜⎝

⎛=≈

=

=

b

a ii

n

iii

b

a

b

a i

n

ii

b

a n

b

a

n

n

b

a n

b

a

dxxcwherexfcdxxf

dxxfxdxxPdxxf

xxxxPwhere

dxxPdxxf

)()()(

)()()()(

,...,, nodes at thef(x) einterpolat that polynomial a is )(

)()(

0

0

10

l

l

SE301_Topic 6 Al-Amer2005 ٤٧

QuestionQuestion

What is the best way to choose the nodes and the weights?

SE301_Topic 6 Al-Amer2005 ٤٨

Theorem Theorem

12norder of spolynomial allfor exact be willformula The

)()()(

then)( of zeros theare,...,,,Let

00)(

such that 1n degree of polynomial nontrivial a be Let

0

210

+≤

=≈

≤≤=

+

∫∑∫

=

dxxcwherexfcdxxf

xqxxxx

nkdxxqx

q

i

b

ai

n

iii

b

a

n

kb

a

l

SE301_Topic 6 Al-Amer2005 ٤٩

Determining The Weights and NodesDetermining The Weights and Nodes

?5order of spolynomial allfor exact is formula that theso

weights theand nodes select the wedo How

)()()()( 221100

1

1

++=∫− xfcxfcxfcdxxf

SE301_Topic 6 Al-Amer2005 ٥٠

Determining The Weights and NodesDetermining The Weights and NodesSolutionSolution

5,3,0solution possible one

0)(

0)(

0)(

satisfy must )()(

3120

1

1

2

1

1

1

1

33

2210

=−===

=

=

=

+++=

∫∫∫

aaaa

dxxxq

xdxxq

dxxq

xqxaxaxaaxqLet

SE301_Topic 6 Al-Amer2005 ٥١

Theorem Theorem

12norder of spolynomial allfor exact be willformula The

)()()(

then)( of zeros theare,...,,,Let

00)(

such that 1n degree of polynomial nontrivial a be Let

0

210

+≤

=≈

≤≤=

+

∫∑∫

=

dxxcwherexfcdxxf

xqxxxx

nkdxxqx

q

i

b

ai

n

iii

b

a

n

kb

a

l

SE301_Topic 6 Al-Amer2005 ٥٢

Determining The Weights and NodesDetermining The Weights and NodesSolutionSolution

( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛++⎟⎟

⎞⎜⎜⎝

⎛−=

==−=

±

+−=

∫−

− 530

53)(

use we weightsobtain the To

53 0,,

53are nodes The

53 0, are)(

53)(

210

1

1

210

3

fAfAfAdxxf

xxx

xqofroots

xxxqLet

SE301_Topic 6 Al-Amer2005 ٥٣

Determining The Weights and NodesDetermining The Weights and NodesSolutionSolution

( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛++⎟⎟

⎞⎜⎜⎝

⎛−=

=

===

==−=

∫− 53

950

98

53

95)(

2)(n Quadrature Gauss The

95 ,

98,

95are weightsThe

53 0,,

53are nodes The

1

1

210

210

fffdxxf

AAA

xxx

SE301_Topic 6 Al-Amer2005 ٥٤

626

Gaussian Gaussian QuadratureQuadratureSee more in Table 22.1 (page 626)See more in Table 22.1 (page 626)

236926.0,478628.0,568889.0,478628.0,236926.0906179.0,538469.0,00000.0,538469.0,906179.04

34785.0,65214.0,65214.0,34785.086113.0,33998.0,33998.0,86113.03

555556.0,888889.0,555556.0774596.0,000000.0,774596.02

1,157735.0,57735.01

)()(

43210

43210

3210

3210

210

210

10

10

0

1

1

========−=−==

======−=−==

=====−==

===−==

=∑∫=

cccccxxxxxn

ccccxxxxn

cccxxxn

ccxxn

xfcdxxfn

iii

SE301_Topic 6 Al-Amer2005 ٥٥

627

Error Analysis for Gauss Error Analysis for Gauss QuadratureQuadrature

[ ][ ]

12norder of spolynomial allfor exact be willformula The

]1,1[),()!22()32(

)!1(2Error

satisfieserror true then theformula Quadrature Gauss toaccording selected are

)()(

by edapproximat be)( integral theLet

)22(3

432n

0

+≤

−∈++

+=

++

=∑∫

ξξn

ii

n

iii

b

a

b

a

fnn

n

xandcwhere

xfcdxxf

dxxf

SE301_Topic 6 Al-Amer2005 ٥٦

ExampleExample

1n with QuadratureGaussian using1

0

2

=∫ − dxeEvaluate x

b. and aarbitrary for

)(compute toformula theuse wedo How

31

31)(

1

1

∫ ⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟⎟⎠

⎞⎜⎜⎝

⎛−=

b

adxxf

ffdxxf

∫∫ −⎟⎠⎞

⎜⎝⎛ +

+−−

=1

1 222)( dtabtabfabdxxf

b

a

SE301_Topic 6 Al-Amer2005 ٥٧

ExampleExample

( )

⎥⎥⎥

⎢⎢⎢

+=

=

⎟⎟⎠

⎞⎜⎜⎝

⎛+−⎟⎟

⎞⎜⎜⎝

⎛+−−

−+−− ∫∫

22

22

5.315.05.

315.0

1

15.5.1

0

21

21

ee

dtedxe tx

SE301_Topic 6 Al-Amer2005 ٥٨

627

Improper IntegralsImproper Integrals

∫∫

∫∫

⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

⎟⎠⎞

⎜⎝⎛

=

>⎟⎠⎞

⎜⎝⎛=

⇒∞−∞

∞ 1

0 221 2

1

1 2a

1

111

:function new on the method apply the and

)0 assuming(,11)(

following thelikeation transforma Use)or is limits theof oneintegrals(improper eapproximat

odirectly t used benot can earlier discussed Methods

dt

tt

dxx

Example

abdtt

ft

xf a

b

b

SE301_Topic 6 Al-Amer2005 ٥٩

QuizQuiz

x 1.0 1.5 2.0 2.5 3.0

f(x) 2.1 3.2 3.4 2.8 2.7

( )( )

( )⎥⎦

⎤⎢⎣

⎡++=

−=

+−=

=

+

++

=

)()(21)(),(

, allfor :

)()(21),(

)(Compute tomethod TrapezoidUse

0

1

1

1

11

1

0

3

1

n

n

ii

ii

iiii

n

i

xfxfxfhPfT

ixxhCaseSpecial

xfxfxxPfTTrapezoid

dxxf

Recommended