Soil humic acids - Masarykova univerzita · Soil humic acids -review of latest results. From simple...

Preview:

Citation preview

SoilSoil humichumic acids acids --review of latest results. review of latest results.

From simple models to elucidation of From simple models to elucidation of supramolecularsupramolecular interactionsinteractions

Josef HAVELDepartment of Analytical Chemistry

Faculty of ScienceMASARYK UNIVERSITYBrno, Czech Republic

SoilSoil humichumic acidsacids--review of latest results. review of latest results.

From simple models to elucidation of From simple models to elucidation of supramolecularsupramolecular interactionsinteractions

Amount of carbon in various reservoirsReservoir Amount of C ( 1014 kg)

At Earth’sSurface

Atmospheric CO2BiomassFresh WaterMarine, above ThermoclineSoil Organic Matter

74.82.5

5 - 830 - 50

At Depthsto 16 km

Marine Organic DetritusCoal and PetroleumDeep Sea Solute CarbonSediments

30100345

200,000

SoilSoil humichumic acidsacids

What is the M. W. ???

Composition? Chemical nature?

Structure?

Physicochemical properties ? pK, stability constants ?

Interaction with xeno-biotics ????

How they influence fate of contaminants in soil and waters?

Etc.

HUMIC ACIDSElemental analysis

UV/VIS spectroscopy

EPR, NMR

Potentiometry (Glass, Cu-ISE, Uranyl electrodes)

Vapor Pressure Osmometry

Stripping Voltammetry

Capillary Zone &Paper Electrophoresis

MALDI/TOF MS, Pyrolysis MS, CZE-MS

Thin Layer Chromatography, TLC-MS

Instrumentation methods

HUMIN(insoluble)

HYMATOMELANIC ACID

extract with alcohol

GRAY HUMIC ACID(precipitated)

BROWN HUMIC ACID(not precipitated)

redissolve in base and add electrolyte

HUMIC ACID(precipitated)

FULVIC ACID(not precipitated)

treat with acid

(soluble)

HUMUSSOMextract with alkali

SOM in soils

OM in sediments

Waters

???????

O

O

HO

O

H2N

OH

O HO

COOH

OH

OH

COOHHOOCHO

Stee link molecular structure

HOHOOC COOH

OH

OH

COOH

HOO

OH

H2N

O

HO

O

O

H2 N

TNB humic acid monomer

Some HA structures proposed

OHOH

MeO

HO

OH

OMe OMe

OH

MeO

MeO

O

O

OH

OH

HO

R

NH2

O

COOH

Humic acid building blocks

Known

Lignin

precursors

Secoisolariciresinol

Arctigenin

Proposed humic acid building block

from aminoacid precursors

G. Davies,E.A. Ghabbour,

Chem.&Industry1999, 426.

CAPILLARY ELECTROPHORESIS

DetectorCapillary

Electrolytereservoirs Computer

HVPS

High Voltage Supply

Thermostate

Detector

(+) (-)

capillary

Sample / BGEBackground Electrolyte

(BGE)

data acquisitionand evaluation

High Voltage Supply

Thermostate

Detector

(+) (-)

capillary

Sample / BGEBackground Electrolyte

(BGE)

data acquisitionand evaluation

SAMPLE

SEPARATION

4 6 80.00

0.05

0.10

0.15

Abs

orba

nce

(AU

)

Migration time (min)

Soil IHSS Std.

Peat IHSS Std.

Chemapex

Imerca HA

Humitron 60 HA

Artech HA

Brazilian HA

Argentinean4 6 8

0.00

0.05

0.10

0.15

Abs

orba

nce

(AU

)

Migration time (min)

Soil IHSS Std.

Peat IHSS Std.

Chemapex

Imerca HA

Humitron 60 HA

Artech HA

Brazilian HA

Argentinean4 6 8

Migration time (min)

Abs

orba

nce(

AU

)

0.15

0.10

0.05

0.00

0 000

0.005

0.010

0.015

0.020

0.025

Abs

orba

nce

(AU

)* The same compounds

**

?

?

?

0 5 10 15 200.000

0.005

0.010

0.015

0.020

0.025

()

Time (min)

CZECH

CHINA

FLUKA

HUMIC ACIDSElemental analysis

UV/VIS spectroscopy

EPR, NMR

PotentiometryVapor Pressure Osmometry

Stripping Voltammetry

MALDI/TOF MS, Pyrolysis MS

Thin Layer Chromatography, TLC-MS

Capillary Zone Electrophoresis, CZE-MS

Model 3: CuX log β1,1 = 7.96 ± 0.05CuZ log β2,1 = 6.39 ± 0.06

0 1 2Volume 0.08215 M HCl, ml

2

4

6

8

10pH

-0.10

-0.05

0.00

0.05

0.10

pH -

pH

(c)

calc

exp

HA COMPLEXING METAL IONS

22+

Na+, K+ … alkali, Cs+

Heavy metal ions,

Toxic metal ions

Cu(II), Cd(II), Pb(II)

J. Patočka, J. Kassa, R. Štětina, G. Šafr, and J. Havel, Toxicological Aspects of Depleted Uranium, Journal of Applied

Biomedicine, 2: 37–42, 2004, ISSN 1214-0287.

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1 1.5 2 2.5 3 3.5

Migration time (min)

Abs

orba

nce

(AU

)

UO22+

13

67

8

11

9

10

2

5

11

NeutralMarker

4

[HA]tot (mM)

1 0.5

2 1.0

3 1.2

4 1.4

5 1.6

6 1.8

7 2.0

8 2.5

9 3.0

10 3.5

11 4.0

DECREASE OF POSITIVE

CHARGE

UO2 2+

+

MIGRATION OFMIGRATION OF POSITIVELYPOSITIVELY CHARGED CHARGED UOUO222+2+--HA SPECIESHA SPECIES

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

1 1.2 1.4 1.6 1.8 2 2.2 2.4

Migration time (min)

Abs

orba

nce

(AU

)

UO2 2+

[HA]tot = 1 mM

[HA]tot = 2 mM

[HA]tot = 3 mM

[HA]tot = 0.5 mM

NeutralMarker

(a) Peat HA

(b) MAR 329 HA (CZ)

(c) Tehum HA (CZ)

(d) China HA

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

1 1.2 1.4 1.6 1.8 2 2.2 2.4

Migration time (min)

Abs

orba

nce

(AU

)

UO2 2+

[HA]tot = 1 mM

[HA]tot = 2 mM

[HA]tot = 3 mM

[HA]tot = 0.5 mM

NeutralMarker

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

1 1.2 1.4 1.6 1.8 2 2.2 2.4

Migration time (min)

Abs

orba

nce

(AU

)

UO2 2+

[HA]tot = 1 mM

[HA]tot = 2 mM

[HA]tot = 3 mM

[HA]tot = 0.5 mM

NeutralMarker

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

1 1.2 1.4 1.6 1.8 2 2.2 2.4

Migration time (min)

Abo

srba

nce

(AU

)

UO2 2+

[HA]tot = 1 mM

[HA]tot = 2 mM

[HA]tot = 3 mM

[HA]tot = 0.5 mM

NeutralMarker

33--D ELECTROPHEROGRAMD ELECTROPHEROGRAM[HA]tot = 1.6 mM, [UO2

2+]tot = 0.2 mM, pH = 4.0

1.013

1.3461.679

2.0132.346

200230

260290

320350

380

-0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Absorba nce (AU)

M igra tion tim e (m in )

W a ve le ng ht (nm )

UO22+- HA

complex

Potentiometricand Spectroscopic study of Uranyl Complexationwith Humic Acids

P. LUBAL, D. FETSCH, D. ŠIROKÝ, M. LUBALOVÁ, J. ŠENKÝŘ ,

and J. HAVEL*

Equation for URANYL ion selective electrode

E const UORTFexp, . log [ ]i i= + +2 303 2

2

The possible reaction schemes of uranylcomplexation with HA’s functional groups of polyphenols and/or phenolcarboxylic acids

O-

O

O

OH + UO 22+

OUO2

O

O

O

+ H +

O

UO2

O

OH

O-

+ UO22+ + H+

OH

O-

O

+ UO22+

OUO2

O

O

+ H+

HUMIC ACIDSElemental analysis

UV/VIS spectroscopy

EPR, NMR

Potentiometry

Vapor Pressure Osmometry

Stripping Voltammetry

MALDI/TOF MS, Pyrolysis MS

Thin Layer Chromatography, TLC-MS

Capillary Zone Electrophoresis, CZE-MS

Matrix Assisted Laser DesorptionTime Of Flight

Mass Spectrometry

[1] Karas M., Hillenkamp F., Anal. Chem. 1988, 60, 2299-2301.

[2] Tanaka K., Waki H., Ido Y., Akita S., Yoshida Y., Yoshida T.,Rapid Commun. Mass Spectrom. 1988, 8, 151-53.

Depleted URANIUM?Virginia S.G. Murray, Michael R. Bailey, Brian G. Spratt,Depleted uranium: a new battlefield hazard, THE LANCET Supplement Vol

360 December 2002 www.thelancet.com 31-32.[1] Properties, use and health effects of depleted uranium (DU): a general overview, Journal of Environmental Radioactivity, Volume 64, Issues 2-3, 2003, Pages 93-112A. Bleise, P. R. Danesi and W. Burkart[2] Civil use of depleted uranium, Journal of Environmental Rad., Volume 64, Issues 2-3, 2003, p. 113-119

[3] Depleted uranium particles in selected Kosovo samples, J.Environ. Radioactivity, Vol. 64, Issues 2-3, 2003, Pages 143-154 P. R. Danesi, A. Markowicz, E. Chinea-Cano, W. Burkart, B. Salbu, D. Donohue, F. Ruedenauer, M. Hedberg, S. Vogt, P. Zahradnik and A. Ciurapinski

2 4 6 8 10 120.0

0.2

0.4

0.6

0.8

1.0

Fra

ctio

n

pH

WO42−

H2WO4

HW6O215−

W6O216−

WO3(c)

[WO42−]TOT = 10.00 mM

2 4 6 8 10 120.0

0.2

0.4

0.6

0.8

1.0

Fra

ctio

n

pH

WO42−

H2WO4

HW6O215−

W6O216−

WO3(c)

[WO42−]TOT = 10.00 mM

COMPLEXATION of URANYL

with

C60 derived ligands

Uranyl reacts with oxalate forming UO2(ox)n2-2n

complexes in solution.

OO

O

O

O

O

O

UOO

O

O

O

O

O

1:3 complex

0.00

0.05

0.10

0.15

370 380 390 400 410 420 430 440 450 460 470 480

W avelength /nm

AFirst DerivativeSecond Derivative

0

10

20

30

40

50

60

350 370 390 410 430 450 470

Uranium/Oxalate System:Spectrophotometry of the Individual Species

1:0 1:11:2

1:3

2:32:5

ε

Wavelength

Equilibrium THISWORK

Ferri et al.

H+ + ox2− = Hox− 3.83(1) 3.81(2)2H+ + ox2− = H2ox− 4.92(1) 4.95(2)

UO22+ + ox2− = UO2ox 6.38(1) 6.39(1)

UO22+ + 2ox2− = UO2(ox)2

2− 11.46(9) 11.52(2) UO2

2+ + 3ox2− = UO2(ox)34− 14.98(1) 15.20(1)

2UO22+ + 3ox2− = (UO2)2(ox)3

2− 20.40(6)2UO2

2+ + 5ox2− = (UO2)2(ox)56− 29.64(7)*

D.Ferri et al., J. Chem. Soc. Dalton Trans. (2000) 3460.

Havel J., J. Soto-Guerrero, P. Lubal, POLYHEDRON 21: (14-15) 1411-1420 JUN 15 2002.

2 4 6 8 10 120.0

0.2

0.4

0.6

0.8

1.0

Fra

ctio

n

pH

WO42−

H2WO4

HW6O215−

W6O216−

WO3(c)

[WO42−]TOT = 10.00 mM

2 4 6 8 10 120.0

0.2

0.4

0.6

0.8

1.0

Fra

ctio

n

pH

WO42−

H2WO4

HW6O215−

W6O216−

WO3(c)

[WO42−]TOT = 10.00 mM

2 4 6 8 10 120.0

0.2

0.4

0.6

0.8

1.0

Fra

ctio

n

pH

WO42−

H2WO4

HW6O215−

W6O216−

WO3(c)

[WO42−]TOT = 10.00 mM

2 4 6 8 10 120.0

0.2

0.4

0.6

0.8

1.0

Fra

ctio

n

pH

WO42−

H2WO4

HW6O215−

W6O216−

WO3(c)

[WO42−]TOT = 10.00 mM

pK = ???

Distribution Diagram of Dimalonate [C60] Fullerene Species

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8

pH

FractionLH2

2- L4-LH3-

LH3-

LH4

0.0

0.5

1.0

1.5

200 250 300 350 400Wavelength /nm

Spectrophotometric titration of Uranyl by Dimalonate [C60] Fullerene

Progressive additionof uranyl

L

A

Constant total dimalonate [C60]fullerene concentration: 2.23 × 10-5 MpH = 3.5

Spectrophotometric titration of L with Uranyl

0.24

0.26

0.28

0.30

0.32

0 2 4 6 8 10

ModelUO2L2−

(UO2)2L296 nm

Metal to Ligand Ratio

A

2 4 6 8 10 120.0

0.2

0.4

0.6

0.8

1.0

Fra

ctio

n

pH

WO42−

H2WO4

HW6O215−

W6O216−

WO3(c)

[WO42−]TOT = 10.00 mM

2 4 6 8 10 120.0

0.2

0.4

0.6

0.8

1.0

Fra

ctio

n

pH

WO42−

H2WO4

HW6O215−

W6O216−

WO3(c)

[WO42−]TOT = 10.00 mM

Havel J., J. Soto-Guerrero, POLYHEDRON 2002, submitted.

2 4 6 8 10 12-12

-10

- 8

- 6

- 4

- 2

0

Log Conc.

H+

Mg2+Ca2+

F−

Cl−

SO42−

CO32−

CaCl+CaCO3

CaF+

CaHCO3+

CaHSO4+

CaOH+

CaSO4

H2CO3

H2F2

H2SO4

HCO3−

HF

HF2−

HSO4−

MgCO3

MgF+

MgHCO3+

MgOH+

MgSO4

OH−CaCO3(c

CaMg(CO3)2(c)Mg(OH)2(c

[Mg2+]TOT = 2.90 mM[Ca2+]TOT = 4.30 mM[F−]TOT = 47.00 µM

[Cl−]TOT = 12.60 mM[SO4

2−]TOT = 0.78 mM[CO3

2−]TOT = 24.60 mM

2 4 6 8 10 12-9

-7

-5

-3

-1

1

Log C

onc.

pH

H+

UO22+

Ca2+

Mg2+

F−

CO32−

SO42−

(UO2)2(OH)22+

(UO2)2(OH)3CO3−

(UO2)2OH3+

(UO2)3(OH)5+

CaCO3CaF+

CaHCO3+

CaHSO4+

CaOH+

CaSO4

H2CO3

H2F2

H2SO4

HCO3−

HF

HSO4−

MgCO3

MgF+MgHCO3

+

MgOH+

MgSO4

OH−

UO2(CO3)22−

UO2(CO3)34−

UO2(OH)2(aq)

UO2(OH)3−

UO2(SO4)22−

UO2CO3

UO2F+

UO2F2UO2F3

UO2OH+

UO2SO4

CaCO3(c)

CaUO4(c)Mg(OH)2(c)

MgCO3(c)

UO2CO3(c)

[UO22+]TOT = 0.10 mM

[Ca2+]TOT = 4.30 mM[Mg2+]TOT = 2.90 mM

[F−]TOT = 47.00 µM[CO3

2−]TOT = 24.60 mM[SO4

2−]TOT = 0.78 mM

MALDI TOF MS

and

HUMIC ACIDS

(SOM)

Mass spectra of HAs extracted from Czech garden soil and Soil standard of IHSS

200 400 600 800 1000 1200

0

20

40

60

80

100

841.

588

1.4

788.

1 814.

780

0.8

828.

285

5.0

800.

2

854.

2 880.

7

690.

0556.

0

605.

2

661.

163

3.5

302.0

826.

8

907.

1382.9

905.

5

Soil IHSS standard

Czech garden soil

% In

tens

ity

m/z200 400 600 800 1000 1200

0

10

20

30

40

50

60

70

80

90

100

843.

5

Che ma pe x s ta nda rd

801.

481

6.1

829.

785

6.3

884.

090

8.8

% In

tens

ity

m/z

2727

750 1000 1250 1500

0

20

40

60

80

100

1 3 4 9 .71 2 8 2 .0

1 2 6 3 .17 9 5 .5

8 2 6 .3

8 3 9 .4

8 5 7 .8

1 0 8 5 .7

9 2 6 .9

9 1 0 .3

9 5 4 .2

9 7 0 .0

1 0 1 4 .2

8 6 7 .7

1 1 7 5 .01 1 4 6 .9

1 1 3 2 .7

9 9 8 .6

1 1 0 1 .91 0 4 3 .3

1 0 5 8 .9

8 8 3 .3

F ig .1 a Ma s s s p e c tru m o f s o d iu m h u m a te (TE HUM) m e a s u re d a t th e b e la s e r e n e rg y E =1 2 0

% In

t

m /z

CZECH

200 300 400 500 600 700 800 900 10000

20

40

60

80

100

B

799.09853.03

827.07813.09

659.01557.23

529.18501.19

473.19449.15

433.13

413.01

360.19

338.18

310.16

277.05

265.08

251.07

189.98

164.92

144.97

128.96

Inte

nsity

[%

]

Mass/Charge

750 800 850 900 950

940.09

926.47

907.01881.08

867.14853.03

841.06827.07813.09

799.09785.13

773.11757.11

745.11733.15

717.12

0

20

40

60

80

100

%Int.

826 828 830 832 834 836 838 840Mass/Charge

829.77

827.75831.79

828.75832.80825.74

833.81836.85

C47H105O10+

C47H107O10+

C47H103O10+

C47H101O10+

E. M. Peña-Méndez, D. Gajdošová, K. Novotná, P. Prošek and J. Havel,Chemometrics approach to thecharacterization of humic acids of different origin including Antarcticafrom MALDI TOF mass spectra, Talanta, submitted 2004, in print2005.

plcdLps

sCAnt-5

Ant-200

pr

sCZ PtfsP LAnt-9Ant-4

Ant-100

Ant-m

cdF

sScdC

cdAAnt-2Ant-1

P

Ant-3

cdLst

PC3

PC2 PC1

4.0

2.0

0.0

-2.0

-2.5

0.01.0

-2.5

2.0

-1.5

1.0

-3.5

3.0

1.0

-1.0

-1.5

0.0

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10PCs

Var

ianc

e (%

)

Principal

Component Analysis

E. M. Peña-Méndez, D. Gajdošová, K. Novotná, P. Prošek andJ. Havel, Chemometrics approach to the characterization of

cdF

Ant

-2A

nt-1

cdC

cdA sS

Ant

-m

Ant

-100

Ant

-200

Ant

-9

Ant

-5A

nt-4 Pt

f

cdL sC

0

5

10

15

20

25

30

35

40

45Li

nkag

eD

ista

nce

A B

C D

Samples

Cluster Analysis

Ant

-3

cdLs

t

prsC

Z plsPL psP

A

-20 -15 -10 -5 0 5PC1

psplprsS sCZsC

sP

cdL

cdLst

Ant-1

Ant-2Ant-3

Ant-4 Ant-5Ant-9Ant-100

Ant-200

Ant-m

cdAcdC

cdFLP

Ptf

-10

-5

0

5

10PC

2

pspl pr

sS

sCZsCsPsL

cdLst Ant-1 Ant-2

Ant-3

Ant-4

Ant-5Ant-9

Ant-100

Ant-200 Ant-m

cdAcdC

cdFL

P Ptf

-10 -5 0 5 10PC2

-10

-5

0

5

10

15

PC3

**B

M. L. Pacheco, E.M. Pena-Mendez, J. Havel,

Supramolecular interactions of humic acids with organic and inorganic xenobiotics studied by capillary electrophoresis,

Chemosphere 51, 95-108 (2003).

xenobiotics like pesticides, toxic inorganic compounds,

ferro- and ferricyanides

nitrate, chloride, etc

M. L. Pacheco, E.M. Pena-Mendez, J. Havel,

Supramolecular interactions of humic acids with organic and inorganic xenobiotics studied by capillary electrophoresis,

Chemosphere 51, 95-108 (2003).xenobiotics like pesticides, toxic inorganic compounds,

ferro- and ferricyanides, nitrate, chloride, etc

Methyl viologen dichlorid hydrat (paraquat)

1,1 - Bis- (4-chlorphenyl)-2, 2-dichlorethylen (p,p’-D D E )

1,1-Bis-(4-chlorphenyl)-2, 2, 2-trichlorethan (p,p’-D D T)

Deiquat monohydrate (diquat)

Fluorescein and 5-sulfosalicylic acid

M. L. Pacheco, E.M. Pena-Mendez, J. Havel,

Supramolecular interactions of humic acids with organic and inorganic xenobiotics studied by capillary electrophoresis,

Chemosphere 51, 95-108 (2003).

Pacheco M.L. and J. Havel: New results from capillaryelectrophoresis and MALDI TOF MS studies of humic

acids interactions with various compounds andxenobiotics, in Humic Substances: Molecular Details and

Applications in Land and Water Conservation ( E. A.Ghabbour, G. Davies, Eds.), Taylor and Francis, Inc. New

York, USA, 2005.

D. Gajdošová, K. Novotná, P. Prošekand J. Havel,

Separation and characterization of humic acids from Antarctica by capillary electrophoresis and matrix-assisted laser desorption ionisation time-of-flight mass spectrometry. Inclusion complexes

of humic acids with cyclodextrins,

J. Chromatogr. A, 1014 (2003), 117-127.O

O

HOH2C

HO OH

O

O

CH2OHHO

OH

O

O

HOH2COH

OH

O

O

HOH2C

OH

OH

O

O

CH2OH

HO

HO

O

O

CH2OH

OHOH

6

23

d1

d2

h

WATER

Formation of Cyclic Water Hexamer in Liquid Helium:

The Smallest Piece of IceK. Nauta and R.E. Miller

Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA

SCIENCE Vol 287, 14 January 2000

Evaluation of water sorption equilibrium data on ion exchangers RX(s) + n H2O (g) RX(H2O)n (s)

kWater molecules are forming clusters:

Dowex(x% DVB) in PO4 3- cyclen k ± σ(k)

2 301.8 ± 20.3

3 815 ± 61

6 13 722 ± 20216 81 737 ± 518

44 126 696 ± 1 149

168 20 068 ± 133Havel J., Högfeldt E., Talanta, 39, 517 (1992); Scripta Fac. Sci. Nat. Univ. Masaryk Brun. 25 ;73 (1995).

Evaluation of water sorption equilibrium data on ion exchangers RX(s) + n H2O (g) RX(H2O)n (s)

kWater molecules are forming clusters:

Dowex(x% DVB) in PO4 3- cyclen k ± σ(k)

2 301.8 ± 20.3

3 815 ± 61

6 13 722 ± 20216 81 737 ± 518

44 126 696 ± 1 149

168 20 068 ± 133Havel J., Högfeldt E., Talanta, 39, 517 (1992); Scripta Fac. Sci. Nat. Univ. Masaryk Brun. 25 ;73 (1995).

O

O

HO

O

H2N

OH

O HO

COOH

OH

OH

COOHHOOCHO

O

O

HO

O

H2N

OH

O HO

COOH

OH

OH

COOHHOOCHO

O

O

HO

O

H2N

OH

O HO

COOH

OH

OH

COOHHOOCHO

O

O

HO

O

H2N

OH

O HO

COOH

OH

OH

COOHHOOCHO

O

O

HO

O

H2N

OH

O HO

COOH

OH

OH

COOHHOOCHO

O

O

HO

O

H2N

OH

O HO

COOH

OH

OH

COOHHOOCHO

O

O

HO

O

H2N

OH

O HO

COOH

OH

OH

COOHHOOCHO

O

O

HO

O

H2N

OH

O HO

COOH

OH

OH

COOHHOOCHO

O

O

HO

O

H2N

OH

O HO

COOH

OH

OH

COOHHOOCHO

O

O

HO

O

H2N

OH

O HO

COOH

OH

OH

COOHHOOCHO

HA SUPRAMOLECULE

M1

M2

M3M3 M4

M3 M5M3

M6

R-(CH2)n -(CH2)n -(CH2)n -(CH2)n COO-

R-(CH2)n -(CH2)n -(CH2)n -(CH2)n COO-

REVIEW of XENOBIOTICS INTERACTIONpH, salt,

metal ions, etc++HA fraction 1 HA fraction 2

HA AGGREGATES(Formation of HA supramolecules)

X-aq + P+

aq {X-,P+}aqIon associate Xenobiotics {DDE}aq

Extraction of neutral xenobioticsinto HA supramolecule

Na+

Charge neutralization

Complexation(coordination)Hydrogen bonds Hydrophilic part

(non polar)

H

HA HAO-

COO-

O-

- OOC H

MM2+2+

O-

-OOC

HAO-

COO-COO- - Na+

HA

{DDE}org{X-, P+}org

pH, salt,metal ions, etc++

HA fraction 1HA fraction 1 HA fraction 2HA fraction 2

HA AGGREGATES(Formation of HA supramolecules)

X-aq + P+

aq {X-,P+}aqIon associate Xenobiotics {DDE}aq

Extraction of neutral xenobioticsinto HA supramolecule

Na+

Charge neutralization

Complexation(coordination)Hydrogen bonds Hydrophilic part

(non polar)

H

HA HAO-

COO-

O-

- OOC H

MM2+2+

O-

-OOC

HAO-

COO-COO- - Na+

HA

{DDE}org{X-, P+}org

Complexation(coordination)Hydrogen bonds Hydrophilic part

(non polar)

H

HA HAO-

COO-

O-

- OOC H

MM2+2+

O-

-OOC

HAO-

COO-COO- - Na+

HA

{DDE}org{X-, P+}org

Hydrogen bonds Hydrophilic part(non polar)

H

HA HAO-

COO-

O-

- OOC H

MM2+2+

O-

-OOC

HAO-

COO-COO- - Na+

HA

{DDE}org{X-, P+}org

HA HAO-

COO-

O-

- OOC H

MM2+2+

O-

-OOC

HAO-

COO-COO- - Na+

HA

{DDE}org{X-, P+}org

xenobiotics like pesticides, toxic inorganic compounds, ferro- and ferricyanides, nitrates and chloride,

+INTERCALATION

+ +AGGREGATION

[ ]+ADSORPTION

n

+ +SUBSTITUTION

- -

+INTERCALATION

+INTERCALATION

+ +AGGREGATION

+ +AGGREGATION

[ ]+ADSORPTION

n[ ]+ADSORPTION

n

+ +SUBSTITUTION

- -+ +

SUBSTITUTION- -

O

O

HO

O

H2N

OH

O HO

COOH

OH

OH

COOHHOOCHO

Stee link molecular structure

HOHOOC COOH

OH

OH

COOH

HOO

OH

H2N

O

HO

O

O

H2 N

TNB humic acid monomer

Some HA structures proposed

CONCLUSIONS

* HA are low M.W. (~ 1-2 000 Da) compounds

•They strongly aggregate

•HA are complexing metal ions

•HA are also “complexing” water, organic molecules, xenobiotics, …

Forming supramolecules

SUPRAMOLECULAR entities are formed from HA or {HA-xenobiotic} which can migrate independently

HA are mixture of hundreds or thousands of various compounds ….

ACKNOWLEDGEMENTSGrants Bestowed for ProjectsKONTAKT - BARRANDE 1999 - bilateral Czech-French cooperation project: Humic Acids and Model Ligands: Coordination Properties and Metal Transport, with Laboratory of Bioinorganic Chemistry, ECPM, Strasbourg, France. French Ministry of Foreign Affairs and Czech Ministry of Education and Youth

Ministry of Education and Youth of the Czech Republic, Programme of Intensification of Research at Universities 404/99/0427

Structure and bonding relationships, properties and analysis of synthetic and natural molecule ensembles, part „Bioanalytical Laboratory“ (Havel, J.).

Ministry of Education and Youth of the Czech RepublicCEZ J07-98, 143100011

ACKNOWLEDGEMENTSMarta Farková (RNDr., CSc.),Jan Havliš (Mgr., Dr.)

Přemysl Lubal (Mgr., Dr.), Jiří Pazourek (RNDr., Dr.)Jan Preisler (Mgr., PhD.), since October 1999, Ing. K. Novotná

Dr.Alma L. Revilla Vazquéz (PhD), MEXICODr. Maria Gabriela Vargas(PhD.) MEXICO

Jaroslav Šenkýř (Ing., CSc.)

PhD Dr. Gaston Bocaz Beneventi, CHILEVlastimil Dohnal (Mgr.)

Dr. David V. Fetsch, PhD, FRANCEMaria L. Pacheco Hernandéz, MEXICO

Drs. Hana Chromá, Daniel Kalný, Jiří Maleček, Sabina MalovanáDr. Lenka Pokorná (Mgr.)

Julio A. Soto Guerrero , MEXICOPreeti Vashi,SOUTH AFRICA

Universidad Nacional de Cordoba, Facultad de CienciasQuímicas, Departamento de Fisicoquímica, Cordoba, Argentina

Drs S. Ceppi, M. Vazquez

ACKNOWLEDGEMENTSMarta Farková (RNDr., CSc.),Jan Havliš (Mgr., Dr.)

Přemysl Lubal (Mgr., Dr.), Jiří Pazourek (RNDr., Dr.)Jan Preisler (Mgr., PhD.), since October 1999, Ing. K. Novotná

Dr.Alma L. Revilla Vazquéz (PhD), MEXICODr. Maria Gabriela Vargas(PhD.) MEXICO

Jaroslav Šenkýř (Ing., CSc.)

PhD Dr. Gaston Bocaz Beneventi, CHILEVlastimil Dohnal (Mgr.)

Dr. David V. Fetsch, PhD, FRANCEMaria L. Pacheco Hernandéz, MEXICO

Drs. Hana Chromá, Daniel Kalný, Jiří Maleček, Sabina MalovanáDr. Lenka Pokorná (Mgr.)

Julio A. Soto Guerrero , MEXICOPreeti Vashi,SOUTH AFRICA

Prof. Dr. E.M. PEñA-MÉNDEZ, SPAIN

Civ. Ing. Dáša GAJDOŠOVÁ

Dr. Guillermo RAMÍREZ-GALICIA, MÉXICO

Thank you !

Recommended