Structural Analysis & Field Testing of a CFRP Wrapped Pier Cap Presentations/Wednesday/73... ·...

Preview:

Citation preview

University of Toledo University of Cincinnati

October 26 OTEC 2016 Columbus, OH

Structural Analysis & Field Testing

of a CFRP Wrapped Pier Cap

Dr. Serhan Guner

Dr. Douglas Nims

Mr. John Morganstern

Dr. Victor Hunt

Dr. Arthur Helmicki

Mr. Mahdi Norouzi

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

2

Outline

Problem Statement

Objectives

Structural Analysis

Field Testing

Preliminary Findings

3

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

• I-71 SB Interchange at Fort Hayes.

• Designed in 1961 for three lanes of traffic.

Problem Statement

Original 3 lanes

Original Pier Cap

4

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

• In 2011, two more lanes & a new pier cap added.

• Live load on the original pier cap increased.

Shear & flexure overloads.

Problem Statement

New Pier Cap

Original 3 lanes

New 2 lanes

Original Pier Cap

(Focus of this study)

5

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

• ODOT retrofitted the cap with CFRP composites

Problem Statement

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

6

• Retrofit design was done based on ACI 440, which contains many assumptions.

• Actual contribution of the CFRP to the load carrying capacity is unknown.

• ODOT wanted scientific evidence on the contribution of CFRP.

Does CFRP wrap indeed work?

Problem Statement

7

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

• Understand the behaviour of the cap before and after the retrofit.• Use structural analysis.

• Measure CFRP strains & validate analysis results.

• Develop a controlled truck testing procedure.

• Consider ambient traffic, daily thermal changes, and

truck loading.

• Understand CFRP contributions to response.

• Provide recommendations for future retrofits.--

Objectives

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

8

• Bridge FRA-071-1835L at Forth Hayes Interchange

• Original Construction as per 1961 specifications

Bridge Background

9

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

Bridge Background

• North and South piers make up a 3 span bridge

• Both stepped between bearings, supported by 3 circular columns

• North pier is the focus of this study.

10

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

Bridge Background

• Total length of the cap ≈ 55 ft (16.8 m)

11

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

• 7 bearing pads, equally spaced.

• Section depth ≈ 4’-3” (1300 mm)

Bridge Background

12

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

• Entire cap is a disturbed region & deep beam.

Bridge Background

13

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

• Light amounts of shear reinforcement.

• No skin reinforcement.

Bridge Background

14

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

• Section is designed for negative flexure.

Bridge Background

15

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

• New pier was built.

• Bridge deck was widened.

• Traffic was shifted to the new pier cap.

• Existing cap was wrapped while no live traffic load.

CFRP Retrofit Procedure

New Pier Cap Existing Pier Cap

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

16

CFRP Retrofit Procedure

Epoxy applied then

CFRP wrapped over

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

17

CFRP Retrofit (Shear)

Primary Fiber Directions

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

18

CFRP Retrofit (Flexure)

Primary Fiber Directions

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

19

CFRP Retrofit Procedure

SikaWrap Cured Laminate

• Thickness = 0.02” (0.5 mm)

• Tensile strength = 105 ksi (725 MPa)

• Mod. of Elast. = 8,200 ksi (56,500 MPa)

• Elongation at break = 1.0 % (10 me)Shear

Strengthening

Flexure

Strengthening

Flexure

Strengthening

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

20

• Understand the linear strain field.

• Assess contributions of CFRP composite.

• Locate high strain locations for field testing.

--

Linear-Elastic Analysis

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

21

• Load analysis is performed in 2011.

• Two critical load cases:

• Load Case #12: trucks in two west southbound lanes

• Load Case #16: trucks in central southbound lane

Loading

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

22

Load Case #12Truck locationTruck location

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

23

Load Case #16Truck location

24

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

Un-Retrofitted Model (Dead Load Only)

Linear-Elastic Analysis

123 kips each550 kN

Z

X

N

Shell Element• Ec = 3,800 ksi (26,200 MPa)• f’c = 4.0 ksi (27.6 MPa)• Possion’s Ratio = 0.2• Mesh aspect ratio = 1.0 approx.

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

25

Displacements and Principal Stresses

Z

X

Δ = 0.065” (1.65 mm)

Δ = 0.0047” (0.12 mm)

Tens. (+) psi

Comp. (-) psi

N

Max Tensile Stress = 0.65 ksi (4.5 MPa) Strain = 171 μe

Max Compressive Stress = 1.68 ksi (11.6 MPa) Strain = 442 μe

26

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

• Un-Retrofitted Model (Load Case #12)

Linear-Elastic Analysis

Z

X

N

168 kips 183 189 183 133 124 123750 kN 815 840 815 590 550 550

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

27

Displacements and Principal Stresses

Z

X

Tens. (+) psi

Comp. (-) psi

N

Δ = 0.08” (0.20 mm)

Δ = 0.088” (2.25 mm)

Max Tensile Stress = 0.9 ksi (6.2 MPa) Strain = 237 μe

Max Compressive Stress = 2.27 ksi (15.7 MPa) Strain = 597 μe

28

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

• Un-Retrofitted Model (Load Case #16)

Linear-Elastic Analysis

123 kips 163 196 183 128 124 123550 kN 725 875 815 570 550 550

Z

X

N

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

29

Displacements and Principal Stresses

Z

X

Tens. (+) psi

Comp. (-) psi

N

Δ = 0.061” (1.55 mm)

Δ = 0.011” (0.28 mm) Δ = 0.064” (1.63 mm)

Max Tensile Stress = 0.676 ksi (4.6 MPa) Strain = 178 μe

Max Compressive Stress = 1.64 ksi (11.3 MPa) Strain = 432 μe

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

30

Result Comparisons

Results

• Max stress locations do not change.

• Pier to cap connection should be instrumented for field testing.

Max Tip Disp. (in)

Max Stresses (ksi)Location of Max

Stresses Max strains

(micro-strain)

Tensile Comp. Tensile Comp. Tensile Comp.

DL only 0.065 0.65 1.68Top of

BearingBot of

Bearing171 442

Case # 12 (LL+DL)

0.088 0.90 2.26Top of

BearingBot of

Bearing237 597

Case # 16 (LL+DL)

0.064 0.68 1.64Top of

BearingBot of

Bearing178 432

31

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

Retrofitted Model (Dead Load Only)

Linear-Elastic Analysis

123 kips each550 kN

Z

X

N

Orthotropic CFRP Shell ElementHex 117C for Shear

• Ez = 8,200 ksi (56,500 MPa)• Gxz=2733 ksi• Gxz=0.5

Hex 230C for Flexure• Ex = 8,200 ksi (56,500 MPa)• Gxy=2952 ksi• Gxy=0.5

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

32

Displacements and Principal Stresses

Z

X

Δ = 0.065” (1.65 mm)

Δ = 0.0047” (0.12 mm)

Tens. (+) psi

Comp. (-) psi

N

Max Tensile Stress = 0.85 ksi (5.9 MPa) in CFRP Strain = 96 μe

Max Compressive Stress = 1.68 ksi (11.6 MPa) in concreteStrain = 442 μe

33

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

• Retrofitted Model (Load Case #12)

Linear-Elastic Analysis

Z

X

N

168 kips 183 189 183 133 124 123750 kN 815 840 815 590 550 550

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

34

Displacements and Principal Stresses

Z

X

Tens. (+) psi

Comp. (-) psi

N

Δ = 0.08” (0.20 mm)

Δ = 0.088” (2.25 mm)

Max Tensile Stress = 1.14 ksi (7.9 MPa) Strain = 129 μe

Max Compressive Stress = 2.25 ksi (15.5 MPa) Strain = 592 μe

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

35

Result Comparisons

Results

• Max stress locations do not change.

• Pier to cap connection should be instrumented for field testing.

Max Tip Disp. (in)

Max Stresses (ksi)Location of Max

Stresses Max strains

(micro-strain)

Tensile Comp. Tensile Comp. Tensile Comp.

DL only 0.065 0.85 1.68Top of

BearingBot of

Bearing96 442

Case # 12 (LL+DL)

0.088 1.14 2.25Top of

BearingBot of

Bearing129 592

36

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

• Understand nonlinear bridge response

• Determine stress/strain conditions for service loads

• Confirm the governing behaviour and failure mode

--

Nonlinear Pushover Analysis

37

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

• Create the finite element model.

• Increase loading monotonically with fixed proportions until structure fails.

• Obtain the load-deflection response.

What is Nonlinear Pushover Analysis?

Load Stage

Applied

Load

Deflection

Applied

Load

Capacity

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

38

Is it permitted in AASHTO?

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

39

• VecTor2 used in this study.

• Developed at the University of Toronto, Canada.

• Based on the Modified Compression Field Theory(Vecchio and Collins,1986).

• Adopted by AASHTO LRFD.

• Verified with hundreds of large-scale experimental specimens.

• Considers shear and advanced concretebehaviours.

What tool to use?

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

40

Concrete Hysteresis

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

41

Reinforcement Hysteresis

Seckin (1981) Model

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

42

Concrete Tension Stiffening

Modified Bentz (2005)

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

43

Concrete Tension Softening

• Especially important for members:

• with no transverse reinforcement

• with no longitudinal reinforcement

• for plain concrete

fc1 = max (fc11 ;fc1

2)

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

44

Concrete Variable Crack Spacing

• Crack spacing required by MCFT and DSFM for crack width calculation, crack check and crack slip.

• Variable crack spacing for each concrete layer

• for both smx and smy

• as per Collins and Mitchell (2001)

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

45

Local Crack Calculations

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

46

Out-of-Plane Confinement

• Taken into account as concrete elastic strain offset

• Based on Kupfer et al. (1969)

Case 1

Case 2

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

47

Reinforcement Dowel Action

• Included into the global frame analysis

• Dowel Stiffness based on He and Kwan (2001)

• Average shear strains are used.

• Resisting moment is into fixed end forces.

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

48

Reinforcement Buckling

Intermediate point

Two different stiffnesses

RDM Model (Akkaya, Guner and Vecchio, 2016)

49

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

Model Details

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

50

Mesh and Loading

51

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

Material Modeling

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

52

Load Stages 8 & 9

Load Stage 8:

(80% of Serv. Load)

No Cracking

Load Stage 9:

First Cracking

0.01 in (0.34 mm)

53

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

Load Stage 10 (Service Loads)

Load Stage 10:

Max Crack Width =

0.05 in (1.3 mm)

Wrapped

WrappedUnwrapped

54

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

Reinforcement Stresses

Load Stage 10:

Max rebar stress =

11.1 ksi (77 Mpa)

30% of yield

Min rebar stress =

-9.3 ksi (-63.9 Mpa)

55

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

• Deflections

Displacements

Load Stage 10:

Max displacement =

0.15 in. (3.7 mm)

Criteria =

Span/300 = 0.35 in.

(8.8 mm)

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

56

Concrete Principal Tensile Strains

Load Stage 10:

Max tensile strain =

1.44 x 10-3 in./in.

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

57

Concrete Principal Compressive Strains

Load Stage 10:

Max comp. strain =

-0.69 x 10-3 in./in.

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

58

Load Stage 25 (Failure Conditions)

Load Stage 25:

Failure Mode= Ductile

Shear-Flexure

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

59

Reinforcement Stresses

Load Stage 25:

Max rebar stress =

40 ksi (275 MPa)

100% of yield

Min rebar stress =

- 40 ksi (-275 Mpa)

60

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

• Verified the service load conditions.

• Crack pattern matches with actual conditions.

• Verified concrete and rebar stresses.

• Verified that the cap fails in a combined flexural-shear mode.

--

Nonlinear Analysis Results

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

61

Field Test #1 for Ambient Traffic (June 2016)

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

62

Gauge Locations

BDI Rosette (#3002)

5 sets of 3 vibrating wire gauges on top fiber

2 BDI gauges on bottom fiber

2 BDI gauges on bottom fiber

1 BDI gauge on concrete (#2989)

2 BDI gages on top concrete(#2987)

Plan

Elev.

Analysis of Frames under Blast Loads S. Guner

63

Gauge Installation

West Cantilever under gore area

Analysis of Frames under Blast Loads S. Guner

64

Gauge Installation

65

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

• BDI gauge rosette in compression zone on CFRP

Gauge Installation

Clear Lexan

Template

66

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

• 1 BDI gauge at bottom of pier cap at west midspan

Gauge Installation

Plan

67

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

• Vibrating Wire Strain Gauge on top CFRP

Gauge Installation

Geokon Model 4000

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

68

Test Results (BDI Gauges)

BDI #3002

BDI #2989

BDI #2987

7 μe for ambient traffic

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

69

Test Results (Vibrating Wire Gauges)

50μe drift for Superglue over one month

No drift for epoxies: Sika 3001 & 3M DP460

-50

-30

-10

10

30

50

70

90

110

Stra

in (μ

e)

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

70

1. Pier cap safety is confirmed by structural analysis.

2. Service cracking pattern is captured by analysis.

3. Governing response is confirmed as flexure-shear.

4. Ambient traffic field testing confirmed that the CFRP picks up strain.

5. Analysis showed that CFRP does not significantly contribute to stiffness and response under ambient traffic.

6. Stage #2 testing data analysis is underway.

Preliminary Conclusions

University of Toledo University of Cincinnati

October 26 OTEC 2016 Columbus, OH

Questions & Comments?

Structural Analysis & Field Testing of

a CFRP Wrapped Pier Cap

Serhan Guner

Douglas Nims

John Morganstern

Victor Hunt

Arthur Helmicki

Mahdi Norouzi

CFRP Wrapped Pier Cap Testing S. Guner & V. Hunt

72

Recommended