Supersymmetric Dark Matter: Direct, Indirect and …baer/okstate.pdf⋆ Part 2: models/implications...

Preview:

Citation preview

Supersymmetric Dark Matter:

Direct, Indirect and Collider Searches

Howard Baer

University of Oklahoma

OUTLINE

⋆ The Standard Model

⋆ Inconsistencies

⋆ Supersymmetry

⋆ Dark matter (DM)

• neutralino, axion/axino, gravitino

⋆ The Hunt for DM at LHC

⋆ direct DM searches

⋆ indirect DM searches

Howie Baer, Oklahoma State University colloquium, April 16, 2009 1

The Standard Model of Particle Physics

⋆ gauge symmetry: SU(3)C × SU(2)L × U(1)Y ⇒ g, W±, Z0, γ

⋆ matter content: 3 generations quarks and leptons

u

d

L

uR, dR;

ν

e

L

, eR (1)

⋆ Higgs sector ⇒ spontaneous electroweak symmetry breaking:

φ =

φ+

φ0

(2)

⋆ ⇒ massive W±, Z0, quarks and leptons

⋆ L = Lgauge + Lmatter + LY uk. + LHiggs: 19 parameters

⋆ good-to-excellent description of (almost) all accelerator data!

Howie Baer, Oklahoma State University colloquium, April 16, 2009 2

Shortcomings of SM

Data

⋆ neutrino masses and mixing

⋆ baryogenesis (matter anti-matter asymmetry)

⋆ cold dark matter

⋆ dark energy

Theory

⋆ quadratic divergences in scalar sector ⇒ fine-tuning

⋆ origin of generations

⋆ explanation of masses/ mixing angles

⋆ origin of gauge symmetry/ quantum numbers

⋆ unification with gravity

Howie Baer, Oklahoma State University colloquium, April 16, 2009 3

The supersymmetry alternative

Supersymmetry: bosons⇔ fermions

⋆ SUSY is a space-time symmetry!

⋆ space-time xµ ⇒ (xµ, θi) i = 1, · · · , 4 superspace

⋆ fields ψ ⇒ φ ∋ (φ, ψ) superfields

⋆ gauge fields Aµ ⇒ W ∋ (λ, Aµ) gauge superfields

⋆ superfield formalism ⇒ general form for Lagrangian of (globally)

supersymmetric gauge theory: quadratic divergences cancel!

⋆ SUSY can be broken by soft SUSY breaking terms: maintain cancellation of

quadratic divergences

Howie Baer, Oklahoma State University colloquium, April 16, 2009 4

Weak Scale Supersymmetry

HB and X. Tata

Spring, 2006; Cambridge University Press

⋆ Part 1: superfields/Lagrangians

– 4-component spinor notation for exp’ts

– master Lagrangian for SUSY gauge theories

⋆ Part 2: models/implications

– MSSM, SUGRA, GMSB, AMSB, · · ·– dark matter density/detection

⋆ Part 3: SUSY at colliders

– production/decay/event generation

– collider signatures

– R-parity violation

Howie Baer, Oklahoma State University colloquium, April 16, 2009 5

Minimal Supersymmetric Standard Model (MSSM)

⋆ Adopt gauge symmetry of Standard Model

• spin 1

2gaugino for each SM gauge boson

⋆ SM fermions ∈ chiral scalar superfields: ⇒ scalar partner for each SM

fermion helicity state

• electron ⇔ eL and eR

⋆ two Higgs doublets to cancel triangle anomalies

⋆ add all admissible soft SUSY breaking terms

⋆ resultant Lagrangian has 124 parameters!

⋆ Lagrangian yields mass eigenstates, mixings, Feynman rules for scattering and

decay processes

⋆ predictive model!

Howie Baer, Oklahoma State University colloquium, April 16, 2009 6

Supergravity (SUGRA)

⋆ eiαQ with α(x): local SUSY transformation

• forces introduction of spin 2 graviton and spin 3

2gravitino

• resultant theory ⇒ General Relativity in classical limit!

⋆ rules for Lagrangian in supergravity gauge theory: Cremmer et al. (1983)

⋆ fertile ground: supergravity ∪ grand unification: LE limit of superstring?

⋆ minimal supergravity model (mSUGRA)

⋆ m0, m1/2, A0, tan β, sign(µ)

• m0 = mass of all scalars at Q = MGUT

• m1/2 = mass of all gauginos at Q = MGUT

• A0 = trilinear soft breaking parameter at Q = MGUT

• tanβ = ratio of Higgs vevs

• µ = SUSY Higgs mass term; magnitude determined by REWSB!

Howie Baer, Oklahoma State University colloquium, April 16, 2009 7

Some successes of SUSY GUT theories

⋆ SUSY divergence cancellation maintains hierarchy between GUT scale

Q = 1016 GeV and weak scale Q = 100 GeV

⋆ gauge coupling unification!

Howie Baer, Oklahoma State University colloquium, April 16, 2009 8

Gauge coupling evolution

Howie Baer, Oklahoma State University colloquium, April 16, 2009 9

Some successes of SUSY GUT theories

⋆ SUSY divergence cancellation maintains hierarchy between GUT scale

Q = 1016 GeV and weak scale Q = 100 GeV

⋆ gauge coupling unification!

⋆ Lightest Higgs mass mh<∼ 135 GeV as indicated by radiative corrections!

Howie Baer, Oklahoma State University colloquium, April 16, 2009 10

Precision electroweak data and the Higgs mass:

160 165 170 175 180 185mt [GeV]

80.20

80.30

80.40

80.50

80.60

80.70

MW

[GeV

]

SM

MSSM

MH = 114 GeV

MH = 400 GeV

light SUSY

heavy SUSY

SMMSSM

both models

Heinemeyer, Hollik, Stockinger, Weber, Weiglein ’08

experimental errors 68% CL:

LEP2/Tevatron (today)

Tevatron/LHC

S. Heinemeyer et al.

Howie Baer, Oklahoma State University colloquium, April 16, 2009 11

Some successes of SUSY GUT theories

⋆ SUSY divergence cancellation maintains hierarchy between GUT scale

Q = 1016 GeV and weak scale Q = 100 GeV

⋆ gauge coupling unification!

⋆ Lightest Higgs mass mh<∼ 130 GeV as indicated by radiative corrections!

⋆ radiative breaking of EW symmetry if mt ∼ 100 − 200 GeV!

Howie Baer, Oklahoma State University colloquium, April 16, 2009 12

Soft term evolution and radiative EWSB

Howie Baer, Oklahoma State University colloquium, April 16, 2009 13

Some successes of SUSY GUT theories

⋆ SUSY divergence cancellation maintains hierarchy between GUT scale

Q = 1016 GeV and weak scale Q = 100 GeV

⋆ gauge coupling unification!

⋆ Lightest Higgs mass mh<∼ 130 GeV as indicated by radiative corrections!

⋆ radiative breaking of EW symmetry if mt ∼ 100 − 200 GeV!

⋆ dark matter candidate: lightest neutralino Z1

⋆ stablize neutrino see-saw scale vs. weak scale

⋆ SO(10) SUSY GUT: baryogenesis via leptogenesis

⋆ can give dark energy via CC Λ (but need huge fine-tuning...)

• SUGRA = low energy limit of superstring?

• stringy multiverse: anthropic selection of small CC?

Howie Baer, Oklahoma State University colloquium, April 16, 2009 14

Evidence for dark matter in the universe

⋆ binding of galactic clusters (Zwicky, 1930s)

⋆ galactic rotation curves

⋆ large scale structure formation

⋆ inflation ⇒ Ω = ρ/ρc = 1

⋆ gravitational lensing

⋆ anisotropies in cosmic MB (WMAP)

⋆ surveys of distant galaxies via SN (DE)

⋆ Big Bang nucleosynthesis

• ΩΛ ≃ 0.7

• ΩCDM ≃ 0.25

• Ωbaryons ≃ 0.045 (dark baryons ∼ 0.040)

• Ων ≃ 0.005

Howie Baer, Oklahoma State University colloquium, April 16, 2009 15

Dark matter versus dark energy

Howie Baer, Oklahoma State University colloquium, April 16, 2009 16

SUSY dark matter

⋆ R-parity conservation⇒ conserved B and L ⇒ proton stability

• R(particle) = 1; R(sparticle) = −1

⋆ Naturally occurs in SO(10) SUSY GUT theories

⋆ Some consequences:

• Sparticles are produced in pairs

• Sparticles decay to other sparticles

• Lightest SUSY particle (LSP) is absolutely stable (good candidate for dark

matter)

⋆ LSP must be charge, color neutral (bound on cosmological relics)

⋆ Sneutrino would have been detected in direct detection experiments

⋆ lightest neutralino Z1 is LSP in wide range of models

⋆ Z1 is weakly interacting, massive particle (WIMP)

Howie Baer, Oklahoma State University colloquium, April 16, 2009 17

Calculating the relic density of neutralinos

⋆ At very high T , neutralinos in thermal equilibrium with cosmic soup

⋆ As universe expands and cools, expansion rate exceeds interaction rate

(freeze-out)

⋆ number density is governed by Boltzmann eq. for FRW universe

• dn/dt = −3Hn− 〈σvrel〉(n2 − n20)

• Ω eZ1h2 = s0

ρc/h2

(45

πg∗

)1/2xf

mP l

1

〈σv〉

• ΩCDMh2 ∼ 0.1 ⇒ 〈σv〉 ∼ 0.9 pb!

• 〈σv〉 = πα2/8m2 ⇒ m ∼ 100 GeV

• “The WIMP miracle!”: cosmic motivation for new physics at weak scale

⋆ SUSY: 1722 annihilation/co-annihilation reactions; 7618 Feynman diagrams

⋆ IsaReD program (HB, A. Belyaev , C. Balazs)

Howie Baer, Oklahoma State University colloquium, April 16, 2009 18

Results of χ2 fit using τ data for aµ:

mSugra with tanβ = 10, A0 = 0, µ > 0

0

250

500

750

1000

1250

1500

1750

2000

0 1000 2000 3000 4000 5000 6000

mSugra with tanβ = 10, A0 = 0, µ > 0

0

250

500

750

1000

1250

1500

1750

2000

0 1000 2000 3000 4000 5000 6000

-2

0

2

4

6

8

m0 (GeV)

m1/

2 (G

eV)

ln(χ

/DO

F)

No REWSB

Ζ~

1 no

t LSP

mh=114.1GeV LEP2 excluded

SuperCDMS CDMSII CDMS

mSugra with tanβ = 54, A0 = 0, µ > 0

0

250

500

750

1000

1250

1500

1750

2000

0 1000 2000 3000 4000 5000 6000

mSugra with tanβ = 54, A0 = 0, µ > 0

0

250

500

750

1000

1250

1500

1750

2000

0 1000 2000 3000 4000 5000 6000

0

2

4

6

8

10

12

14

m0 (GeV)m

1/2

(GeV

)

ln(χ

2 /DO

F)

No REWSB

Ζ~

1 no

t LSP

mh=114.1GeV LEP2 excluded

SuperCDMS CDMSII CDMS

HB, C. Balazs: JCAP 0305, 006 (2003)

Howie Baer, Oklahoma State University colloquium, April 16, 2009 19

Axions

⋆ PQ solution to strong CP problem in QCD

⋆ pseudo-Goldstone boson from

PQ breaking at scale fa ∼ 109 − 1012 GeV

⋆ non-thermally produced

via vacuum mis-alignment as cold DM

• ma ∼ Λ2QCD/fa ∼ 10−6 − 10−1eV

• Ωah2 ∼ 1

2

[6×10

−6eVma

]7/6

h2

• astro bound: stellar cooling ⇒ ma < 10−1eV

• a couples to EM field: a− γ − γ coupling (Sikivie)

• axion microwave cavity searches

10-5

10-4

10-3

ma (eV)

10-5

10-4

10-3

10-2

10-1

100

Ωah2 (

vacu

um m

is-a

lignm

ent)

109

1010

1011

1012

fa

/N (GeV)

WMAP 5: ΩCDM

h2 = 0.110 ± 0.006

Howie Baer, Oklahoma State University colloquium, April 16, 2009 20

Axion microwave cavity searches

⋆ ongoing searches: ADMX experiment

• Livermore⇒ U Wash.

• Phase I: probe KSVZ

for ma ∼ 10−6 − 10−5 eV

• Phase II: probe DFSZ

for ma ∼ 10−6 − 10−5 eV

• beyond Phase II:

probe higher values ma

Howie Baer, Oklahoma State University colloquium, April 16, 2009 21

Axions + SUSY ⇒ Axino a dark matter

• axino is spin-1

2element of axion supermultiplet (R-odd; can be LSP)

• ma model dependent: keV→ GeV

• Z1 → aγ

• non-thermal a production via Z1 decay:

• axinos inherit neutralino number density

• ΩNTPa h2 = ma

m eZ1

Ω eZ1

h2:50 60 70 80 90

mχ~1

0 (GeV)

10-5

10-4

10-3

10-2

10-1

100

101

τ (s

)

fa /N = 10

9 GeV

fa /N = 1010

GeV

fa /N = 10

11 GeV

fa /N = 10

12 GeV

Howie Baer, Oklahoma State University colloquium, April 16, 2009 22

Thermally produced axinos

⋆ If TR < fa, then axinos never in thermal equilibrium in early universe

⋆ Can still produce a thermally via radiation off particles in thermal equilibrium

⋆ Brandenberg-Steffen calculation:

ΩTPa h2 ≃ 5.5g6

s ln

(1.108

gs

)(1011 GeV

fa/N

)2 ( ma

0.1 GeV

) (TR

104 GeV

)(3)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

ma~ (GeV)

104

105

106

107

108

109

1010

TR (

GeV

)

fa /N = 10 12

GeVfa /N = 10 11

GeVfa /N = 10 10

GeV

hot warm cold

NT leptogenesis

Howie Baer, Oklahoma State University colloquium, April 16, 2009 23

Gravitinos: spin-3

2partner of graviton

• gravitino problem in generic SUGRA models: overproduction of G followed by

late G decay can destroy successful BBN predictons: upper bound on TR

(see Kawasaki, Kohri, Moroi, Yotsuyanagi; Cybert, Ellis, Fields, Olive)

Howie Baer, Oklahoma State University colloquium, April 16, 2009 24

Gravitinos as dark matter: again the gravitino problem

• neutralino production in generic SUGRA models: followed by late time

Z1 → G+Xdecays can destroy successful BBN predictons:

(see Kawasaki, Kohri, Moroi, Yotsuyanagi)

Howie Baer, Oklahoma State University colloquium, April 16, 2009 25

Gravitino dark matter: if one can avoid gravitino problem

⋆ mG = F/√

3M∗ ∼ TeV in Supergravity models

• if G is LSP, then calculate NLSP abundance as a thermal relic: ΩNLSPh2

• Z1 → hG, ZG, γG or τ1 → τG possible

∗ lifetime τNLSP ∼ 104 − 108 sec

∗ also produce G thermally (depends on re-heat temp. TR)

∗ DM relic density is then ΩG =mG

mNLSPΩNLSP + ΩTP

G

∗ Feng et al.; Ellis et al.; Brandenberg+Steffen; Buchmuller et al.

• G undetectable via direct/indirect DM searches

• unique collider signatures are possible:

∗ τ1=NLSP: stable charged tracks

∗ can collect NLSPs in e.g. water (slepton trapping)

∗ monitor for NLSP → G decays

Howie Baer, Oklahoma State University colloquium, April 16, 2009 26

Production of sparticles at CERN LHC

Howie Baer, Oklahoma State University colloquium, April 16, 2009 27

Sparticle cascade decays

400

600

800

1000

1200

1400

1600

1800

2000

10-2

10-1

1 10 102

Br (%)

Mas

s s

cale

(G

eV)

g~ (2060)

q ~

L (≈1857)

q ~

R (≈1770)

b ~

2 (1690) t

~

2 (1689) b

~

1 (1619)

t ~

1 (1449)

W ~ ±

2 (1067) Z

~ 4 (1066)

Z ~

3 (1056)

W ~ ±

1 (754) Z

~ 2 (754)

τ ~

2 (726) ν

~

τ (712)

τ ~

1 (442) Z

~ 1 (395)

Z ~

1 qq (27.0 %)

Z ~

1 τνWbb (12.1 %)

Z ~

1 ττWWbb (8.4 %)

Z ~

1 WWbb (7.4 %)

Z ~

1 τνqq (5.9 %)

Z ~

1 τνWWWbb (4.1 %)

Z ~

1 ττbb (2.9 %)

Z ~

1 ττqq (2.9 %)

Z ~

1 τνZWbb (2.8 %)

Z ~

1 τνhWbb (2.6 %)

Howie Baer, Oklahoma State University colloquium, April 16, 2009 28

Event generation for sparticles

~

~

~Z1

~Z1

g

Hadrons

Remnants

q

p

p

1

23

4

5

Event generation in LL - QCD

1) Hard scattering / convolution with PDFs

2) Intial / final state showers

3) Cascade decays

4) Hadronization

5) Beam remnants

Howie Baer, Oklahoma State University colloquium, April 16, 2009 29

Isajet v7.79 for sparticle event generation

⋆ Isajet (1979), by F. Paige and S. Protopopescu

⋆ Isajet 7.0 (1993) -7.75: FP, SP, HB and X. Tata

• Isasugra subprogram: SUGRA models (and others)⇒ sparticle masses,

mixings, decay rates

⋆ SUSY and SM event generation for hadron colliders

⋆ e+e− colliders

• polarized beams

• bremsstrahlung/ beamstrahlung

⋆ IsaTools: Ω eZ1h2, (g − 2)µ, BF (b→ sγ), BF (Bs → µ+µ−), σ(Z1p)

⋆ Les Houches event output: 7.78

Howie Baer, Oklahoma State University colloquium, April 16, 2009 30

Simulated sparticle production event at LHC

S. Abdullin Oct.2000

GEANT figure

mSUGRA : m 0 = 1000 GeV, m 1/2 = 500 GeV, A 0= 0, tan β = 35, µ > 0

m g ~ = 1266 GeV

m u ~ = 1450 GeV

m t ~ = 1026 GeV

m

~ = 410 GeV 1

L

Z 2

m ~ = 214 GeVZ

1

m h = 119 GeV

g ~

t ~

1 t -

W -

+ b -

T = 113 GeV)

s + c -

~W +

2 + b ~W +

1 + Z ν ν-

( jet4, E

T = 79 GeV) ( jet5, E

T = 536 GeV)( jet3, E

~Z

1 W +

+ τ e ν

+ +

u ~

L ~Z

2 + u T = 1196 GeV)( jet6, E

~Z

1 + h

b -

T = 320 GeV)( jet2, ET = 206 GeV)( jet1, E b

ν

S.

Abd

ullin

, A

. Nik

iten

ko

b-jet 1

b-jet 2 Z 1

Z 1

b-jet 3

b-jet 4

jet 5

jet 6

E T

miss= 380 GeV

~

~

5

Howie Baer, Oklahoma State University colloquium, April 16, 2009 31

e+e− → W+

1 W−

1 → (qq′Z1) + (eνeZ1) at linear collider

Howie Baer, Oklahoma State University colloquium, April 16, 2009 32

Sparticle reach of all colliders with relic density

200

400

600

800

1000

1200

1400

1600

0 1000 2000 3000 4000 5000 6000 7000 8000

mSugra with tanβ = 10, A0 = 0, µ > 0

m0 (GeV)

m1/

2 (G

eV)

LHC

Tevatron

LC 500

LC 1000

Ωh2< 0.129

LEP2 excluded

200

400

600

800

1000

1200

1400

1600

0 1000 2000 3000 4000 5000 6000 7000

mSugra with tanβ = 45, A0 = 0, µ < 0

m0 (GeV)m

1/2

(GeV

)

LHC

Tevatron

LC 500

LC 1000

Ωh2< 0.129

LEP2 excluded

HB, Belyaev, Krupovnickas, Tata: JHEP 0402, 007 (2004)

Howie Baer, Oklahoma State University colloquium, April 16, 2009 33

Early SUSY discovery at LHC with just 0.1 fb−1?

• To make 6ET cut, complete knowledge of detector needed

– dead regions

– “hot” cells

– cosmic rays

– calorimeter mis-measurement

– beam-gas events

• Can we make early discovery of SUSY at LHC without 6ET ?

• Expect SUSY events to be rich in jets, b-jets, isolated ℓs, τ -jets,....

• These are detectable, rather than inferred objects

• Answer: YES! See HB, Prosper, Summy, arXiv:0801.3799

Howie Baer, Oklahoma State University colloquium, April 16, 2009 34

D0 saga with missing ET

Howie Baer, Oklahoma State University colloquium, April 16, 2009 35

Simple cuts: ≥ 4 jets plus isolated leptons

• 6ET not really necessary

0 5# of Isolated Leptons

0.1

1

10

100

1000

10000

1e+05

1e+06

1e+07

σ (f

b)

SO10ptA(9202.87,62.498,-19964.500,49.1,171)QCD JetsttW+jetsZ+jetsWW, WZ, ZZSum of Backgrounds

No. of Isolated LeptonsCuts C1a

Howie Baer, Oklahoma State University colloquium, April 16, 2009 36

Cuts C1′ plus ≥ 2 OS/SF ℓ

0 50 100 150m

ll (GeV)

0

10

20

30

40

dσ/d

mll (

fb/G

eV)

SO10ptA + BGQCD JetsttW+jetsZ+jetsWW, WZ, ZZSum of Backgrounds

Cuts C1a

Howie Baer, Oklahoma State University colloquium, April 16, 2009 37

Precision measurements at LHC: Atlas and CMS

• Meff = 6ET + ET (j1) + · · · + ET (j4) sets overall mg, mq scale

• m(ℓℓ) < meZ2−meZ1

mass edge

• m(ℓℓ) distribution shape

• combine m(ℓℓ) with jets to gain m(ℓℓj) mass edge: info on mq

• further mass edges possible e.g. m(ℓℓjj)

• Higgs mass bump h→ bb likely visible in 6ET + jets events

• in favorable cases, may overconstrain system for a given model

⋆ methodology very p-space dependent

⋆ some regions are very difficult e.g. HB/FP

Howie Baer, Oklahoma State University colloquium, April 16, 2009 38

International linear e+e− collider (ILC)

⋆ A linear e+e− collider with√s = 0.5 − 1 TeV is highest priority project for

HEP beyond LHC! Why?

• All beam energy ⇒ collision (aside from brem/beamstrahlung losses)

• beam energy known

• clean collision environment

• low (electroweak) background levels

• adjustable beam energy (threshold scans)

• e− and possibly e+ beam polarization

⋆ ILC will be ideal machine to perform precision spectroscopy of any new (EW

interacting) matter states (provided they are kinematically accessible)!

⋆ timeline: decision-2012; ready-2025?

Howie Baer, Oklahoma State University colloquium, April 16, 2009 39

Precision sparticle measurements at a e+e− linear collider

Howie Baer, Oklahoma State University colloquium, April 16, 2009 40

Direct detection of SUSY DM

⋆ Direct search via neutralino-nucleon scattering

Howie Baer, Oklahoma State University colloquium, April 16, 2009 41

Direct detection of neutralino DM: the race is on!

WIMP Mass [GeV/c2]

Cro

ss-s

ectio

n [p

b] (

norm

alis

ed to

nuc

leon

)

080418114601

http://dmtools.brown.edu/ Gaitskell,Mandic,Filippini

101

102

103

10-10

10-9

10-8

10-7

10-6

10-5

080418114601Baer et. al 2003XENON1T (proj)LUX 300 kg LXe Projection (Jul 2007)XENON100 (150 kg) projected sensitivitySuperCDMS (Projected) 25kg (7-ST@Snolab)WARP 140kg (proj)SuperCDMS (Projected) 2-ST@SoudanCDMS Soudan 2007 projectedXENON10 2007 (Net 136 kg-d)CDMS: 2004+2005 (reanalysis) +2008 GeCDMS 2008 GeWARP 2.3L, 96.5 kg-days 55 keV thresholdDAMA 2000 58k kg-days NaI Ann. Mod. 3sigma w/DAMA 1996Edelweiss I final limit, 62 kg-days Ge 2000+2002+2003 limitDATA listed top to bottom on plot

Howie Baer, Oklahoma State University colloquium, April 16, 2009 42

Indirect detection (ID) of SUSY DM: ν-telescopes

⋆ Z1Z1 → bb, etc. in core of sun (or earth): ⇒ νµ → µ in ν telescopes

• Amanda, Icecube, Antares

Howie Baer, Oklahoma State University colloquium, April 16, 2009 43

ID of SUSY DM: γ and anti-matter searches

• Z1Z1 → qq, etc.→ γ in galactic core or halo

• Z1Z1 → qq, etc.→ e+ in galactic halo

• Z1Z1 → qq, etc.→ p in galactic halo

• Z1Z1 → qq, etc.→ D in galactic halo

Howie Baer, Oklahoma State University colloquium, April 16, 2009 44

Direct and indirect detection of neutralino DM

200

400

600

800

1000

1200

1400

1600

0 1000 2000 3000 4000 5000 6000 7000 8000

mSUGRA, A0=0 tanβ=10, µ>0

m0(GeV)

m1/

2(G

eV)

LEP

no REWSB

Z~

1 no

t LS

P

Φ(p-)=3x10-7 GeV-1 cm-2 s-1 sr-1

(S/B)e+=0.01

Φ(γ)=10-10 cm-2 s-1

Φsun(µ)=40 km-2 yr-1

0<Ωh2<0.129

mh=114.4 GeV

σ(Z~

1p)=10-9 pb

LHC

LC1000

LC500

TEV

µD

D

200

400

600

800

1000

1200

1400

1600

0 1000 2000 3000 4000 5000

mSUGRA, A0=0, tanβ=50, µ<0

m0 (GeV)m

1/2

(GeV

)

LEP

no REWSB

Z~

1 no

t LS

P

Φ(p-) 3e-7 GeV-1 cm-2 s-1 sr-1 (S/B)e+=0.01

Φ(γ)=10-10 cm-2 s-1 Φsun(µ)=40 km-2 yr-1

0< Ωh2< 0.129

mh=114.4 GeV

Φearth(µ)=40 km-2 yr-1 σ(Z~

1p)=10-9 pb

LHC

LC1000

LC500

µ

DD

HB, Belyaev, Krupovnickas, O’Farrill: JCAP 0408, 005 (2004)

Howie Baer, Oklahoma State University colloquium, April 16, 2009 45

Impact of DM direct/indirect detection on LHC program

• Extend reach in σSI ∼ 10−9 − 10−10 pb

– explore thoroughly region of MHDM, possibly MWDM

• after discovery, extract mwimp?

– meZ1sets absolute mass scale for SUSY particles-

– combine with LHC mass edges to gain LHC absolute sparticle masses

– learn if Z1 is absolutely stable: R-conservation

• IceCube turn-on can discover/verify especially MHDM

• knowledge of LHC spectra, σSI , σSD combined with possible gamma ray

signals may allow map of dark matter distribution in the galaxy

• role of p, e+, D signals

Howie Baer, Oklahoma State University colloquium, April 16, 2009 46

Models beyond mSUGRA

⋆ Normal scalar mass hierarchy

– split scalar generations m0(1) ≃ m0(2) ≪ m0(3)

– resolves BF (b→ sγ) and (g − 2)µ

⋆ Non-universal Higgs scalars

– motivated by SO(10) and SU(5) SUSY GUTs

– allow A-funnel at low tan β; higgsino DM at low m0

– enhanced DD/ ID rates

⋆ DM in models with t− b− τ Yukawa unification (SO(10))

⋆ Mixed wino DM

⋆ Bino-wino co-annihilation (BWCA) DM

⋆ Low M3 mixed higgsino DM

⋆ KKLT mixed moduli/AMSB DM

Howie Baer, Oklahoma State University colloquium, April 16, 2009 47

Conclusions

⋆ Supersymmetry is very compelling BSM theory

⋆ Irrefragable case for CDM has emerged

⋆ Some reach for SUSY at Tevatron

⋆ Huge reach for SUSY at CERN LHC

⋆ Possible early SUSY discovery at LHC: leptons instead of 6ET

⋆ e+e− LC necessary for precision sparticle spectroscopy

⋆ Direct search for WIMP/axion DM is underway

⋆ Indirect search for WIMP DM via Icecube ν telescope

⋆ Indirect search via γ, p, e+, D detection from galactic core/halo WIMP

annihilations

⋆ Solution of mystery of CDM is near if CDM =lightest SUSY particle!

Howie Baer, Oklahoma State University colloquium, April 16, 2009 48

Recommended