System Design of AMHS using Wireless Power Transfer...

Preview:

Citation preview

1

System Design of AMHS using Wireless Power Transfer (WPT) Technology for Semiconductor 

Wafer FAB

Young Jae Jang, PhDMin Seok LeeJin Hyeok Park 

Industrial and Systems EngineeringKAIST

2

Goals of the Talk

• Introduce the new AMHS solution with wireless power transfer technology

• Present the current research progress

• Provide the researchers with the new research area and opportunities

Copyright © Young Jae JANG

3

Wireless Power Transfer (WPT)

• Introduction to wireless power transfer– Nikola Tesla (1904)

• Tesla's Tower • Supply Wireless Power to Run All 

the Earth’s Industry• Faraday’s Law of Induction in 

Maxwell’s Equations

– Marin Soljačić (2006)• Andre Kurs, et al., “Wireless

Power Transfer via StronglyCoupled Magnetic Resonances,”Science, vol. 317. no. 5834, pp. 83-86, July 6, 2006

• Strongly coupled self-resonantcoils

• http://www.witricity.com/pages/papers.html

Copyright © Young Jae JANG

4

WTP Applications

• Smart phones• Smart watches• Tooth brush

Copyright © Young Jae JANG

5

WTP Applications

• On‐Line Electric Vehicle (OLEV) at KAIST• OLEV is the official name for the KAIST wireless charging EVs

Copyright © Young Jae JANG

Plug-InElectric Vehicle

Stationary Wireless Charging

E..V.

On-Line Electric Vehicle

(OLEV)

On-Line Electric Vehicle

(OLEV)

6

Wireless Charging Electric Vehicle• KAIST OLEV System currently operating at the KAIST campus, 

Gumi City, and Sejong City

Copyright © Young Jae JANG

7

New Research Opportunity

• Wireless Charging EV has been established as an emerging research topic in the area of power electronics and other electrical engineering related fields

Copyright © Young Jae JANG

IEEE Electrification (2013) IEEE Microwave Mag (2011)

IEEE Trans. Power ElectronicsSpecial Issue on Wireless Power

(2014)

However, Wireless Charging EV is still new to Transportation and ITS communities

8

WPT in Semiconductor FAB

• WTP technology used in LCD Stockers

Copyright © Young Jae JANG

11

Wireless Charging OHT

• Dynamic charging for OHT– Charging is done while vehicles are in motion

Copyright © Young Jae JANG

Power track supplying the powerPower Track Power Track

OHT

Battery pack

Time

SOC

12

Wireless Charging OHT

• Advantage– No idle vehicle for charging

• ~ 15% vehicles are idle for charging in a FAB X– No charging points – space is saved– No reroute for charging

• Disadvantage– EMI and electric wave – power track allocation is restricted

– Expensive – power tracks and battery pack size

Copyright © Young Jae JANG

13

Allocation of Power Tracks

• Where to allocate the power track?

Copyright © Young Jae JANG

14

Why It is a Challenging Problem?• Allocation restrictions• Cost trade‐off

– Trade‐off between the battery size and the allocation of the power transmitter– Two extreme cases– The transmitter units are installed on the entire route – No battery is needed– No transmitter is installed and the vehicle is equipped with a large battery

Copyright © Young Jae JANG

Battery cost

PowerTransmitter

Cost

15

Goals of the Optimization Model

• Evaluate the optimal allocation of the transmitter units and the battery size

• Input values are the vehicle velocity profile, route information, and other physical factors

Copyright © Young Jae JANG

• Vehicle velocity profile• Number of vehicles• Route information

• Cost factors• Physical factors

of the vehicle

OptimizationModel

• Optimal allocationof the transmitters

• Battery size

16

Modeling Approach

• Analytical vehicle power flowing model is used for the power requirement evaluation

Copyright © Young Jae JANG

17

Energy Dynamics

Iti

f Pbat (t)dtti

f

ti1o

Ilow , i 1,2,...,n1

18

Energy Dynamics

Iti1

f Min Ihigh , Iti

f Pbat (t)dt ICS (ti1f ti1

o )ti

f

ti1f

, i 1,2,...,n1

19

Energy Dynamics

Iti1

f Min Ihigh , Iti

f Pbat (t)dt ICS (ti1f ti1

o )ti

f

ti1f

, i 1,2,...,n1

20

Foundation of the Optimization Model

Ihigh Pbat (t)dt Ilow0

t1o

I

t1f Min Ihigh , Ihigh Pbat (t)dt ICS (ti

f tio )

0

t1f

I

tif Pbat (t)dt

tif

ti1o

Ilow , i 1,2,...,n1

Iti1

f Min Ihigh , Iti

f Pbat (t)dt ICS (ti1f ti1

o )ti

f

ti1f

, i 1,2,...,n1

xio xi

f , i 1,...,nxi

f xi1o , i 1,...,n1, and

yii L.

21

Multiple Route Problem

• Multiple Route, Multiple Stations Model• Multiple route: m number of route (route j = 1,…, m)• Stations: mj number of stations on route j• Example routes 

Copyright © Young Jae JANG

STK STK

STK STK

STK

STK

STK

STK

STK STK

STK STK

STK STK

STK STK

22

• Multiple Route, Multiple Stations Model– Multiple route: m number of route (route j = 1,…, m)– Stations: mj number of stations on route j– Example routes

• 7 routes• 5 stations on each route

Multiple Route Problem

1

2 3

4 5

6 7

: Station

Cost benefit: Shared stations by different

routes

23

MIP Model for Multiple Route

24

Preliminary Numerical Results

• Example case– Consisting of 120 candidate spots– Demand data based on the distance are already given 

– Hypothetical  6 loops passing through some of total stations

– CPLEX 12.5 and GA implemented on MATLAB are used to find solutions

25

Numerical Analysis

• Numerical experiment resultsDescription Calculation time(s) Minimum cost

Algorithm CPLEX GA CPLEX GA Difference (%)

One route 0.74 385.48 325,100 325,100 0

Two routes 1.26 455.32 611,900 611,900 0

Three routes 409.89 435.47 967,400 977,900 1.09

Four routes 619.68 443.54 1,074,000 1,108,000 3.17

Five routes 902.86 434.87 1,266,600 1,325,100 4.62

Six routes 40,828.58 437.52 1,366,000 1,445,400 5.81

26

Numerical Analysis

• Numerical experiment results

Rapidly increase in CPLEX

27

Conclusion

• Introduced the new AMHS solution using WPT

• Presented system design issue in the wireless charging based OHT

• Proposed the mathematical optimization for the allocation of the power tracks and battery size

• Presented the preliminary solutions using GA

Copyright © Young Jae JANG

28

Future Direction

• Utilizing the from‐to moves• Incorporating stochastic behaviors• Performing cost‐benefit analysis comparing to other 

solutions

Copyright © Young Jae JANG

29

Future Direction

• Developing the integrated solution• Building prototypes

Copyright © Young Jae JANG

ComponentDesign

Mech/Elec.System

SystemDesign

StaticOptimizationSimulation

DBTrafficDB

GIS DBSystem +Traffic Info

DynamicOptimizationSimulation

Components

30

Reference• Young Dae Ko and Young Jae Jang, "The Optimal System Design of the Online Electric Vehicle Utilizing Wireless Power Transmission Technology", IEEE Transactions on Intelligent Transportation Systems, Vol. 14, No. 3, pp. 1255‐1265, September 2013

• Young Jae Jang, Eun Suk Suh, and Jong Woo Kim, "System Architecture and Mathematical Models of Electric Transit Bus System Utilizing Wireless Power Transfer Technology." IEEE Systems Journal, 2015, On‐Line First is available 

• Seungmin Jeong, Young Jae Jang, and Dongsuk Kum, Economic Analysis of the Dynamic Charging Electric Vehicle, IEEE Transactions on Power Electronics, 2015 ‐ Accepted ‐ Online First is available 

• Young Jae Jang, , Seungmin Jeong, Young Dae Ko, System optimization of the On‐Line Electric Vehicle operating in a closed environment, Computers & Industrial Engineering, Volume 80, February 2015, Pages 222–235

Copyright © Young Jae JANG

Recommended