T. Odagaki and T. Ekimoto Department of Physics, Kyushu University Ngai Fest September 16, 2006

Preview:

Citation preview

T. Odagaki and T. EkimotoDepartment of Physics, Kyushu University

Ngai Fest September 16, 2006

Free Energy Landscape

Order parameter

High T

Low T

Phase transition

Fre

e en

ergy

Phase Transition

Configuration

High T

Fre

e en

ergy

Glass transition

Low T

: Diverging mean waiting time gT

PhenomenologyPhenomenology

Fundamental TheoryFundamental Theory

Dynamics

Single particle:   Gaussian to non-Gaussian transitionSlow and fast relaxations

Specific heat: Annealed to quenched transition

Thermodynamics

Cooling-rate dependence

Construction of free energy landscape

Dynamics

Thermodynamics

Slow and fast relaxations

Separation of time scalesSeparation of time scales

Total

Microscopic Relaxation

Free energy landscape

])(exp[})({ 2 i

iiii RrCRr For practical calculation

dRrrHN

RNVTZ iiii })({})]({exp[!

1}){,,,(

}){,,,(ln}){,,,( iBi RNVTZTkRNVT

Dynamics on the FEL

)(})({ tQRdt

dRiiR

ii

)(tQi : Random force

[Ansatz]

)()( tuRtr iii ttt 0for )(trR ii where

tt 0Separation of time scales

)()sin(

)( tQdx

xdTg

dt

dx

0)( tQ )(4)()( 210

21 ttT

TtQtQ

BkT /20

Dynamics

random force

and

A toy model for the dynamics on the FEL

Scaled equation

)()cos()( tQxTgdt

dx

)(2 Tg

)(Tg

0/TT

Three models for g(T)

TT /0

)]1tanh(1/[)]/tanh(1[ 0 TT

movie

1)( Tg

The dynamical structure factor of Model 1

0.01T0

0.1T0

1T0

10T0

100T0

1000T0

k=0.5ωS(k,ω)

ω

Oscillatory motion

Jump motion

The dynamical structure factor of Model 2ωS(k,ω)

ω

k=0.5

0.01T0

0.1T0

0.3T0

10T0

1000T0

Jump motion

Oscillatory motion

The dynamical structure factor of Model 3k=0.5

ωS(k,ω)

ω

100T0

10T0

1T0

0.3T00.1T0

0.01T0

Jump motion

Oscillatory motion

T/1

Characteristic time scales

Phenomenology

Fundamental Theory

Dynamics

Single particle:   Gaussian to non-Gaussian transitionSlow and fast relaxations

Specific heat: Annealed to quenched transition

Thermodynamics

Cooling-rate dependence

Construction of free energy landscape

Dynamics

Thermodynamics

Unified Theory for Glass Transition

))()()(()(2

1

))(()(

log)(][)]([

212121 ll

ll

l

cdd

dd

rrrrrr

rrr

rrr

: Direct correlation function)(rc

Ramakrishnan-Yussouff free energy functional

}){,(])(exp[)( 2i

iiC RRrr

})]{,([})({ ii RR as a function of }{ iR

Free energy landscape

No of atoms in the core : 32555.0 362

String motion and CRR

Simultaneously and cooperatively rearranging regions

SRR: Difference between two adjacent basins

CRR: Atoms involved in the transition state

108

523.0

N

return

Phenomenological understanding : Heat capacity

T. Tao &T.O(PRE 2002),T.O et al (JCP 2002),T. Tao et al (JCP2005)

aE

),( tTPa

Energy of basin a

Probability of being in basin a at t

),(),( tTPEtTE aa

a

0

0000

),(),(),(

TT

tTEtTEttTC

)0,(TC

),( TC

: Quenched

: Annealed

a

)10,10,10( 642coolCt

)10( 2heatCt

Annealed-to-quenched transition and cooling rate dependence

• 20 basins:Einstein oscillators

slow

fast

T. Tao, T. O and A. Yoshimori: JCP 122, 044505 (2005)

return

Trapping Diffusion ModelTrapping Diffusion Model

return

)2()( tt

)(

)()(

gcg

gcgc

TsT

TsTTTs

Waiting time distribution for jump motion

Unifying concept

0t1 0T 0)( 0 Tsc

2t xT10 gTt 0D

2)(

)(

0

0

TT

TT

TsT

TsT

g

X

gcg

XcX

)/(

12

0TTT

T

gg

x

Characteristic Temperature Equation

Characteristic Temperature Equation

V B Kokshenev & P D Borges, JCP 122, 114510 (2005)

g

C

T

T

0/TTg

g

C

T

T

0/TTg

return

Waiting time distribution for slow relaxation

g

dgCgp0

])(exp[)()( Prob. of activation free energy

2)( tt

)(

)()(1

)(*

gcg

gcgcc

TsT

TsTTTs

S

TkTs

Waiting time distribution 

gneww 0

)(/* TsSn c :Size of CRR by Adam and Gibbs

SRR

CRR

return

Non-Gaussian parameter Susceptibility

return