The Cope Rearrangement - University of Chicagosnyder-group.uchicago.edu/downloads/Lectures2020/The...

Preview:

Citation preview

The Cope RearrangementLecture Notes

Key Reviews:

H. M. L. Davies, Tetrahedron 1993, 49, 5203.

D. Enders, M. Knopp, R. Schiffers, Tetrahedron: Asymmetry 1996, 7, 1847.

U. Nubbemeyer, Synthesis 2003, 961.

[3,3]

D D

[3,3]-Rearrangements: The Claisen and Cope Reactions/Rearrangements

J. Org. Chem. 1976, 41, 3497; J. Org. Chem. 1976, 41, 3512; J. Org. Chem. 1978, 43, 3435.

O O

OO[Cope

rearrangement]

[Claisenrearrangement]

Δ

[3,3]-Rearrangements: The Claisen and Cope Reactions/Rearrangements

J. Org. Chem. 1976, 41, 3497; J. Org. Chem. 1976, 41, 3512; J. Org. Chem. 1978, 43, 3435.

OH OH O

[Claisenrearrangement]

[Claisenrearrangement]

OOOH

[Enol-ketotauto-

merization]

Δ

[Cope]

[3,3]-Rearrangements: The Claisen and Cope Reactions/Rearrangements

J. Org. Chem. 1976, 41, 3497; J. Org. Chem. 1976, 41, 3512; J. Org. Chem. 1978, 43, 3435.

OH OH O

[Claisenrearrangement]

[Claisenrearrangement]

OOOH

[Enol-ketotauto-

merization]

Δ

[Cope]

The Cope Reaction: Initial Discovery

150 oC4 h

A. C. Cope, E. M. Hardy, J. Am. Chem. Soc. 1940, 62, 441.

Reaction process involves chair-like intermediates in most cases, but is an equilibrium.Special tactical features are required to drive the process towards a single product.

Bonds Broken2 C C1 C C

Bonds FormedC CC C

21

EtO2CNC

EtO2C

NC

The Cope Reaction: Initial Discovery

150 oC4 h

A. C. Cope, E. M. Hardy, J. Am. Chem. Soc. 1940, 62, 441.

Reaction process involves chair-like intermediates in most cases, but is an equilibrium.Special tactical features are required to drive the process towards a single product.

Bonds Broken2 C C1 C C

Bonds FormedC CC C

21

EtO2CNC

EtO2C

NC

The Cope Reaction: Initial Discovery

150 oC4 h

A. C. Cope, E. M. Hardy, J. Am. Chem. Soc. 1940, 62, 441.

Reaction process involves chair-like intermediates in most cases, but is an equilibrium.Special tactical features are required to drive the process towards a single product.

Bonds Broken2 C C1 C C

Bonds FormedC CC C

21

EtO2CNC

EtO2C

NC

The Cope Reaction: Ways to Get Single Products

A. C. Cope, E. M. Hardy, J. Am. Chem. Soc. 1940, 62, 441.

1. Olefin conjugation and increased degree of alkene substitution

150 oC4 h

EtO2CNC

EtO2C

NC

2. Relief of ring strain

Δ

Δ

The Cope Reaction: Ways to Get Single Products

A. C. Cope, E. M. Hardy, J. Am. Chem. Soc. 1940, 62, 441.

1. Olefin conjugation and increased degree of alkene substitution

150 oC4 h

EtO2CNC

EtO2C

NC

2. Relief of ring strain

Δ

Δ

The Cope Reaction: Ways to Get Single Products

J. A. Berson, M. Jones, J. Am. Chem. Soc. 1964, 86, 5019.

3. Product isomerization

HO HO O

D D

This process is known as the oxy-Cope rearrangement

O O

Standard Cope rearrangement Claisen rearrangement

4. Ensuing rearrangements/reactions (can be inter- or intramolecular)

O O O[Cope] [Claisen]

The Cope Reaction: Ways to Get Single Products

J. A. Berson, M. Jones, J. Am. Chem. Soc. 1964, 86, 5019.

3. Product isomerization

HO HO O

D D

This process is known as the oxy-Cope rearrangement

O O

Standard Cope rearrangement Claisen rearrangement

4. Ensuing rearrangements/reactions (can be inter- or intramolecular)

O O O[Cope] [Claisen]

The Cope Reaction: Ways to Get Single Products

J. A. Berson, M. Jones, J. Am. Chem. Soc. 1964, 86, 5019.

3. Product isomerization

HO HO O

D D

This process is known as the oxy-Cope rearrangement

O O

Standard Cope rearrangement Claisen rearrangement

4. Ensuing rearrangements/reactions (can be inter- or intramolecular)

O O O[Cope] [Claisen]

The Cope Reaction: Use in Complex Molecule Synthesis

T. Hudlicky, C. H. Boros, E. E. Boros, Synthesis 1992, 174.

O

OH

How was this made?

O

O

PCC

(94%)

O

O

OH

OMeN

OHO

OH

O

HHO

NMe

250 oC,xylenes

sealed tube,22 h

(88%)[Cope]

morphinemorphine

The Cope Reaction: Use in Complex Molecule Synthesis

J. Limanto, M. L. Snapper, J. Am. Chem. Soc. 2000, 122, 8071.

OO

OH

HH

(+)-asteriscanolide

O

H

HHH

O

H

HH

H Grubb'scatalyst

H2C CH2benzene,

80 oC, 10 hO

H

HH

H

O

[Cope] (74%)

O

The Cope Reaction: Use in Complex Molecule Synthesis

H. M. L. Davies, B. D. Doan, J. Org. Chem. 1998, 63, 657.

tremulenolide A

N2

CO2Me

OAc

Rh(OOct)4CO2Me

OAc

MeO2CAcO

HH

OO

140 oC,Kugelrohr distillation

(49% overall)[Cope]

(12 equiv)

hexane, Δ+

how?

The Oxy-Cope Reaction: Perhaps the Most Valuable Version

J. A. Berson, M. Jones, J. Am. Chem. Soc. 1964, 86, 5019.D. A. Evans, A. M. Golob, J. Am. Chem. Soc. 1975, 97, 4765.

HO HO O250 oC

[slow]

O

KH

O OH3O25 oC

1010 to 1017 fold rate increase at room temperatureAffords an enolate intermediate which can be used directly in further chemistry

The Oxy-Cope Reaction: Perhaps the Most Valuable Version

J. A. Berson, M. Jones, J. Am. Chem. Soc. 1964, 86, 5019.D. A. Evans, A. M. Golob, J. Am. Chem. Soc. 1975, 97, 4765.

HO HO O250 oC

[slow]

O

KH

O OH3O25 oC

1010 to 1017 fold rate increase at room temperatureAffords an enolate intermediate which can be used directly in further chemistry

The Oxy-Cope Reaction: Perhaps the Most Valuable Version

J. A. Berson, M. Jones, J. Am. Chem. Soc. 1964, 86, 5019.D. A. Evans, A. M. Golob, J. Am. Chem. Soc. 1975, 97, 4765.

HO HO O250 oC

[slow]

O

KH

O OH3O25 oC

1010 to 1017 fold rate increase at room temperatureAffords an enolate intermediate which can be used directly in further chemistry

Anion Accelerated Oxy-Cope Reaction in Action

D. A. Evans, A. M. Golob, J. Am. Chem. Soc. 1975, 97, 4765.

OH250 oC

[slow]

KH

H3O25 oC

OHH

H

OH

H

OOH

H

OH

H

4π-Electrocyclic Reactions:Part of a Total Synthesis of Periplanone B

S. L. Schreiber, C. Santini, J. Am. Chem. Soc. 1984, 106, 4038.For a review, see: Classics in Total Synthesis I, Chapter 21

OH

Me

Me

O

Me

Me

O

Me

Me

H

Me

Me

175 °C, toluene

O

Me

Me

O

Me

Me

O

O

O

periplanone B

Oxy-Coperearrangement

4π-conrotatoryelectrocyclicring opening

KH,18-Crown-6

OO

OO

O

O

18-crown-6

(75%)

(82%)

Olefin isomerization

+

Ene Reactions in Total Synthesis:Tandem Oxy-Cope/Carbonyl Ene Sequence

L. Barriault, D. H. Deon, Org. Lett. 2001, 3, 1925.

OTBDPS

HO

H

Me

Me

MeOH

OTBDPS

MeDBU,

toluene220 °C

MeOH Me

OTBDPS

MeO

OTBDPS

TBDPS = t-butyldiphenylsilyl

MeO

H HH

H

TBDPSOH

HHHMeOH

OTBDPSH

OTBDPS

HO

H

Me

H Me

O

OMe

HOMe

HO

arteannuin M

Transannularene reaction

Oxy-Coperearrangement

Enol-Ketotauto-

merization

(63%)

Anion Accelerated Cope Reaction: Not Just Oxygen!

D. A. Evans, A. M. Golob, J. Am. Chem. Soc. 1975, 97, 4765.

NHBnKH H3O-60 oC

NBnNBnH

H

OH

H

KH H3O-40 oC

PhS

RHN

PhS

RN

PhS

RN O

PhS

Have intermediate enamine nucleophile which can be used in varied ways

toluene

THF

Anion Accelerated Cope Reaction: Not Just Oxygen!

D. A. Evans, A. M. Golob, J. Am. Chem. Soc. 1975, 97, 4765.

NHBnKH H3O-60 oC

NBnNBnH

H

OH

H

KH H3O-40 oC

PhS

RHN

PhS

RN

PhS

RN O

PhS

Have intermediate enamine nucleophile which can be used in varied ways

toluene

THF

Working Backwards: Recognizing Oxy-Cope Products

O HOHO

[oxy-Cope]1 23

456

1,5-diene is the critical structural unit of initial productAn alkene and carbonyl linked by three carbons is the key unit in final product

O

OH OH OH

[oxy-Cope]

Working Backwards: Recognizing Oxy-Cope Products

O HOHO

[oxy-Cope]1 23

456

1,5-diene is the critical structural unit of initial productAn alkene and carbonyl linked by three carbons is the key unit in final product

O OHOH X

OH OH OH

[oxy-Cope]

Working Backwards: Recognizing Oxy-Cope Products

O HOHO

[oxy-Cope]1 23

456

1,5-diene is the critical structural unit of initial productAn alkene and carbonyl linked by three carbons is the key unit in final product

O OH12

3 5

6

4

OH12

3 5

6

4

X

1,6-diene 1,5-diene

OH OH OH

[oxy-Cope]

Working Backwards: Recognizing Oxy-Cope Products

O HOHO

[oxy-Cope]1 23

456

1,5-diene is the critical structural unit of initial productAn alkene and carbonyl linked by three carbons is the key unit in final product

O OH12

3 5

6

4

OH12

3 5

6

4

X

1,6-diene 1,5-diene

OH OH OH

[oxy-Cope]

Working Backwards: Recognizing Oxy-Cope Products

G. Berube, A. G. Fallis, Tetrahedron Lett. 1989, 30, 4045.

O

O

O

O

1. Add a carbonyl at any position which has 3 carbons before either end of the alkene2. Evaluate each ketone for oxy-Cope viability

A B C D

Working Backwards: Recognizing Oxy-Cope Products

G. Berube, A. G. Fallis, Tetrahedron Lett. 1989, 30, 4045.

O

O

O

O

1. Add a carbonyl at any position which has 3 carbons before either end of the alkene2. Evaluate each ketone for oxy-Cope viability

A B C D

Working Backwards: Recognizing Oxy-Cope Products

G. Berube, A. G. Fallis, Tetrahedron Lett. 1989, 30, 4045.

O

A

OH OH

Working Backwards: Recognizing Oxy-Cope Products

G. Berube, A. G. Fallis, Tetrahedron Lett. 1989, 30, 4045.

O

A

OH

12

345

6 OH12 3

45

6

Working Backwards: Recognizing Oxy-Cope Products

G. Berube, A. G. Fallis, Tetrahedron Lett. 1989, 30, 4045.

O

A

OH

12

345

6 OH12 3

45

6

OH OH

Working Backwards: Recognizing Oxy-Cope Products

G. Berube, A. G. Fallis, Tetrahedron Lett. 1989, 30, 4045.

O

A

OH

12

345

6 OH12 3

45

6

OH OH

OH OH

[Cope] [Cope]

Working Backwards: Recognizing Oxy-Cope Products

G. Berube, A. G. Fallis, Tetrahedron Lett. 1989, 30, 4045.

OB

HO HO

Working Backwards: Recognizing Oxy-Cope Products

G. Berube, A. G. Fallis, Tetrahedron Lett. 1989, 30, 4045.

12

3

45

6

OB

HO

12 3 4

5

6HO

Working Backwards: Recognizing Oxy-Cope Products

G. Berube, A. G. Fallis, Tetrahedron Lett. 1989, 30, 4045.

12

3

45

6

OB

HO

HO HO

12 3 4

5

6HO

Working Backwards: Recognizing Oxy-Cope Products

G. Berube, A. G. Fallis, Tetrahedron Lett. 1989, 30, 4045.

12

3

45

6

[Cope] [Cope]OB

HO

HO HO

12 3 4

5

6HO

HO HO

Working Backwards: Recognizing Oxy-Cope Products

G. Berube, A. G. Fallis, Tetrahedron Lett. 1989, 30, 4045.

O

C

OH OHOH

Working Backwards: Recognizing Oxy-Cope Products

G. Berube, A. G. Fallis, Tetrahedron Lett. 1989, 30, 4045.

123

4 5

6

O

C

OH OH12 3

4 5

6OH

12 3

4 5

6

Working Backwards: Recognizing Oxy-Cope Products

G. Berube, A. G. Fallis, Tetrahedron Lett. 1989, 30, 4045.

123

4 5

6

O

C

OH OH OH

OH OH12 3

4 5

6OH

12 3

4 5

6

Working Backwards: Recognizing Oxy-Cope Products

G. Berube, A. G. Fallis, Tetrahedron Lett. 1989, 30, 4045.

123

4 5

6

[Cope] [Cope]

O

C[Cope]

OH OH

OH OH

OH

OH

OH OH12 3

4 5

6OH

12 3

4 5

6

Working Backwards: Recognizing Oxy-Cope Products

G. Berube, A. G. Fallis, Tetrahedron Lett. 1989, 30, 4045.

O

C

OH OH OH

HO OHOH

OHO O

Cl

CN

Working Backwards: Recognizing Oxy-Cope Products

G. Berube, A. G. Fallis, Tetrahedron Lett. 1989, 30, 4045.

O

C

OH OH OH

HO OHOH

OHO O

Cl

CN

Working Backwards: Recognizing Oxy-Cope Products

G. Berube, A. G. Fallis, Tetrahedron Lett. 1989, 30, 4045.

O

C

OH OH OH

HO OHOH

OHO O

Cl

CN

Working Backwards: Recognizing Oxy-Cope Products

G. Berube, A. G. Fallis, Tetrahedron Lett. 1989, 30, 4045.

O

C

OH OH OH

HO OHOH

OHO O

Cl

CN

Working Backwards: Recognizing Oxy-Cope Products

L. A. Paquette, J. L. Romine, H.-S. Lin, Tetrahedron Lett. 1987, 28, 31.

1. Add an olefin at any position which has 3 carbons between it and the carbonyl2. Evaluate each ketone for oxy-Cope viability as before

H H

HH

OMeOMe

O

Working Backwards: Recognizing Oxy-Cope Products

L. A. Paquette, J. L. Romine, H.-S. Lin, Tetrahedron Lett. 1987, 28, 31.

1. Add an olefin at any position which has 3 carbons between it and the carbonyl2. Evaluate each ketone for oxy-Cope viability as before

H H

HH

OMeOMe

O

H H

HH

OMeOMe

OH H

H

OMeOMe

O

A B C

H H

HH

OMeOMe

O

Working Backwards: Recognizing Oxy-Cope Products

L. A. Paquette, J. L. Romine, H.-S. Lin, Tetrahedron Lett. 1987, 28, 31.

H H

H

OMeOMe

O

H H

H

OMeOMe

HO

H H

HH

OMeOMe

O

A B

no 1,5-dienes!

Working Backwards: Recognizing Oxy-Cope Products

L. A. Paquette, J. L. Romine, H.-S. Lin, Tetrahedron Lett. 1987, 28, 31.

H H

H

OMeOMe

O

H H

H

OMeOMe

HO

H H

HH

OMeOMe

O

123 4

56

A B

no 1,5-dienes!

Working Backwards: Recognizing Oxy-Cope Products

L. A. Paquette, J. L. Romine, H.-S. Lin, Tetrahedron Lett. 1987, 28, 31.

H H

H

OMeOMe

O

H H

H

OMeOMe

HO

H H

HH

OMeOMe

O

H H

H

OMeOMe

HO

123 4

56

A B

no 1,5-dienes!

Working Backwards: Recognizing Oxy-Cope Products

L. A. Paquette, J. L. Romine, H.-S. Lin, Tetrahedron Lett. 1987, 28, 31.

H H

H

OMeOMe

O

H H

H

OMeOMe

HO

H OMeOMe

HO

H H

HH

OMeOMe

O

H H

H

OMeOMe

HO

[Cope]

123 4

56

A B

no 1,5-dienes!

Working Backwards: Recognizing Oxy-Cope Products

L. A. Paquette, J. L. Romine, H.-S. Lin, Tetrahedron Lett. 1987, 28, 31.

H H

HH

OMeOMe

O

C

H

HH

OMeOMe

HOH H

HH

OMeOMe

HOH H

HH

OMeOMe

HO

Working Backwards: Recognizing Oxy-Cope Products

L. A. Paquette, J. L. Romine, H.-S. Lin, Tetrahedron Lett. 1987, 28, 31.

12

3456

H H

HH

OMeOMe

O

C

H

HH

OMeOMe

HOH H

HH

OMeOMe

HOH H

HH

OMeOMe

HO6

12

345

12

34

56

Working Backwards: Recognizing Oxy-Cope Products

L. A. Paquette, J. L. Romine, H.-S. Lin, Tetrahedron Lett. 1987, 28, 31.

12

3456

H H

HH

OMeOMe

O

C

H

HH

OMeOMe

HO

H

HH

OMeOMe

HO

H H

HH

OMeOMe

HOH H

HH

OMeOMe

HO

H H

HH

OMeOMe

HOH H

HH

OMeOMe

HO

6

12

345

12

34

56

Working Backwards: Recognizing Oxy-Cope Products

L. A. Paquette, J. L. Romine, H.-S. Lin, Tetrahedron Lett. 1987, 28, 31.

[Cope]

12

3456

H H

HH

OMeOMe

O

C

H

HH

OMeOMe

HO

H

HH

OMeOMe

HO

H OMeOMe

HO

H H

HH

OMeOMe

HOH H

HH

OMeOMe

HO

H H

HH

OMeOMe

HOH H

HH

OMeOMe

HO

[Cope] [Cope]

6

12

345

12

34

56

H

H

OMeOMe

HOH

HH

OMeOMe

HO

Working Backwards: Recognizing Oxy-Cope Products

L. A. Paquette, J. L. Romine, H.-S. Lin, Tetrahedron Lett. 1987, 28, 31.

[Cope]

12

3456

H H

HH

OMeOMe

O

C

H

HH

OMeOMe

HO

H

HH

OMeOMe

HO

H OMeOMe

HO

MeO OMe

OH

H H

HH

OMeOMe

HOH H

HH

OMeOMe

HO

H H

HH

OMeOMe

HOH H

HH

OMeOMe

HO

[Cope] [Cope]

6

12

345

12

34

56

H

H

OMeOMe

HOH

HH

OMeOMe

HO

Further Practice Problems to Recognize Oxy-Cope Products

O

H

H

HIreland, J. Org. Chem. 1981, 46, 4863 Gadwood, J. Org. Chem. 1982, 47, 2268

O

Clive, Chem. Comm. 1997, 2157Leighton, J. Am. Chem. Soc. 1999, 121, 890.

Recommended