The development of ultra high-speed metal film deposition...

Preview:

Citation preview

  • Journal of the Korea Academia-Industrial cooperation SocietyVol. 18, No. 7 pp. 17-25, 2017

    https://doi.org/10.5762/KAIS.2017.18.7.17ISSN 1975-4701 / eISSN 2288-4688

    17

    1, 2, 3, 2*1 , 2 ICT, 3 BT

    The development of ultra high-speed metal film deposition system and process technology

    for a heat sink in digital devices

    Hyo Eun Yoon1, Seong Joon Ahn2, Dong Hwan Han3, Seungjoon Ahn2*1Department of Physics & Nano Science, Sun Moon University

    2Division of Mechanical and ICT Convergence Engineering, Sun Moon University3Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University

    LED OLED heat sink . Cu m Cu . Cu heating . . Cu 1000 /s 100 m ~2.0% .

    Abstract To resolve the problem of the temperaturerise in LED or OLED lighting, until now a thick metal film hasbeen used as a heat-sink. Conventionally, this thick metal film is made by the electroplating method and used as theheat-dissipating plate of the electronic devices. However, nowadays there is increasing need for a Cu metal film witha thickness of several hundred micrometers that can be formed by the dry deposition method. In this work, we designed and fabricated a Cu film deposition system where the heating element is separated fromthe ceramic crucible,which makes ultra-rapid deposition possible by preventing heat loss. In addition, the resulting induction heating alsocontributes to the high deposition rate. By tuning the various parameters, we obtained a 100-m thick Cu film whose heat conductivity is high and whose thickness uniformity is better than 2%, while the deposition rate is as high as1000 /s.

    Keywords : Heat sink, IVD, LED, Metal film, OLED, Ultra-high speed metal deposition

    *Corresponding Author : Seungjoon Ahn(Sun Moon Univ.)Tel: +82-41-530-22617 email: sjan@sunmoon.ac.kr Received April 6, 2017Accepted July 7, 2017

    Revised (1st June 20, 2017, 2nd July 6, 2017)Published July 31, 2017

    1.

    LED(Light-Emitting Diode)

    major . LED ~40%

  • 18 7, 2017

    18

    shift

    . (Organic Light Emitting Diode ; OLED) main stream OLED

    [1-3].

    . heat sink( ) substrate heat sink [4,5]. heat sink LED OLED

    Fig. 1 . LED OLED substrate glass 1 W/mK glass substrate OLED display 86C [6,7]. substrate . OLED

    .

    AMOLED TFT LED ,

    m Cu .

    Fig. 1. The heat sinks of the LED lighting.

    Cu 401 W/mK[8]

    substrate .

    CVD(Chemical Vapor Deposition) [9], sputtering [10], evaporation [11] quality ( nm/min) m Cu . [12] m

    OLED [13]. IVD(Inductive-Vaporized

    Deposition) m Cu , flexible OLED substrate 1000 /s .

    2.

    [14] source ( : 10-5 Torr) CVD sputtering (6 m/min ) [15]. IVD Cu heating ,

    [16]. evaporator sputter 1~2 m/min 6~7 m/min [17]. 100

  • 19

    m 10~15 min

    OLED , .

    Fig. 2. Design of the high-speed IVD-type deposition equipment.

    Fig. 2 IVD source . source 1, 2 1 1 2 source .

    heating . ~1000 /s . power power source melting

    . Fig. 2 ceramic housing graphite heating block

    power output output .

    Source melting substrate substrate

    . Source flange source substrate shutter

    . process

    .

    cooling block . water line bellows . cooling block 220~230C heating substrate .

    IVD source source .

    . graphite . 2 graphite . Graphite( 100 ppm, 1.8 kg/m3) test

    . graphite

    .

    source (W) .

  • 18 7, 2017

    20

    3.

    3.1

    parameter

    Fig. 3 recipe , . OLED , 100 m 1000

    parameter ~450 /s uniformity roughness . recipe parameter

    .

    -Base pressure : Torr-B 2 inch sapphire

    -Source to wafer : 250~350 mm-Output power : source ramping up

    Fig. 3. The basic recipe of the induction-heating high-speed deposition system.

    ~1000 /s source shutter low quality

    . power(5.0~6.0 kW)

    power source material melting

    . , ceramic housing graphite heating block power output output .

    Source wafer . Solid angle() ,

    .

    . source source target

    . Source wafer quality . Z-motion manipulate

    source substrate substrate substrate uniformity source substrate 200~250 mm . Z-motion manipulate Z-axis 140 mm . source substrate substrate . Table 1 source substrate substrate Fig. 4 Z-motion manipulate .

    Table 1.Temperature of the substrate according to the distance from the source.

    Distance (mm) Substrate Temperature(C)

    300 209

    220 265

    200 340

  • 21

    (a) (b)

    Fig. 4. (a) Design of the Z-motion manipulate and (b) the photograph of the installed one.

    Ceramic housing graphite heating block power output recipe 30 min ~173 m . Fig. 5 recipe 30 min .

    2 inch sapphire . sapphire Cu adhesion . sample

    . parameter .

    -Base pressure : Torr

    -Process pressure : Torr-A W 2 inch sapphire .

    -Source to wafer : 200~220 mm

    Fig. 5 ~1000 /s . source melting graphite

    W carbon graphite sheet .

    Fig. 5. The 173 m-thick film whose thickness being measured by digital micrometer. (deposition time : 30 min)

    3.2

    IVD

    Fig. 6 recipe , .

    Fig. 6. Standard deposition recipe of 95 m-thick film with deposition rate of 1000 /s.

    base pressure

    Torr, process pressure Torr . graphite W 4 inch Si wafer .

  • 18 7, 2017

    22

    Source wafer substrate source wafer

    source wafer 200~220 mm setting . Fig. 6 1000 /s 30 m, 95 m . 1000 /s, 95 m sample 1(1019) recipe 16 min , 30 m sample 2(1102) recipe 5 min sample . ~60 m

    .

    95 m sample 1(1019) Olympus(MX61) [18].

    Olympus(MX61) sample . sample resin( : EpoKwickTM, : Epoxy Resin 20-8136-128) hardener( : EpoKwickTM, : Epoxy Hardener 20-8138-032) 5:1 , 70C 2 . cutting polishing

    alumina (1.0 m, 0.3 m) , polishing . sample 25~1000 . 95 m sample 1(1019)

    Fig. 7 (a) wafer 5 point(Top, Center, Bottom, Left, Right) . uniformity () (-) (-) % 3% spec-in . Fig. 7 (b) sample 1(1019) . Fig. 7 (b)

    T(95.01 m), C(96.41 m), B(95.01 m), L(95.86 m), R(95.27 m) 95.51 m uniformity 0.9% ~995 /s .

    (a)

    (b)

    Fig. 7. (a) The points in a standard sample 1(1019) where the thickness were measured. (b) The photo of the thickness measurement using the Olympus(MX61) microscope.

    (Dual-beam Focused Ion Beam System) source Ga tip . source 30~50 kV source extractor 2 image [19].

    30 nm~60 m [20]. ~30 m sample 2(1102) sample

  • 23

    1(1019) wafer 5 point . Fig. 8 sample 2(1102) T(30.79 m), C(30.70 m), B(29.57 m), L(29.42 m), R(30.69 m) 30.15 m uniformity 1.8% . Sample 2(1102) 5 min 1005 /s sample 2(1102) 1000 /s .

    Fig. 8. Photos of the thickness measurement of the standard sample 2(1102) using the dual ion beam-focusing system.

    test batch to batch uniformity 0.8% .

    .

    4.

    LED , OLED Cu

    . OLED/LED evaporator sputter AMOLED TFT

    LED m Cu . Cu (, sputtering, e-beam) , OLED Cu IVD

    .

    , , . flexible target OLED (Organic LED) ,

    1000 /s , 10 /s

    . , OLED , ~80 m

    .

    References

    [1] S. J. Chung, J. H. Lee, J. W. Jeong, J. J. Kim, & Y. T. Hong, Substrate thermal conductivity effect on heat dissipation and lifetime improvement of organic light-emitting diodes, Applied Physics Letters, vol. 94, 25330, 2009.DOI: https://doi.org/10.1063/1.3154557

    [2] G. Vamvounis, H. Aziz, N. X. Hu, & Z. D. Popovic, Temperature dependence of operational stability of organic light emitting diodes based on mixed emitter layers, Synthetic Metals, vol. 143, no. 1, pp. 69-73, 2004. DOI: https://doi.org/10.1016/j.synthmet.203.10.014

    [3] C. Garditz, A. Winnacker, F. Schindler, & R. Paetzold, Impact of Joule heating on the brightness homogeneity of organic light emitting devices, Applied Physics Letters, vol. 90, no. 10, 103506, 2007.DOI: https://doi.org/10.1063/1.2711708

    [4] D. B. Tuckerman, & R. F. W. Pease, High-performance heat sinking for VLSI, IEEE Electron device letters, vol. 2, no. 5, pp. 126-129, 1981.

  • 18 7, 2017

    24

    DOI: https://doi.org/10.1109/EDL.1981.25367

    [5] X. Zhou, J. He, L. S. Liao, M. Lu, X. M. Ding, X. Y. Hou, & S. T. Lee, Real-time Observation of Temperature Rise and Thermal Breakdown Processes in Organic LEDs Using an IR Imaging and Analysis System, Advanced Materials, vol. 12, no.4, pp. 265-269, 2000.DOI: https://doi.org/10.1002/(SICI)1521-4095(200002)

    12:43.0.CO;2-L

    [6] J. R. Sheats, H. Antoniadis, M. Hueschen, & W. Leonard, Organic electroluminescent devices, Science, vol. 273(5277), 884, 1996. DOI: https://doi.org/10.1126/science.273.5277.884

    [7] Bing Dai, Jiwen Zhao, Victor Ralchenko, Andrey Khomich, Alexey Popovich, Kang Liu, Guoyang Shu, Ge Gao, Sun Mingqi, Lei Yang, Pei Lei, Jiecai Han, & Jiaqi Zhu, Thermal conductivity of free-standing CVD diamond films by growing on both nuclear and sides, Diamond and Related Materials, vol. S0925-9635, no. 16, 30274-6, 2017.

    [8] C. Zweben, Revolutionary new thermal management materials, Electronics Cooling, vol. 11, no.2, pp. 36-37, 2005.

    [9] J. Kong, A. M. Cassell, & H. Dai, Chemical vapor deposition of methane for single-walled carbon nanotubes, Chemical Physics Letters, vol. 292, no.4, pp. 567-574, 1998.DOI: https://doi.org/10.1016/S0009-2614(98)00745-3

    [10] H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, & H. Hosono, High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering, Applied Physics Letters, vol. 89, no. 11, 112123, 2006.DOI: https://doi.org/10.1063/1.2353811

    [11] S. E. Lee, & J. H. Lee, Copper Via Filling Using Organic Additives and Wave Current Electroplating, Journal of the Microelectronics and Packaging Society, vol. 14, no. 3, pp. 37-42, 2007.

    [12] B. Hwang, Y. J. Choi, H. B. Kim, & Y. R. Cho, Evaluation of Moisture Penetration Characteristics of Metal-Coated PET Film, Korean Institute of Science and Technology Conference abstract, vol. 1, pp. 351-351, 2010.

    [13] J. M. Seo, K. Y. Park, S. R. Lee, & C. Y. Lee, Quality Management of ITO Thin Film for OLED Based on Relationship of Fabrication and Characteristics, Journal of Control Robot System Society, vol. 14, no.4, pp. 336-341, 2008.

    [14] J. I. Jeong, & J. H. Yang, Trend and Prospect of Thin Film Processing Technology, Journal of the Korean Magnetics Society, vol. 21, no. 5, pp. 185-192, 2011.DOI: https://doi.org/10.4283/JKMS.2011.21.5.185

    [15] J. I. Jeong, & J. H. Yang, Trend and Prospect of Thin Film Processing Technology, Journal of the Korean Magnetics Society, vol. 21, no. 5, pp. 185-192, 2011.DOI: https://doi.org/10.4283/JKMS.2011.21.5.185

    [16] S. Y. Lee, S. Y. Kuack, M. J. Park, W. S. Kim, J. K. Lee, K. D. Choi, & H. K. Jung, Eddy Current Loss of the Cooling Plate According to its Shape for 600 kJ SMES, The Korean Institute of Electrical Engineers Conference Proceedings, vol. 1 pp. 132-133, 2007.

    [17] S. C. Hong, W. J. Kim, & J. P. Jung, High-speed Cu filling into TSV and non-PR bumping for 3D chip packaging, Journal of the Microelectronics and Packaging Society, vol. 18, no. 4, pp. 49-53, 2011.

    [18] J. B. Kim, H. S. Bae, K. H. Kim, S. W. Moon, G. J. Nam, & N. E. Kwon, Analysis of a processed sample surface using SCM and AFM, Korean Society of Precision Engineering, vol. 23, no. 4, pp. 52-59, 2006.

    [19] S. H. Lee, J. K. Kim, & D. G. Kim, Diamond-like Carbon Coatings Prepared by Linear Ion Source with 20 kHz Discharge, Korean Society of Surface Engineering Conference abstract, vol. 1, pp. 262-262, 2012.

    [20] K. W. Kim, S. G. Baek, B. J. Park, H. W. Kim, & I. J. Rhyu, Applications of Focused Ion Beam for Biomedical Research, Applied Microscopy, vol. 40, no. 4, pp. 177-183, 2010.

    (Hyo Eun Yoon) []

    2011 2 : ()2016 8 : ()2016 9 :

    2017 4 : ICT

    , , , X-ray gun

    (Seong Joon Ahn) []

    1987 2 : ()1989 2 : ()1992 8 : ()1992 9 :

    1996 5 : 2002 3 : ICT

    , , ,

  • 25

    (Dong Hwan Han) []

    1987 2 : ()1989 2 : ()1993 2 : ()1993 8 1994 2 :

    1993 3 : BT

    (Seungjoon Ahn) []

    1985 2 : ()1989 2 : ()1993 2 : ()1989 2 1997 2 :

    1993 3 : ICT

    annealing, , ,

    /ColorImageDict > /JPEG2000ColorACSImageDict > /JPEG2000ColorImageDict > /AntiAliasGrayImages false /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict > /GrayImageDict > /JPEG2000GrayACSImageDict > /JPEG2000GrayImageDict > /AntiAliasMonoImages false /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict > /AllowPSXObjects false /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputCondition () /PDFXRegistryName (http://www.color.org) /PDFXTrapped /Unknown

    /Description >>> setdistillerparams> setpagedevice

Recommended