The the Cu oxidation state on copper oxide...

Preview:

Citation preview

The role of the Cu oxidation state on CO2 reduction on copper oxide 

surfacesThuy‐My Le

Department of Chemical and Biomolecular EngineeringJohns Hopkins University

Need for alternative fuels

Hubbert’s Prediction of Peak Oil

•It is predicted for oil, which is used for electricity generation and fuel, to peak in the year 2020•CO2 is a harmful product of the combustion of fossil fuels.

2

Earth, M. World total CO2 emissions.  2010  [cited; Available from: http://www.climatechangeconnection.org/Emissions/WorldtotalCO2emissions.htm.

Hubbert, M.K., Energy from Fossil Fuels. Science, 1948. 108(2813): p. 589‐590

Pustovaya/iStockphoto, A. Greenhouse gas leaves message in a bottle.   [cited; Available from: http://www.sciencemuseum.org.uk/antenna/wineCO2/images/CO2‐pollution.jpg.

Methanol economy

Benefits•Liquid form allows for feasible storage and transportation.• Is an intermediate to other chemicals• Can be converted into dimethyl ether and be used in place of diesel fuel. 

•Emits relatively less CO2• Methanol can be mix with gasoline to make M85, which emits less CO2 than regular gasoline. 

•No need for large reconstruction of infrastructure•Methanol can be produced by the reduction of CO2

Problems• CO2 reduction electrochemical synthesis is an uphill reaction that requires a stable catalyst. 

3

Westenhaus, B. Methanol Structure. Brian Westenhaus 2010  [cited; Available from: http://newenergyandfuel.com/http:/newenergyandfuel/com/2008/05/08/is‐methanol‐the‐up‐and‐coming‐alcohol‐for‐fuel/methanol‐structure/.

Le, M., et al. Electrochemical Reduction of CO2 to Methanol at Oxidized Copper Electrodes. 2010. University of Florida.

Current experimental research

0    

1/9

1    

10    

100    

‐2 ‐1.8 ‐1.6 ‐1.4 ‐1.2 ‐1 ‐0.8

CH3OH (µmol cm

‐2  h

‐1)

V (SCE)

Oxidized CuAnodized CuElectrodeposited Cu

CO2

e‐

CH4 H2O

O2

H+H+

e‐

•Electrodeposited Cu seems to be the best catalyst. •The amount of methanol is positively correlated with the stability of Cu(I) on surface. 

4

cathode anode

‐ +

Our objective

• What are the basic mechanisms of CO2reduction?

• Why does Cu(I) compared to Cu(II) provides a better catalysts?

5

Materials and methods 

Scientific approach: computational modeling of molecule adsorption on copper oxide surfaces

Method: Density functional theory (DFT)•No experimental input needed•Uses Schrödinger’s equation to predict outcomes

Materials: oVienna Ab initio Simulation Package (VASP)

6

Possible mechanisms

CO2 (g)???CH3OHCO2(g)  CO2(a)   [1]

OCOH(a)  OC(a) + OH(a)   [2]CO2(a)  CO(a) + O(a)    [3]

CO2

e‐

CH4 H2O

O2

H+H+

e‐

7

‐ +

cathode anode

Procedure

• Create surfaces for CuO and Cu2O by implementing low Miller indices

• Adsorb CO2 and COOH on the surfaces• Adsorb products individually to see if splitting CO2  or COOH on the surface is favorable

8

Bulk structuresCu(I) vs Cu(II) with different Miller 

indices

Cu2O(001) and Cu2O(111)Bulk Structure

CuO (001) and CuO (111) Bulk Structure

Cu (I)Cu (II)

9

a = 4.3069 Å  (4.27 Å)  a = 4.7618 Å  (4.6833 Å) b = 3.4795 Å  (3.4208 Å)c = 5.1265 Å  (5.1294 Å)β = 99.5˚ (99.567˚) 

Islam, M.M., et al., Journal of Molecular Structure‐Theochem, 2009. 903(1‐3): p. 41‐48.

Brese, N.E., et al., Journal of Solid State Chemistry, 1990. 89(1): p. 184‐190.

Bare CuO(001) surfacesO‐terminatedCu‐terminated

Side View

Top View

10

Bare slab Bare slab VS. Bare slab Bare slab

CO2 CO O

∆E = (ECO2/slab + Eslab) – (ECO/slab + EO/slab)

By above definition if ∆E < 0 the reactants are favored and the reaction is endothermic (obviously the inverse holds)

Adsorption energy

11

OCOH(a)  OC(a) + OH(a)   [2]CO2(a)  CO(a) + O(a)    [3]

CO adsorbed on O‐terminated CuO (001)

Position 1(desorbed)

Position 2(final)

Position 3(desorbed)

12

CO2 / CuO(001) Cu‐terminated

E0=‐123.54 eVE0= ‐147.12 eV

E0= ‐141.42 eV E0=‐131.43  eVΔE = (ECO2/slab + Eslab) – (ECO/slab + EO/slab)

Δ E = 2.19 eV

Slab

CO/Slab O/Slab

CO2 (a)  CO (a) + O (a)

CO2/Slab

13

Eads = 0.59 eV/CO2

COOH / CuO(001) Cu‐terminated

E0= ‐123.54 

E0= ‐141.42 eV E0= ‐136.28 eV

E0= ‐151.78 eV

Δ E = (ECOOH/slab + Eslab) – (ECO/slab + EOH/slab)Δ E = 2.38 eVOCOH (a)  OC (a) + OH (a)

SlabCOOH/Slab

CO/Slab OH/Slab

14

Eads = 4.11 eV/COOH 

Summary of reactions 

15

∆E = (ECO2/slab + Eslab) – (ECO/slab + EO/slab)

By above definition if ∆E < 0 the reactants are favored and the reaction is endothermic (obviously the inverse holds)

Though other adsorbate structures were found, the most favorable structures were used for comparisons. 

∆ ECu2O(100)

Cu term

Cu2O(100)O term

Cu2O(111)

Cu term

Cu2O(111)O term

CuO(001)

Cu term

CuO(001)O term

CuO(111)

Cu term

CuO(111)O term

CO2 (g) CO2 (a) ‐0.55 1.14 2.81 0.94 0.59 ‐0.24 0.77 **

OCOH (a) CO (a) + OH (a) ‐ 0.5  ‐ 3.11  ‐‐ ‐‐ 2.38 ‐3.17 ‐‐ ‐‐

CO2 (a) CO (a) + O (a) 2.78 ‐3.51  0.26 ‐5.96 2.19 ‐2.69  1.42 ‐1.36

Conclusion

Results •Our results are coherent with experimental results. Cu (I) oxides are more favored than Cu (II) Oxides•OCOH(a)  OC(a) + OH(a)  is not a viable mechanism because OCOH does not adsorb to the surface.

Future Work• We can not claim that DFT results is an exact representation of CO2reduction but it does provide significant insight. 

•Experimentalists can do further testing to confirm our results.   •Cu2O erodes with time and is not an efficient catalyst

•Possible alternatives include Cu on ZnO•Prior DFT work can be done on Cu/ZnO surfaces to see whether the surface is worth experimental investment

16