Tier II Results forMultimedia Risk Assessment of Biodiesel ... · Tier II Results forMultimedia...

Preview:

Citation preview

Tier II Results forMultimediaRisk Assessment of Biodiesel:

Relative Mobility,Biodegradation, and Aquatic

Toxicity8 December 2010 MMRA

Workshop

TR Ginn1, ML Johnson2, KM Scow3, J Miller4, L Rastegarzadeh1, T Hatch1, AEpple1, V Nino1, T Schetrit1, T Barkouki1, D Rice5, T McKone6

1 UC Davis Civil & Environmental Engineering2 UC Davis Aquatic Ecosystems Analysis Laboratory

3 UC Davis Department of Land, Air, and Water Resources4 Aquascience Inc., Davis CA

5 Consultant to UC6 UC Berkeley, Environmental Health Sciences

Conceivemodel

Tier 1PreliminaryReview

Tier 2 MultimediaRisk AssessmentDesign Review

Tier 3Final MultimediaRisk Review

- Define framework and approach- Identify information needs and gaps- Peer review

- Experimental designdeveloped and submitted

- Design peer reviewed,feedback provided for Tier 3

- Final report is used as the basis forrecommendations submitted to theEnvironmental Policy Council

- Final report is peer reviewed

Multimedia Risk AssessmentTier 1Tier IITier III

Multimedia Risk Assessment1

Tier 1Tier II2

Tier IIITier 1PreliminaryReview

Tier 2 MultimediaRisk AssessmentDesign Review

Tier 3Final MultimediaRisk Review

- Define framework and approach- Identify information needs and gaps- Peer review

- Experimental designdeveloped and submitted

- Design peer reviewed,feedback provided for Tier 3

- Final report is used as the basis forrecommendations submitted to theEnvironmental Policy Council

- Final report is peer reviewed

1 http://www.arb.ca.gov/fuels/multimedia/multimedia.htm2 http://www.arb.ca.gov/fuels/diesel/altdiesel/biodiesel.htm

• Mobility- Side-by-side infiltration in 2D “ant farm” flow cells

• Biodegradation Tests- Microcosm respirometry in soil slurry, 29 day

• Aquatic Toxicity- Suite of freshwater/estuarine toxicity tests

Multimedia Risk Assessment1

Tier II2

Experiments Performed

1 http://www.arb.ca.gov/fuels/multimedia/multimedia.htm2 http://www.arb.ca.gov/fuels/diesel/altdiesel/biodiesel.htm

!"#$%&'()'*+,-.+#/"0(1"/,-'( ( ( ( (

( ( ( 2$$-/-3"/-&#(

45*+( 6++$7/&89( 4&/"07( :&#+( ;-&+'/+#$(

(( (( (( <( =>"#/-/5( <( =>"#/-/5(

;?@@( 2#-."0AB"/( C( D( E@(.FG/+7/( D( E@(.FG/+7/(

(( (( (( (( (( (( ((

;?@@( !&5( D( ( ( D( E@(.FG/+7/(

(( (( (( (( (( (( ((

;H@( 2#-."0AB"/( D( ( ( D( E@(.FG/+7/(

(( (( (( (( (( (( ((

;H@( !&5( D( ( ( D( E@(.FG/+7/(

(( (( (( (( (( (( ((

IF!J( *+/,&0+>.( ?E( ?E( E@(.FG/+7/( ( (

(( (( (( (( (( (( ((

!"#$%()'*+,-.+#/7(-#K&0K+(-#80>$+(7-$+(%5(7-$+(8&.*",-7&#(%+/L++#(IF!J("#$((

;-&$-+7+0(L-/M-#(/M+(7".+(7"#$%&'(B&,(8&#7-7/+#85(&B(7"#$(8&.*"8/-&#N(

(

Mobility

Fuel Blends

• Image analysis of biodiesel vertical infiltration in Sandbox• 30x20x2cm, #20 (coarse) sand, water table• Soy- and Animalfat-based 100% and 20% blends, 1 additive

Mobility

• Sandbox preparation - Wet-pluviated sand - Drain to water table - simultaneous 50mL ULSD#2 and biodiesel side-by-side, both dyed

• Data collected - infiltration rate in vadose zone - redistribution - lens form & surface area, on water table

Mobility

• Soy B20 least different

Sample Results Final Lenses

Soy B20a CARB ULSD#2

Mobility

• Animalfat B100 strongest effect - similar traveltimes - Less lateral dispersion - thicker, deeper lens - more residual, less sfc area

Sample Results Final Lenses

AF B100a CARB ULSD#2

Mobility

• Minor differences in traveltimes• AF B100a only shows

Moderate differences - thicker lens formation - more residual

Summary

Mobility

• Minor differences in traveltimes• AF B100a only shows

Moderate differences - thicker lens formation - more residual• Interfacial Tensions1 (mN/m):

ULSD: 7.4Soy (B20/B100): 8.5/12.0AF (B20/B100): 15.0/19.5

• Viscosity1

Summary

Soy

Animal Fat

1.Yang et al., ULSD/Biodiesel blend and its effect on fuel/ water separation, Amer.Filtration & Separation Soc. Annual Conf., May 19-22 (2008), Valley Forge, PA

• 29-day Respirometry using soil slurry inoculum - Soy- and Animalfat-based 100% and 20% blends, 2 additives• Microcosm preparation - 250 mL flask that consists of 200 ml mineral medium - 2 g soil (Yolo silt loam) as bacterial inoculums - 5uL of test substrate• For each fuel type:

- triplicate batch- one sterilize control (1% sodium azide) - showed no CO2.

Biodegradation Tests

Fuel Blends

Biodegradation Tests

!"#$%&'(#%)*(#+,-#./%

0#12+,(/,3.% %% %% 455+#6,7/,3.%%

0,#1#$% 89:0%

:3'%5,3;,#1#$%<=>%5$#.;%?%5,3#*/#.;% :3'%@A<=% 4%

4.,-7$%B7/%5,3;,#1#$%<=>%5$#.;%?%5,3#*/#.;% 4!%@A<=% 4%CD%

:3'%5,3;,#1#$%<=>%5$#.;%A.3%7;;,/,6#1%% :3'%@A<=%%

0,#1#$% 89:0%

:3'%5,3;,#1#$%D==>%A%.3%7;;,/,6#1% :3'%@AD==%%

4.,-7$%B7/%5,3;,#1#$%<=>%5$#.;%A%.3%7;;,/,6#1% 4!%@A<=%%C<%

4.,-7$%B7/%5,3;,#1#$%D==>%A%.3%7;;,/,6#1% 4!%@AD==%%

0,#1#$% 89:0%

:3'%5,3;,#1#$%<=>%5$#.;%?%5,3#*/#.;%?%5,32,;#% :3'%@A<=% 44%

4.,-7$%B7/%5,3;,#1#$%<=>%5$#.;%?%5,3#*/#.;%?%5,32,;#% 4!%@A<=%44%CE%

:3'%5,3;,#1#$%D==>%?%5,3#*/#.;%?%5,32,;#% :3'%@AD==%%44%

0,#1#$% 89:0%

4.,-7$%B7/%5,3;,#1#$%D==>%%?%5,3#*/#.;%?%5,32,;#%

4!%@AD==%4%

4%

4.,-7$%B7/%5,3;,#1#$%D==>%?%5,3#*/#.;% 4!%@AD==%

CF%

:3'%5,3;,#1#$%D==>%?%5,3#*/#.;% :3'%@AD==%

%

Results

Biodegradation Tests

ULSDSoy B-20Soy B-20AAF B-20A

ULSDSoy B-20AAAF B-20AASoy B-100AA

ULSDSoy B-100AF B-20AF B-100

Biodegradation Tests

29Day Cumulative degradation percentages

ULS

D

AF B

-20

Soy B

-20 A

ULS

D

ULS

D

AF B

-100

AF B

-20 AA

AF B

-20 A

Soy B

-20

Soy B

-20 AA

Soy B

-100

Soy B

-100 AA

• All fuel blends more readilydegrable than ref. fuel

• Soy-based blends somewhatmore degrable than Animalfat-based blends

• 20% biodiesel blendssomewhat more degrable than100% biodiesel

• Additives effect are minor

Biodegradation Tests

Summary

• 6 fuel blends• 3 freshwater and 3 estuarine organisms• 6 dilutions plus a control per species/fuel• Using published USEPA chronic toxicity

testing protocols• “100% solutions” produced using the

“slow stir” method, defining equilibriumsolubility conditions

• All tests met protocol QA/QCrequirements

Aquatic Chronic Toxicity Tests

Aquatic Chronic Toxicity Tests

6 Blends in addition to reference fuel (ULSD) - Animalfat biodiesel (100% 20%, 20% w/additive) - Soy biodiesel (100% 20% 20% w/additive)

100% solubility solution by slow stir method - solutions 100%, 50%, 25%, 10%, 5%, and 1%, w/stock # 2 samples/test archived frozen for later analysis # Replicates for particular combinations.

Interpolate among dilutions to determine EC25 - “Toxicity” as TU = 100/EC25 # TU<1 no effects # TU = 1 effects seen only at 100% solution # TU = 100 effects seen at 1% solution

Details

!"#$%&'(#)% *+,#%

!""#$%&'()*+,-$./&0/($12343&$ %+.1$

!""#$.,5$62,72343&$ .,5$6*!""$

8"#$.,5$62,72343&$9$$

:"#$%+.1$;-<-=$

.,5$ 6*8"$

$

8"#$.,5$9$:"#$%+.1$;-<-=$

)>3?737$-2'@$)772'2A3B$

.,5$6*8"C$

!""#$C?2>)&$D)'$62,72343&$ CD$6*!""$

8"#$C?2>)&$D)'$62,72343&$9$$

:"#$%+.1$;-<-=$

CD$ 6*8"$

$

8"#$C?2>)&$D)'$9$:"#$%+.1$

;-<-=$)>3?737$-2'@$)772'2A3$

CD$6*8"C$

$

Aquatic Chronic Toxicity Tests

Fuel Blends

Aquatic Chronic Toxicity Tests

Test Species

!"#$%&'() *$+#),-$./$+) *$+#)*(-$) *$+#)

012-&/1#+)

3$-4/."#$+) *$5-6)

!"#$%&'(#") *"##+)',-'#)

.!"#$%&'($)'*+,+- /)

012%34")

$('(56)

7#,,)-"3&(%) 89:999)6#,,$;"#<)

=)"#<$;63+6)

>?)@)8)A7)

) B'(#")C,#')

.."#/+0(% /)

D2E'F)E'5,F)

"#+#&',)

G4"H5H',)

I#<"3E46(53+)

8)C,#';"#<)

89)"#<$;63+6)

>?)@)8)A7)

) !'(%#'E)J5++3&)

.1"#&')-23%4/)

D2E'F)E'5,F)

"#+#&',)

G4"H5H',)

*"3&(%)

89)C5$%;"#<)

=)"#<$;63+6)

>?)@)8)A7)

K$(4'"5+#;)

L'"5+#)

I#E)'M',3+#)

.5"#'+624$2*4/)

=N2%34")

$('(56)

O3"J',)$%#,,)

E#H#,3<J#+()

?)"#<$;63+6)

>999)#JM"F3$;"#<)

8?)@)8)A7)

) LF$5E)$%"5J<)

.7"#0%8(%9 )

D2E'F)E'5,F)

"#+#&',)

G4"H5H',)

*"3&(%)

!#64+E5(F)

?)C5$%;"#<)

N)"#<$;63+6)

>?)@)8)A7)

) P3<$J#,()

.:"#%66(*(4/)

D2E'F)E'5,F)

"#+#&',)

G4"H5H',)

*"3&(%)

?)C5$%;"#<)

?)"#<$;63+6)

>9)@)8)A7)

)

• ULSD - low but detectable toxicity on mysid growth (1.0 TU) andCeriodaphnia reproduction (1.8 TUc) only.

• No unadditized Animalfat or Soy Biodiesel blends produceddetectable toxicity to the mysid, topsmelt or fathead minnow.

• Animal Fat and Soy B-100 and B-20 mixtures caused toxicity toalgae cell growth, abalone shell development, and Ceriodaphniasurvival and/or growth.

• Except for algae, the additized Biodiesel B-20 test materials weresubstantially more toxic than the corresponding unadditizedmaterial.

Aquatic Chronic Toxicity Tests

Results

Aquatic Chronic Toxicity Tests

Examples

Red Abalone (Haliotis Rufecens) shell development

Aquatic Chronic Toxicity Tests

Examples

Water flea (Ceriodaphnia dubia) survival and reproduction

Aquatic Chronic Toxicity Tests

Summary Toxicity with additive

Toxicity apparent in all 6 species per growth endpoint

Aquatic Chronic Toxicity Tests

Summary

• Biodiesel blends are significantly more toxic than CARB ULSD#2 - algae cell growth - abalone shell development - Ceriodaphnia survival and growth

• Biodiesel 20% blends with antioxidant additive were substantiallymore toxic than the corresponding unadditized blend

- abalone shell development - Ceriodaphnia survival and growth

Tier II for Biodiesel Blends Tested

Summary• Mobility

- AFB100a shows thicker lens, more residual - due to higher viscosity, IFT

• Biodegradation - All biodiesel blends more readily degrable than ULSD

- Soy-based blends, or 20%s, somewhat more degrable - Additives effect are minor

• Aquatic Toxicity- Biodiesel blends are more toxic than ULSD#2

- Biodiesel 20% blends with antioxidant additive are moretoxic than the corresponding unadditized blend

Tier II for Biodiesel Blends Tested

Summary• Mobility

- AFB100a only shows smaller lens, more residual

• Biodegradation - All biodiesel blends more readily degrable than ULSD

- Soy-based blends, or 20%s, somewhat more degrable - Additives effect are minor

• Aquatic Toxicity- Biodiesel blends are more toxic than ULSD#2

- Biodiesel 20% blends with antioxidant additive are moretoxic than the corresponding unadditized blend

Recommended