Tokyo Institute of Technology, Japan Yu Nishiyama and Sumio Watanabe Theoretical Analysis of...

Preview:

Citation preview

Tokyo Institute of Technology, Japan

Yu Nishiyama and Sumio Watanabe

Theoretical Analysis of Accuracy of Gaussian Belief Propagation

Background

Belief propagation (BP)

The algorithm which computesmarginal distributions efficiently

),,,,()( 21

1

dxxx

ii xxxpxpdi

Marginal distribution:

requires huge computational cost.

1d

Variety of Research Areas

(i) Probabilistic inference for AI

(ii) Error correcting code (LDPC, Turbo codes)

(iii) Code division multiple access (CDMA)

ex.

(iv) Probabilistic image processing

000101 000111 000101correctingnoise

degradeimage

restoredimage

restore

Properties of BP & Loopy BP (LBP)

Tree-structured target distribution

  Exact marginal probabilities

Loop-structured target distribution

Convergence?Approximate marginal probabilities

Y. Weiss,”Correctness of belief propagation in graphical models witharbitrary topology”, Neural Computation 13(10), 2173-2200, 2001.

T. Heskes, ”On the Uniqueness of Loopy Belief Propagation Fixed Points”,Neural Computation 16(11), 2379-2414, 2004.

Ex.

PurposeWe analytically clarify the accuracy of LBP when the target distribution is a Gaussian distribution.  

What is the conditions for LBP convergence?

How close is the LBP solution to the true marginal distributions?

K. Tanaka, H. Shouno, M. Okada, “Accuracy of the Bethe approximation for hyperparameter estimation in probabilistic image processing”,J.phys. A, Math. Gen., vol.37,  no.36,  pp.8675-8696, 2004.

In Probabilistic image processing

Table of Contents

・ BP & LBP

・ Gaussian Distribution

・Main Results

(i) Single Loop

(ii) Graphs with Multi-loops

・ Conclusion

Graphical Models

Bij

jiij xxWZ

p}{

),(1

)(x

Target distribution

1x2x

4x 5x

6x

12W

23W

34W

35W56W

Marginal distribution

3\ }{

33 ),(1

)(x Bij

jiij xxWZ

xpx

53 ,\ }{

5335 ),(1

),(xx Bij

jiij xxWZ

xxpx

3x

BP & LBP

ix jxijW

)()()(

iiNk

ikii xMxp

)()(),(

\)(\)(jjk

ijNkij

jiNkiikjiij xMWxMxxp

Marginal distribution

ix

1kx

2kx

)(iN)(iN )( jN

1kx 1k

x

How are messages decided?)( jji xM

)( jji xM Messages are decided by the fixed-points

of a message update rule:

.)(),()(}\{)(

)()1(

jiNk

itikji

xijj

tji xMxxWxM

i

1x 2x

4x 3x

)(21

tM

)(23

tM

)1(42

tM

)(43

tM

)(41

tM )1(24

tM

)1(32

tM

)1(34

tM

)(21

tM

)(24

tM

)(34

tM

)1(23

tM )(32

tM

)1(43

tM

)1(21

tM

)(14

tM )1(41

tM

)(12

tM )1(12

tM

)(41

tM )(42

tM )(42

tM

)(43

tM

)1(14

tM

)(23

tM

)(24

tM If it converges 1x 2x

4x 3x

*12M*

21M

*32M

*23M

*43M*

34M

*41M

*14M *

24M

*42M

a fixed-point

Gaussian Distribution

jxix

mx

lx)(tjiM

)(tijM

)(tilM

)(timM

)(til

)(tij

)(tim

)(tji

Messages: ),0()( )()( tjij

tji NxM

}\{)(

)(

2)1(

~~

jiNk

tikii

ijii

tji s

ss

Update rule:

Target distribution:  ),( SN 0 (     Inverse covariance matrix):S

}\{)(

)()1( )(),()(jiNk

itikji

xijj

tji xMxxWxM

i

Fixed-Points of Messages 1x

2x

3x

dx

Single loop

When a Gaussian distribution forms a single loop, the fixed-points of messages are given by  

,2 1,1

2,12,11,1,*1

ii

iiiiiiiiii

Dss),,0()( *

11*

1 iiiii NxM

Theorem1 

,det4)1()(det 123122 SsssSD d

d

,2 1,1

2,12,11,1,*1

ii

iiiiiiiiii

Dss),,0()( *

11*

1 iiiii NxM

where   }{ , ji are the cofactors.  

LBP Solution

Theorem 2 

The solution of LBP is given by  

,det

4)1(1

det 12312*

S

sssS dd

iii

),,0( **

ii Np

),,( *1,

*1, iiii SNp 0 ,

1,1

1,1,

1,,

1,

*1,

ii

iiii

iiii

ii

ii Es

sE

S

where .2

det1,1,1,

iiiiii s

DSE

Intuitive Understanding

S

sssS dd

iii det

4)1(1

det 12312*

LBP Solution True

ii

S

det

12s 12s1x 2x

4x

23s41s1x 2x

4x

41s023 s

Loop Tree

Loopy Belief Propagation Belief Propagation

3x3x34s 34s

Accuracy of LBP

.det

4)1( 12312

S

sss dd

The Kullback-Leibler (KL) distances are calculated as 

,1log2

11

2

1

2

1)||( * ii ppKL

where is given by 

Solution of LBP   True marginaldensity   

.1det*

ii

i

SConvergence condition is  1 since 

Theorem 3 

},,,1{ di

Graphs with Multi-Loops

1x2x

3x

4x 5x

6x

Multi-loops 

How about the graphshaving arbitrary structures? 

We clarify the LBP solution at small covariances.

We derive the expansions   ,sw. r. t. where inverse  .diagonaloffdiagonal sSSS covariance matrix is 

A Fixed-Point of Inverse Variances

A fixed-point of inverse variances satisfies the following system of equations:

,4

12

2||22

iNj ij

ji

i

iii

sssN }.,,1{ di

The solution of the system is expanded as

),()( 422

)(1

sOss

sss

jj

jid

ijiii

}.,,1{ di

Theorem 4 

Comparison with true inverse variances

Expansions of LBP solution are

),()( 422

)(1

sOss

sss

jj

jid

ijiii

True inverse variances are

}.,,1{ di

),(det 432

2

)(1

sOsss

ss

Si

jj

jid

ijii

ii

}.,,1{ di ],})(){()([3

3131iioiidod

iii SStrSStrs

Accuracy of LBP

Theorem 5 

The Kullback-Leibler (KL) distances are expanded as

),(4

)||( 762

2* sOs

sppKL

ii

iii

Solution of LBP   True marginaldensity   

where 

],})(){()([3

3131iioiidod

iii SStrSStrs

}{ i are 

},,,1{ di

}.,,1{ di

Conclusion We analytically clarified the accuracy of

LBP in a Gaussian distribution.

(i) For a single loop,  we revealed the parameter that       determines the accuracy of LBP and the condition 

that      tells us when LBP converges.   (ii) For arbitrary structures,  we revealed the 

expansions of     LBP solution at small covariances and the accuracy.  

    These fundamental results contribute to understanding the theoretical properties underlying LBP.

Recommended