Topological spin liquids with PEPSnqs2014.ws/archive/Presen...Topological spin liquids with PEPS...

Preview:

Citation preview

Topological spin liquids with PEPS

Didier Poilblanc

Laboratoire de Physique Théorique, Toulouse

• Some motivations: «trivial» vs «topological» spin liquids (on frustrated lattices)

• Simple physical ansatze using Projected Entangled Pair States

• «Holographic» framework : bulk-edge correspondence, entanglement Hamiltonian & detecting topological order from the PEPS

jeudi 13 novembre 14

COLLABORATORS

Norbert Schuch, DP, J. Ignacio Cirac, and David Pérez-García, Phys. Rev. B 86, 115108 (2012)DP, Norbert Schuch, David Pérez-García, and J. Ignacio Cirac, Phys. Rev. B 86, 014404 (2012)

DP, Norbert Schuch, J. Ignacio Cirac, Phys. Rev. B 88, 144414 (2013)DP and Norbert Schuch, Phys. Rev. B 87, 140407 (2013)

Norbert Schuch, DP, J. Ignacio Cirac, and David Perez-GarciaPhys. Rev. Lett. 111, 090501 (2013)

DP, Philippe Corboz, Norbert Schuch, J. Ignacio Cirac, PRB 2014

jeudi 13 novembre 14

Exotic «spin liquids» beyond the

«order parameter» paradigm

Topological order can also be detected by entanglement measures !

* no spontaneous broken symmetry* no local order * Topological order

X. G. Wen

- Do they exist in materials ? in simple models ?

- How to detect them ?

GS degeneracy (depends on topology of space)

jeudi 13 novembre 14

The many-body spectrum of a topological liquid

{

EExcitations are fractional (created by pairs)

Degeneracy from «topological order»

jeudi 13 novembre 14

Best candidate : spin-1/2 Heisenberg QAF on the Kagome lattice !

S. Yan, D.A. Huse & S. White, Science 2011

S. Depenbrock, I.P. McCulloch & U. Schollwock, PRL 2012

topological features ?

~S1 · ~S2

1

2

S = 1/2

Numerical «evidence» (DMRG) for a (gapped) spin liquid:

jeudi 13 novembre 14

Materials realizing a spin-1/2 Kagome QAFM

e.g. experiments by C. Broholm (MIT), Z. Hiroi (ISSP), P. Mendels (Orsay)...

jeudi 13 novembre 14

Low-energy spectrum N=36 sites

Sindzingre & Lhuillier, EPL 2009

Exponential # of singlets

Lecheminant et al., PRB 97

Jiang et al., PRL 2008Finite spin gap ?

jeudi 13 novembre 14

RVB spin liquid:

S = 0

spin-1/2 RVB

Equal-weight superposition of NN singlet coverings

P. Fazekas and P.W. Anderson Philosophical Magazine 30, 423-440 (1974)

Topological liquidHasting-Oshikawa-LSM theorem

jeudi 13 novembre 14

Two «types» of cylinder boundaries

«even» «odd»Gv = +1 Gv = �1

s s̄

cylinder geometry

jeudi 13 novembre 14

Eigenstates of a «Wilson loop» operator

no vison flux:

Z2 vison flux:

+�

wv = +1

wv = �1

cylinder geometry

jeudi 13 novembre 14

s s̄

v v

Gv = +1

Gv = �1

Wv = +1

Wv = �1 same class asKitaev’s Toric Code (fixed point )

spin liquid : topological GS inserting «spinons» and «visons»

Z2

⇠ = 0

jeudi 13 novembre 14

HAKLT =X

hi,ji

PSi+Sj=4ij

S=2... vs «Trivial» insulator

The GS is unique !

The Affleck-Kennedy-Lieb-Tasaki spin liquid

jeudi 13 novembre 14

Projected Entangled Pair States (PEPS) construction

Ex.: the S=2 AKLT

|S↵= |01

↵� |10

D=2 spin-1/2 virtual states

Project onto physical subspace :

local tensor

d = 2S + 1

jeudi 13 novembre 14

The spin-1/2 RVB can also be written as a PEPS !

(D=3)

Project onto physical subspace S=1/2 (d=2)

1/2� 0virtual states:

PEPS tensor

jeudi 13 novembre 14

The PEPS as a variational ansatz

I. CiracF. Verstraete

G. Vidal↵,� = {1, . . . , D}

dimension of auxilary (or virtual) space

i = {1, · · · , dphys}

“contract” product of tensors

Coefficients of the wavefunction

C{i1,1,...,iNv,Nh}

| ↵=

XCi1,i2,...,iN |i1, i2, ..., iN

N = NvNh

jeudi 13 novembre 14

⌦ |

↵ «Transfer Operator»

Build «double layer» tensor network by contracting physical variables

if D small enough exact contractions possible...

Iterate product of TM’s to build infinite cylinder

D2Nv ⇥D2Nv matrix

jeudi 13 novembre 14

use simple PEPS ansatz to investigate physical (e.g. topological, etc...) properties

optimize PEPS to construct competitive ansatz for microscopic models

Two possible «routes» :

G. Vidal, T. Xiang, R. Orus, P. Corboz,... & many more

jeudi 13 novembre 14

Simple rewriting for Kagome lattice :

map on a square lattice

«defect triangle»dphys = 8

jeudi 13 novembre 14

Improving the RVB / PEPS ...

«defect triangles» cost energy !

dressing by introducing NNN singlets

(Zeng & Elser 90’)

The «Simplex RVB»

jeudi 13 novembre 14

Easy formalism to construct all topological GS !

(+)e

(�)e

(+)o

(�)o

orthogonal in the limit of infinite cylinders(Nh = 1)

= Z

jeudi 13 novembre 14

diag blocks

Off-diagonal blocks

«mixed» TM

Misguich et al. PRL ‘02

! 1

< 1

RK RVB

jeudi 13 novembre 14

Finite size scaling of RVB energy

YC16 YC12 YC8 cylinders

s s̄

v v

Gv = +1

Gv = �1

Wv = +1

Wv = �1

dynamical fluctuations of vison/spinon pairs

jeudi 13 novembre 14

Gs energy splittings (semi-log scale)

Very short coherence lengths

(Nh ! 1)

⇠ < 1 unit cell

YC20 infinite cylinder

(NN RVB)

(NN RVB)

(Simplex RVB)

(Simplex RVB)

jeudi 13 novembre 14

Holon doping: could a d-wave superconductor emerge (on the square lattice)

?

A Little digression:

What happens under doping the RVB state

?

Spinon doping might be relevant to describe field induced phases...

jeudi 13 novembre 14

RVB superconductors relevant for high-Tc superconductivity ?

Idea #2: magnetic frustration is the key parameter to stabilize a (RVB) spin liquid on the 2D square lattice Ling Wang, DP, Zheng-Cheng Gu, Xiao-Gang Wen, Frank Verstraete, PRL 111 037202 (2013)

Idea #1: the RVB spin liquid is the «parent» insulator of the high-Tc superconductor P.W. Anderson, T.M. Rice, etc...

jeudi 13 novembre 14

RVB spin liquid

0

X

VB

fermion repn

ii

ii

s-wave d+is-wavebosonic repn fermionic repn

for « fPEPS » see e.g. :Corboz, Evenbly, Verstraete, Vidal, PRA 2010

RVB spin liquid

X

VB

1st step:

=

jeudi 13 novembre 14

RVB spin liquid

doping

X

VB

X

VB+holes

Mott insulator Superconductor ?

+

+

· · ·

2nd step :

i

c⇥

i

jeudi 13 novembre 14

hole kinetic energy⌦c†i,�cj,�

jeudi 13 novembre 14

�ij =⌦ci,"cj,#

c = 0

c = �0.65

Superconducting pairing amplituded+is symmetry

(almost) pure d-wave symmetry

jeudi 13 novembre 14

Variational energy : fPEPS vs iPEPS

iPEPS

fPEPS

Very good ansatz !

jeudi 13 novembre 14

BA

«Holographic» framework

Reduced density matrix

�A = TrB |�⇥�

�|

bulk

edge?

jeudi 13 novembre 14

Entanglement entropy

“area” law

Levin & Wen, 2006

Kitaev & Preskill, 2006

subleading correction to area law:topological entropy

SVN ⇠ CNv � lnD

(Von Neumann)

SVN = �Tr{⇢A ln ⇢A} = Tr{�b ln�b}-

jeudi 13 novembre 14

Numerical results

STE ' � ln 2 Z2 spin liquid

jeudi 13 novembre 14

Entanglement Hamiltonian (acting on the edge)

�2b = exp (�Hb)

Is it local ?

The spectrum of Hb is in one-to-one with the true edge spectrum !

Li & Haldane

Hb

local operator (on the edge):D �D matrix ⇥ basis of D2 operators

edge site operators :

x�

jeudi 13 novembre 14

LT

Short-range entanglement Hamiltonian

Trivial gapped spin liquid

A(r) ⇥ exp (�r/�b)

AKLT cylinders(D=2)

⇠b traks bulk correlation length

· · ·

jeudi 13 novembre 14

Entanglement Hamiltonian highly non-local

Topological gapped spin liquid

supported by the non-zero eigenvalue sector of the RDM

projector characterizing topological sectors

Exemple: Kagome RVB

jeudi 13 novembre 14

gapless ES !

Entanglement spectrum

should reflect the physical edge

spectrumLi & Haldane conjecture

jeudi 13 novembre 14

Summary & Outlook

• Simple and physical understanding of important correlated phases of matter like :

• topological and trivial SLs,

• unconventional SC, ...

• Chiral SLs ?

• Virtual degrees of freedom play «physical role» at boundary : edge states

THANK YOU !

jeudi 13 novembre 14

Recommended