Towards a sub-2.5V, 100-Gb/s Serial Transceiversorinv/papers/sv_cicc07_slides.pdf · 100-Gb/s...

Preview:

Citation preview

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 1

Towards a sub-2.5V, 100-Gb/s Serial TransceiverTowards a sub-2.5V, 100-Gb/s Serial Transceiver

S.P. Voinigescu1, R. Aroca1, T.O. Dickson1, S.T. Nicolson1, T. Chalvatzis1, P. Chevalier2 , P. Garcia2 , C. Garnier2 , and

B. Sautreuil2

1) University of Toronto, 2) STMicroelectronics

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 2

OutlineOutline

100GE fundamentals

Design methodology

Schematic level approach

Layout

90-Gb/s half-rate transceiver

100-Gb/s full-rate transceiver blocks

Round-up

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 3

Why 100 Gb/s?Why 100 Gb/s?

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 4

Network traffic growth (Network traffic growth (from IEEE802.3 HSSGfrom IEEE802.3 HSSG))

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 5

Network traffic growth (Network traffic growth (from IEEE802.3 HSSGfrom IEEE802.3 HSSG))

Technological breakthrough demands a leap in serial data rate

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 6

What are the applications?What are the applications?

Those that have demonstrated the need for bandwidth beyond existing

capabilities:

High performance computing

Video-on-demand delivery

Data center

Internet exchanges

Metro: over 40km of SMF

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 7

What are the applications?What are the applications?

Those that have demonstrated the need for bandwidth beyond existing

capabilities:

High performance computing

Video-on-demand delivery

Data center

Internet exchanges

Metro: over 40km of SMF

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 8

Possible system architectures Possible system architectures (R.H. Derksen et al. CSICS-07) (R.H. Derksen et al. CSICS-07)

107Gb/s serial OOK

Optical modulator not available

OK now over 10m of coaxial cable

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 9

Possible system architectures Possible system architectures (R.H. Derksen et al. CSICS-07) (R.H. Derksen et al. CSICS-07)

107Gb/s serial OOK

Optical modulator not available

OK now over 10m of coaxial cable

54GBaud/s= 2*54Gb/s RZ-DQPSK

More power, still fast electronics

Optics OK

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 10

Possible system architectures Possible system architectures (R.H. Derksen et al. CSICS-07) (R.H. Derksen et al. CSICS-07)

107Gb/s serial OOK

Optical modulator not available

OK now over 10m of coaxial cable

54GBaud/s= 2*54Gb/s RZ-DQPSK

More power, still fast electronics

Optics OK

27GBaud/s = 4*(27Gb/s) Polarization

Multiplex QPSK

4x 5-6bit, 54GS/s ADCs and DSP

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 11

100-Gb/s Serial Transceiver100-Gb/s Serial Transceiver

should consume lesspower and cost less than100 Gb/s 5 x 10 Gb/s

2 x 40 Gb/s

10-GE CMOS transceiver

0.8W from 1.2 V and < $50

3W, $250

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 12

100-Gb/s Serial Transceiver100-Gb/s Serial Transceiver

should consume lesspower and cost less than100 Gb/s 5 x 10 Gb/s

2 x 40 Gb/s

10-GE CMOS transceiver

0.8W from 1.2 V and < $50

40+ Gb/s SiGe-HBT ICs too power

hungry and 3.3V supply

3W, $250

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 13

100-Gb/s Serial Transceiver100-Gb/s Serial Transceiver

should consume lesspower and cost less than100 Gb/s 5 x 10 Gb/s

2 x 40 Gb/s

10-GE CMOS transceiver

0.8W from 1.2 V and < $50

40+ Gb/s SiGe-HBT ICs too power

hungry and 3.3V supply

Need lower supply logic with fewer

and lower tail currents per gate

3W, $250

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 14

What are the options?What are the options?

Low-voltage (sub-2.5V) BiCMOS logic with 300-GHz HBTs

1.2V 45-nm GP CMOS CML logic without current source

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 15

65-nm LP n-MOS vs. SiGe HBT65-nm LP n-MOS vs. SiGe HBT

Comparable high frequency performanceOnly difference: g

m/I (Gain/I), V

swing => HBT wins in

dynamic range = length of data link

[P. Chevalier et al. CSICS-2006]

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 16

GP vs. LP 65-nm CMOSGP vs. LP 65-nm CMOS

GP 30% faster than LP and

300mV lower VGS => lower

power!

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 17

GP vs. LP 65-nm CMOSGP vs. LP 65-nm CMOS

GP 30% faster than LP and

300mV lower VGS => lower

power!

Peak fT at 0.3 to 0.35mA/µm

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 18

GP vs. LP 65-nm CMOSGP vs. LP 65-nm CMOS

GP 30% faster than LP and

300mV lower VGS => lower

power!

Peak fT at 0.3 to 0.35mA/µm

VT variation is large but

mostly irrelevant

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 19

GP vs. LP 65-nm CMOSGP vs. LP 65-nm CMOS

GP 30% faster than LP and

300mV lower VGS => lower

power!

Peak fT at 0.3 to 0.35mA/µm

VT variation is large but

mostly irrelevant

fT and f

MAX increase with V

DS

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 20

FET/HBT small-signal circuit including degenerationFET/HBT small-signal circuit including degeneration

Rs(RE) included in RG(B), gmeff, goeff, fT and Cgseff/Cbeeff

Zin≅ Rg+Rs – jfT/(fgmeff); gmeff = g

m/(1+g

mR

S)

In 300-GHz SiGe HBTs gmR

E = 3.5 => built-in feedback, stable over T

gmeff

VIN V

IN C

gs(be)eff

Cgd(bc)

Cdb(cs)

RG(B)

goeff

G(B)

S(E)

D(C)

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 21

2-MOSFET stack topologies 2-MOSFET stack topologies (S. Voinigescu et al. CICC-05)(S. Voinigescu et al. CICC-05)

Need VDS

> 0.5 V to operate at 40+ Gb/s => remove current source

CLK_P

VDD

(1.5V)

CLK_N

VG

OUT_P

OUT_N

DATA_P

DATA_N

M1 M2

M3 M6M4 M5

ITAIL

0.2V

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 22

2-MOSFET stack topologies 2-MOSFET stack topologies (S. Voinigescu et al. CICC-05)(S. Voinigescu et al. CICC-05)

Need VDS

> 0.5 V to operate at 40+ Gb/s => remove current source

VGS

of data FETs determines VDS

of clock FETs => LVT + HVT

CLK_P

VDD

(1.5V)

CLK_N

VG

OUT_P

OUT_N

DATA_P

DATA_N

M1 M2

M3 M6M4 M5

ITAIL

0.2V

DATA_P

CLK_P

DATA_N

CLK_N

OUT_N

OUT_P

IBIAS

IBIAS

30x1μmLVT

30x1μmLVT

30x1μmHVT

30x1μmHVT

40Ω

100pH

M1 M2

M3 M6M4 M5

X Y

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 23

High-speed, low-power BiCMOS latch High-speed, low-power BiCMOS latch (E. Laskin JSSC-Oct. 06)(E. Laskin JSSC-Oct. 06)

HBT ECL

INP

CLKP

INN

VCC

(3.3V)

CLKN

VG

OUTP

OUTN

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 24

0.3 mA/µm

High-speed, low-power BiCMOS latch High-speed, low-power BiCMOS latch (E. Laskin JSSC-Oct. 06)(E. Laskin JSSC-Oct. 06)

HBT ECL to BiCMOS CML

3.3 V to 2.5 V and reduced number of tails

INP

CLKP

INN

VCC

(3.3V)

CLKN

VG

OUTP

OUTN

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 25

0.3 mA/µm

0.15 mA/µm

High-speed, low-power BiCMOS latch High-speed, low-power BiCMOS latch (E. Laskin JSSC-Oct. 06)(E. Laskin JSSC-Oct. 06)

HBT ECL to BiCMOS CML

3.3 V to 2.5 V and reduced number of tails

1.8 V (lower power) at same speed

INP

CLKP

INN

VCC

(3.3V)

CLKN

VG

OUTP

OUTN

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 26

0.3 mA/µm

0.15 mA/µm

High-speed, low-power BiCMOS latch High-speed, low-power BiCMOS latch (E. Laskin JSSC-Oct. 06)(E. Laskin JSSC-Oct. 06)

HBT ECL to BiCMOS CML

3.3 V to 2.5 V and reduced number of tails

1.8 V (lower power) at same speed

Inductive peaking to increase speed

INP

CLKP

INN

VCC

(3.3V)

CLKN

VG

OUTP

OUTN

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 27

OutlineOutline

100GE fundamentals

Design methodology

90-Gb/s half-rate transceiver

100-Gb/s full-rate transceiver blocks

Round-up

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 28

GP 65-nm CMOS scales as expected GP 65-nm CMOS scales as expected

Future node performance is easy to

predict from Dennard's 1974 constant-

field scaling eqns.

All MOSFETs (from all foundries) are

practically the same.

0.15mA/m to 0.45mA/m is the

recommended bias range

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 29

Scaling of inductors to 100+GHz Scaling of inductors to 100+GHz

f -> fS, S = scaling factor, f = operation frequency

W -> W/S, W= stripe width

l -> l/S, l = total length of inductor winding

d -> d/S, d = inductor external diameter

davg

-> davg

/S, d = inductor average diameter

h -> h/S, h = dielectric thickness

t = constant, t = metal thickness

d

davg

h

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 30

Frequency scaling equations of inductor Frequency scaling equations of inductor ππ-model-model

L≈60n2 davg

2

11 d−7davg

LS≈

60 n2[ davg

S ]2

11 dS−7

davg

S

Cox=12

l Wox

h

Cox

S=1

2lS

WS

ox

hS

Cp=n W2 ox

hM9−M8

Cp

S=nWS

2 ox

hM9−M8

S

SRF≈ 12LCOXCp

S× SRF= 1

2 LS

COX

S

Cp

S

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 31

Scaling of inductors to 100+GHz (ii)Scaling of inductors to 100+GHz (ii)

Outcome

Inductors/transformers can be as small and inexpensive as transistors

As in MOSFETs, series resistance does not scale

The peak Q value remains the same,

with PQF at f×S

RDC= lW t

RDC= l

SWS

t

RAC= l

S

WS[1−exp−t

]= 1 f

Q=×S

LS

RDCRAC

=L

RDCRAC

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 32

metal 6 + alucap

Inductor and interconnect modeling Inductor and interconnect modeling (E. Laskin RFIC-07)(E. Laskin RFIC-07)

44-pH inductor for the oscillator tank

Shunted metals for low loss

Designed using ASITIC, SRF > 400 GHz

metal 5

P1 P2P1 P2P1 P2P1 P2

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 33

Inductor model verification through 94 GHzInductor model verification through 94 GHz

R

2-pi model

Q

measuredasitic

LR

2-pi model

Q

measuredasitic

L

0

10

20

30

40

50

60

70

0 50 100 150 200Frequency (GHz)

L (

pH

), Q

eff

0

2

4

6

8

10

12

14

R (

Oh

m)

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 34

Key design methodology ideasKey design methodology ideas

Bias at constant current density to minimize PVT in nanoscale CMOS

Avoid stacked-FET topologies to reduce impact of VT variation.

Trade off bias current with inductive peaking to minimize tail currents

Use analytical equations for 1st. cut design of all circuits

Add gate resistance to digital CMOS model

Layout in nanoscale CMOS is >> important than schematic

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 35

Example: Hierarchical design and breakout of cell for Example: Hierarchical design and breakout of cell for parasitic extractionparasitic extraction

Minimize footprint by merging transistors in diff. pairs, latching quads

VDD

(1.2V)

DATA_P

CLK_P

DATA_N

CLK_N

OUT_N

OUT_P

IBIAS

IBIAS

30x1μmLVT

30x1μmLVT

30x1μmHVT

30x1μmHVT

40Ω

100pH

M1 M2

M3 M6M4 M5

X Y

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 36

Hierarchical breakout of cell for parasitic extraction (ii)Hierarchical breakout of cell for parasitic extraction (ii)

Extract RC parasitics at cell level without inductors

DATA_P

CLK_P

DATA_N

CLK_N

OUT_N

OUT_P

IBIAS IBIAS

30x1μmLVT

30x1μmLVT

30x1μmHVT

30x1μmHVT

40Ω

100pH

M1 M2

M3 M6M4 M5

X Y

VDD

(1.2V)

DATA_P

CLK_P

DATA_N

CLK_N

OUT_N

OUT_P

IBIAS

IBIAS

30x1μmLVT

30x1μmLVT

30x1μmHVT

30x1μmHVT

40Ω

100pH

M1 M2

M3 M6M4 M5

X Y

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 37

Hierarchical breakout of cell for parasitic extraction (iii)Hierarchical breakout of cell for parasitic extraction (iii)

Extract RC parasitics at cell level without inductors

Model inductors and long interconnect as 2-π circuit with ASITIC

VDD

(1.2V)

DATA_P

CLK_P

DATA_N

CLK_N

OUT_N

OUT_P

IBIAS

IBIAS

30x1μmLVT

30x1μmLVT

30x1μmHVT

30x1μmHVT

40Ω

100pH

M1 M2

M3 M6M4 M5

X Y

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 38

Fself-osc = 14.5 GHzFmaximum = 35 GHz

Fself-osc = 22 GHzFmaximum = 51 GHz45% improvement

60µm

25µm

80µm

40µm

Version 1 (v1)

Version 2 (v2)

Impact of layout on 65-nmImpact of layout on 65-nm LP CMOS static frequency divider LP CMOS static frequency divider

© Sean Nicolson, BCTM 2006© Sean Nicolson, BCTM 2006© Sean Nicolson, 2007

Modeling power/bias/GND distributionModeling power/bias/GND distribution(S. Nicolson et al., IMS-2007)(S. Nicolson et al., IMS-2007)

Wide lines in metal mesh planes (max C, min. L and R) Surround bias/signal lines with GND-ed Faraday cageIsolate regions of the chip (grounded p-taps and DNW)Provide local de-coupling (< 0.5pF for 80 GHz)

© Sean Nicolson, BCTM 2006© Sean Nicolson, BCTM 2006© Sean Nicolson, 2007

Example: Bias/GND mesh satisfying metal density rulesExample: Bias/GND mesh satisfying metal density rules Substrate contact

(active + CON)

GND: odd (1,3,5) metals in blue

VDD

:even (2,4,6) metals

in redVIAs shunting odd metals

and SUB contact

VIAs shunting even metalsand DNW isolation

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 41

OutlineOutline

100GE system architectures

Design methodology

90-Gb/s half-rate transceiver

100-Gb/s full-rate transceiver blocks

Round-up

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 42

2.5-V, 1.4-W, 90-Gb/sTransmitter 2.5-V, 1.4-W, 90-Gb/sTransmitter (T.Dickson et al. CSICS-06)(T.Dickson et al. CSICS-06)

8:1 MUX

Output Driver

On-chipPRBS for

BIST

40-GHz PLL

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 43

2.5-V, 90-Gb/s BiCMOS Selector2.5-V, 90-Gb/s BiCMOS Selector

EF for higher bandwidth

SF for voltage headroom

90-Gb/s selector consumes 60mW

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 44

Measured results with external clock: 80 Gb/sMeasured results with external clock: 80 Gb/s

Running for more than 1 hour continuously in the lab.

Jitter: 560 fs (rms) , Rise/fall time: 4-5 ps, Amplitude: 300 mVpp

per side

80 Gb/s OUT40GHz CLOCK OUT

40GHz CLCK IN2.5GHz REF IN

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 45

Verification of correct multiplexingVerification of correct multiplexing

Using pattern capture capabilities of the Agilent 86100C DCA

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 46

90 Gb/s: amplitude control (new spin)90 Gb/s: amplitude control (new spin)

Little degradation in eye quality as amplitude varies from 150 mV to 300 mV per side

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 47

80 Gb/s at 100 80 Gb/s at 100 ooCC

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 48

ComparisonComparison

1.36 W2.5 V90 Gb/s (half-rate)MOS: 85/90 GHz

HBT: 170/200 GHz130-nm SiGe

BiCMOS

2.3 W-3.6 V43 Gb/s (full-rate)HBT: 120/100 GHz180-nm SiGe

BiCMOS

1.6 W-3.6 V43 Gb/s (half-rate)HBT: 120/100 GHz180-nm SiGe

BiCMOS

3.6 W-3.6/ -5.2 V43 Gb/s (full-rate)150/150 GHzInP HBT

2.7 W1.5 V40 Gb/s (half-rate)85/90 GHz130-nm CMOS

PowerSupply Voltage

Data RatefT/fMAXTechnology

130-nm CMOS+170-GHz SiGe HBT = 2×speed + ½ power of 130-nm CMOS

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 49

OutlineOutline

100GE system architectures

Design methodology

90-Gb/s half-rate transceiver

100-Gb/s full-rate transceiver blocks

Round-up

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 50

Critical 100-Gb/s full-rate circuit blocksCritical 100-Gb/s full-rate circuit blocks

100-GHz flip-flop

100-GHz static frequency divider

100-GHz clock distribution network

100-GHz low-phase noise VCO

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 51

Divide-by-2 block diagram and latch schematicsDivide-by-2 block diagram and latch schematics

EXTERNALCLOCK

DRIVER

Master Latch Slave Latch

OUTPUT

VBIAS

VDD=1.2V

20

20 20

16

50 Ohm 50 Ohm

DATA

CLOCK

OUT

8mA latch

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 52

Divider layout (20 x 16 Divider layout (20 x 16 µµmm22))

22µm

26µm

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 53

90-GHz, 65-nm GP CMOS static divider: 2% variation 90-GHz, 65-nm GP CMOS static divider: 2% variation

Power = 19.6mW per divider + 22.4mW for output buffer

Average Self-Oscillation Frequency (SOF) =39.5GHz (@ the output)

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 54

PVT performance of 65-nm GP CMOS dividerPVT performance of 65-nm GP CMOS divider

Operates up to 78.5 GHz at 100 0C from 1.1V supply and at 80 GHz at 125 0C

from 1.4 V

Does not divide below 57GHz

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 55

65-nm GP/LP CMOS vs. SiGe HBT and BiCMOS 65-nm GP/LP CMOS vs. SiGe HBT and BiCMOS dividers dividers

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 56

Comparison with published 80+GHz static dividersComparison with published 80+GHz static dividers

ReferenceSelf-Oscillation

Freq.Max. Divider

Freq.Power Consumption Technology

This work 45 GHz 51 GHz 42mW(1.5V) 65nm LP-CMOSThis work 80 GHz 91 GHz 20 mW (1.2V) 65nm GP-CMOS PlouchartISCC-07 92 GHz 102 GHz 52.4mW(2.2V) 65nm HP SOI CMOS

TrottaCSICS-05

65 GHz 110 GHz 1.35 W (-5.2V) 225-GHz fT SiGe HBT

HitkoCSICS-04

95 GHz 143.6 GHz 90 mW 400-GHz fT InP

RylyakovCSICS-04

71 GHz 96 GHz 770 mW (-5.0V) 210-GHz fT SiGe HBT

LaskinBCTM-07 77 GHz >100 GHz 122 mW (3.3-3.6V) 230-GHz fT SiGe HBT

NicolsonIMS-07

81 GHz >105 GHz 75 mW (2.5V) 230-GHz fT SiGe HBT

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 57

Comparison with published 80+GHz static dividersComparison with published 80+GHz static dividers

ReferenceSelf-Oscillation

Freq.Max. Divider

Freq.Power Consumption Technology

This work 45 GHz 51 GHz 42mW(1.5V) 65nm LP-CMOSThis work 80 GHz 91 GHz 20 mW (1.2V) 65nm GP-CMOS PlouchartISCC-07 92 GHz 102 GHz 52.4mW(2.2V) 65nm HP SOI CMOS

TrottaCSICS-05

65 GHz 110 GHz 1.35 W (-5.2V) 225-GHz fT SiGe HBT

HitkoCSICS-04

95 GHz 143.6 GHz 90 mW 400-GHz fT InP

RylyakovCSICS-04

71 GHz 96 GHz 770 mW (-5.0V) 210-GHz fT SiGe HBT

LaskinBCTM-07 77 GHz >100 GHz 122 mW (3.3-3.6V) 230-GHz fT SiGe HBT

NicolsonIMS-07

81 GHz >105 GHz 75 mW (2.5V) 230-GHz fT SiGe HBT

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 58

70-100 GHz 65-nm LP CMOS vs. SiGe HBT LNAs as 70-100 GHz 65-nm LP CMOS vs. SiGe HBT LNAs as clock buffers clock buffers (S. Nicolson et al. IMS-07)(S. Nicolson et al. IMS-07)

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 59

105-GHz SiGe HBT Colpitts VCO Schematics105-GHz SiGe HBT Colpitts VCO Schematics

104 GHz, PDC

= 120 mW, 2.5V

Die size: 0.4mmx0.5mm

CPAD

32fF

LPAD

VO+

VCC

= 2.5V

VO-

LPAD

CPAD

32fF

C4

C4

LC

LC

LB

LB

C1

C1

CVAR

CVAR

LEE

LEEC

EER

EE

RB1

RB2

VBB

= 2.5V50Ω line C

3C

3

VTUNE+

VTUNE-

RT

RT

AMOS varactorsW

G = 4 × 18 × 1µm

LG = 0.13µm

HBTsL

E = 4 × 5µm

WE = 0.13µm

IC

VTUNE-

RT

VTUNE+

RT

RB

C1

C

E

B

T1

50Ω lineT

1

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 60

104-GHz VCO phase noise: -101 dBc/Hz @ 1MHz104-GHz VCO phase noise: -101 dBc/Hz @ 1MHz

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 61

SummarySummary

Need simpler topologies with fewer transistors for higher speed

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 62

SummarySummary

Need simpler topologies with fewer transistors for higher speed

GP MOSFET scaling is predictable and desired for high-speed

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 63

SummarySummary

Need simpler topologies with fewer transistors for higher speed

GP MOSFET scaling is predictable and desired for high-speed

Layout critical in nanoscale CMOS for 100-GHz applications

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 64

SummarySummary

Need simpler topologies with fewer transistors for higher speed

GP MOSFET scaling is predictable and desired for high-speed

Layout critical in nanoscale CMOS for 100-GHz applications

1.4W, 90-Gb/s half-rate transmitter in 170-GHz SiGe BiCMOS

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 65

SummarySummary

Need simpler topologies with fewer transistors for higher speed

GP MOSFET scaling is predictable and desired for high-speed

Layout critical in nanoscale CMOS for 100-GHz applications

1.4W, 90-Gb/s half-rate transmitter in 170-GHz SiGe BiCMOS

Full-rate 100-Gb/s circuits in 65-nm CMOS and SiGe HBT technologies

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 66

SummarySummary

Need simpler topologies with fewer transistors for higher speed

GP MOSFET scaling is predictable and desired for high-speed

Layout critical in nanoscale CMOS for 100-GHz applications

1.4W, 90-Gb/s half-rate transmitter in 170-GHz SiGe BiCMOS

Full-rate 100-Gb/s circuits in 65-nm CMOS and SiGe HBT technologies

A 3W, 100-Gb/s half-rate serial transceiver is feasible in 300-GHz SiGe

BiCMOS technology now

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 67

SummarySummary

Need simpler topologies with fewer transistors for higher speed

GP MOSFET scaling is predictable and desired for high-speed

Layout critical in nanoscale CMOS for 100-GHz applications

1.4W, 90-Gb/s half-rate transmitter in 170-GHz SiGe BiCMOS

Full-rate 100-Gb/s circuits in 65-nm CMOS and SiGe HBT technologies

A 3W, 100-Gb/s half-rate serial transceiver is feasible in 300-GHz SiGe

BiCMOS technology now

At least 45-nm GP CMOS is needed for half-rate 100-Gb/s transceiver

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 68

AcknowledgmentsAcknowledgments

Jaro Pristupa and CMC for CAD support

OIT, CFI, ECTI for equipment

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 69

Back upBack up

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 70

Phase frequency detectorPhase frequency detector

CLK

VBIAS

D

RL

Q2Q1 Q4Q3

M2M1

VCC (2.5V)

RESET

Q

Q6Q5 Q7

M4M3

RL RL RL

Phase Frequency Detector

D Q

D Q

REF

DIV

'1'

'1'

RESET

UP

DOWN

AsynchronousResettableLatch

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 71

36-43 GHz Colpitts VCO36-43 GHz Colpitts VCO

SiGe HBTs used as negative resistance generators.

Differential tuning to reject common-mode noise.

Maximize tank swing, bias HBTs at NFMIN for low phase noise

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 72

VCO Phase NoiseVCO Phase Noise

-103 dBc/Hz @ 1-MHz offset

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 73

PLL measurements PLL measurements (T. Chalvatzis et al., VLSI-07)(T. Chalvatzis et al., VLSI-07)

Locking range: 38-42 GHz

RMS jitter: σt = 496 fs

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 74

90nm CMOS retiming DFF 90nm CMOS retiming DFF (T. Chalvatzis et al. JSSC July 07)(T. Chalvatzis et al. JSSC July 07)

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 75

Clock must fully switch M1/M2

VDS,M7/8 swings as low as VT

(M1/M2)

Use high-VT for M1/M2

Clock-path biasing schemeClock-path biasing scheme

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 76

Measurements at 40Gb/s and 1.2VMeasurements at 40Gb/s and 1.2V

Error-free 508-bit patternInput (top), output (bottom)

10.8mW1.2V 40Gb/s120-GHz CMOSThis work

20mW2.5V43.5Gb/s150-GHz SiGe BiCMOS[Dickson,CSICS2006]

20mW1.5V50Gb/s150-GHz InP HBT[Amamiya,JSSC2005]

N/A5.7V80Gb/s245-GHz InP HEMT[Suzuki,JSSC2004]

PLATCHSupplyRateTechnologyReference

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 77

CMOS vs. HBT amplifiers (useful as clock buffers)CMOS vs. HBT amplifiers (useful as clock buffers)

20×1.5μmtwo-sided gate

contact

65nm LP CMOS(55 mW, 13.5 dB)

290-GHz SiGe HBT (52 mW, 25 dB)

[S.T. Nicolson et al. IMS-07, CSICS-06]

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 78

Sims before and after extraction of transistor layoutSims before and after extraction of transistor layout

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 79

SOF Variation for 65nm LP Divider (v2): <4%SOF Variation for 65nm LP Divider (v2): <4%

Mapping of 10 dies across the wafer shows < 4% variation in SOF

Average SOF = 22 GHz

Power = 24mW / latch

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 80

v2v1

Measured sensitivity curves vs. temperature @ VMeasured sensitivity curves vs. temperature @ VDDDD=1.5V=1.5V

1.7V

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 81

Phase Noise and Jitter Performance of 65nm LP Divider (v2) – 38GHz Input

18.5GHz divided down output

Output power = -8.2 dBm

-110 dBc/Hz @ 100kHz offset

19GHz divided down output

Output swing = 200mVpp

~200fs of RMS jitter

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 82

Phase Noise and Jitter Performance of 65nm LP Divider (v2) – 50GHz Input

25GHz divided down output

Output power = -12.2 dBm

-108 dBc/Hz @ 100kHz offset

25GHz divided down output

Output swing = 150mVpp

~217fs of RMS jitter

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 83

Latch layout (12 x 6 Latch layout (12 x 6 µµmm22))

M3, M6 M4, M5

M1 M2

12um

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 84

65nm GP CMOS time domain measurements65nm GP CMOS time domain measurements

76 GHz divided down output signal showing low timing jitter

Sorin Voinigescu et al., CICC-2007, September 18th, 2007 85

Output spectrum and phase noiseOutput spectrum and phase noise

90GHz divided down spectrum

1.2V supply @ 25oC

Output phase noise for 78GHz input

1.2V supply @ 25oC

Recommended