Vorlesung Quantum Computing SS ‘08 1 quantum bits conventional bit on 3.2 - 5.5 V 1 off -0.5 - 0.8...

Preview:

Citation preview

Vorlesung Quantum Computing SS ‘08

1

quantum bits

conventional bit

on <=> 3.2 - 5.5 V <=> 1

off <=> -0.5 - 0.8 V <=> 0

quantum mechanical bit (qubit)

| 0 <=> <=>

| 1 <=> <=>

10(

(

01(

(

a1| 0 + a2| 1 = a1

a2( )

superposition:

Vorlesung Quantum Computing SS ‘08

2

quantum computing

H H-1

calculation

U

preparation

read-out

|A|

time

time

quantum-bit (qubit)

0 1

a10 + a21 =a1a2

Vorlesung Quantum Computing SS ‘08

3

boolean algebra and logic gates

classical (irreversible) computing

gateinout

1-bit logic gates: identity

x NOT x

0 11 0

x Id

0 01 1

NOT

x NOT x

Vorlesung Quantum Computing SS ‘08

4

quantum gates

1-bit logic gate: NOT a1|1 + a2| 0 (a1| 0 + a2| 1 ) =

manipulation in quantum mechanics is done by linear operators operators have a matrix representationX ≡

0

01

1matrix representation for the NOT gate:

X =0

01

1a1

a2

a1

a2

=a2

a1

X X-1 =1

10

0

Vorlesung Quantum Computing SS ‘08

5

quantum parallelism

a1 F |00>+

a2 F |01>+

a3 F |10>+

a4 F |11>

}{a1 |00>

+a2 |01>

+a3 |10>

+a4 |11>

}{input

b1 |00>+

b2 |01>+

b3 |10>+

b4 |11>

}{=

output

F

Vorlesung Quantum Computing SS ‘08

6

how to create superposition

start in ground state ≡| 0 ≡1

0

manipulation with a unitary transformation

H = 1√2

H =1

-11

11√2

Hadamard Gate

cmeyer
tafel rechnen zur Darstellung der Basis

Vorlesung Quantum Computing SS ‘08

7

quantum computing

H H-1

calculation

U

preparation

read-out

|A|

time

time

classical bit

1 ON 3.2 – 5.5 V

0 OFF -0.5 – 0.8 V

quantum-bit (qubit)

0 1

a10 + a21 =a1a2

Vorlesung Quantum Computing SS ‘08

8

NOT:|1 |0

Bloch Sphere

the 2 dimensional Hilbertspace of a single qubit can be represented by the Bloch-Sphere

H:|0 |0 |1|1 |0 |1

|0

|1source: http://www.c3.lanl.gov/~knill/qip/nmrprhtml/node5.html

operations on a single qubit are represented by rotations on this sphere

| = cos( ) + eisin( )

Vorlesung Quantum Computing SS ‘08

9

Bloch Sphere

| = a1 + a2

| |a1|2 + |a2|2 = 1

| = r1ei + r2ei polar coordinates:

multiply with global phase e-i | = r1 + r2ei

(

| = r1 + r2eir1 + (x + iy)

Vorlesung Quantum Computing SS ‘08

10

Bloch Sphere

| = r1 + r2eir1 + (x + iy) with normalization constraint:

|r1|2 + | x + iy |2 = r12 + (x – iy) (x + iy)

= r12 + x2 + y2 = 1

3 dim unit sphere

x = r sin cos y = r sin sin z = r cos

| = cos( ) + eisin( )

= z + (x + iy) = cos + sin (cos + i sin ) = cos + ei sin

0 ≤ ≤ 0 ≤ ≤ 2

cmeyer
beweis für halbe winkel

Vorlesung Quantum Computing SS ‘08

11

infinitesimal unitary transformation

finite transformations can be decomposed in successive infinitesimal transformations

U() = I + iF^ ^ ^

(I + iF)^ ^ (I iF*) = I^ ^ ^ F hermitian, infinitesimal small and real

^with

F can be determined by the change L of an observable L ^ ^ ^

L’ = L + L = U()LU()* = L + i[F,L]^ ^ ^ ^ ^ ^ ^ ^ ^

U = eiF̂^

Vorlesung Quantum Computing SS ‘08

12

how to rotate a qubit

rotation about z-axis

U(x) = (R-1x) ≈ (x+y, y-x, z)

≈ (x,y,z) +(y /x – x /y)

= (1 – i/ħ [xpy – ypx]) = (1 – i/ħ J3)

and finite angle

^

^ ^

U() = (U())n = (1 – J3)n → ei ħ n

J3^ ^

cmeyer
J = r x pJ3, dritte Komponente des Drehimpulses
Ihr Benutzername
rotationsmatrix cos a -sin aR-1 = sin a cos a Näherung für kleine a: cos =1, sin = aNäherung für lineare Änderung: Taylorreihe

Vorlesung Quantum Computing SS ‘08

13

spin as basis

Pauli spin matrices form a complete base using spin as basis is very convenient for all implementations

Sz = = Z

1

-10

0ħ2

ħ2

Sx = = X

0

01

1ħ2

ħ2

Sy = = Y

0

0i

-iħ2

ħ2

|0

|1

2

NOT : e = = e iħ

Sx 0

0-i

-i i 0

01

1

Vorlesung Quantum Computing SS ‘08

14

Superposition of one and more qubits

H =1

-11

11√2

e =

(Sx+ Sz)

√2 1

-11

11i√2

H2=H2H1 = √2

√2

= 12

cmeyer
check global phase

Vorlesung Quantum Computing SS ‘08

15

entanglement

QC

→1√2

1√2

states that can be factorized:

live in subspaces H1 and H2

1√2

→states that cannot be factorized:

live in product space HQC only

BellBellstatesstates

Vorlesung Quantum Computing SS ‘08

16

Bell states

The Bell State has the property that upon measuring the

1st qubit one obtains two possible results.

- 0 with probability ½ leaving the post measurement state

- 1 with probability ½ leaving the post measurement state

- The measurement of the 2nd qubit always gives the result depending on the measurement of the 1st qubit.

- ie: The measurements are CORRELATED

Vorlesung Quantum Computing SS ‘08

17

Bell basis

– superpositions connected by the outline

– Bell states connected by diagonals

= 1√2

= 1√2

Vorlesung Quantum Computing SS ‘08

18

Bell’s inequalities

restrictions due to assumption of hidden classical variablesinequalities are violated by quantum mechanicsz

x

a,a’ = 1

z’x’

g,g’ = 1no influence between measurements,they are done at different spacetime points

f := (a+a’)g – (a-a’)g’

(a and a’ are either equal or opposite)

f := p(a,a’,g,g’) f ≤ 2

aa’ g’gga’aa’

g’g

1

1-1-1-1

-1

1

111

ag + a’g – ag’ + a’g’ ≤ 2

cmeyer
diese bekannt als CHSH (Clauser, Horne, Shimony, Holt)

Vorlesung Quantum Computing SS ‘08

19

Bell’s inequalities

z

x

a,a’ = 1

z’x’

g,g’ = 1

1

-10

0

0

01

1

a =

a’ =

1

-11

1g = – 1√2

1

-1-1

-1g’ =

1√2

AGAG

1√2 AAG G

ag = | a g | = 1√2

a’g = a’g’ = 1√2

ag’ = 1√2

ag+a’g – ag’+ a’g’ = 2 √2

cmeyer
diese bekannt als CHSH (Clauser, Horne, Shimony, Holt)

Vorlesung Quantum Computing SS ‘08

20

experiment

source of entangled photons

(use spontaneous parametric down conversion of a non-linear, birefringent crystal)

Vorlesung Quantum Computing SS ‘08

21

experiment

G. Weihs et al, Phys. Rev. Lett. 81, 5039 (1998)

spacetime separation measurement apparatus

measurement time: 100 ns

physical random number generator

Vorlesung Quantum Computing SS ‘08

22

uncorrelated measurements

measurementapparatus

measurementapparatus

random number generator

Vorlesung Quantum Computing SS ‘08

23

boolean algebra and logic gates

2-bit logic gates:

y x OR y

0

1

0

1

0

0

1

1

x

0

1

1

1

y x AND y

0

1

0

1

0

0

1

1

x

0

0

0

1

x

yx OR y

x

yx AND y

all other operations can be constructed from NOT, OR, and AND

x XOR y = (x OR y) AND NOT (x AND y)

cmeyer
aufgabe: truth table für XOR

Vorlesung Quantum Computing SS ‘08

24

classical binary addition

two one-bit digit in, one two-bit digit out: a0 + b0 = c0 + c1

X

&

a0b0

c0 (add mod2)

c1 (carry bit)

fanout0 1

0 00 011 01 10

truth table

+

++

X

++

X

++

X

1 2 3 4

a3

b1

a2

b2

a1

b3

a0

b0 c1

c2

c0

c3

c4

more thanone bit...

Vorlesung Quantum Computing SS ‘08

25

2 qubit gates

base vectors of a two–qubit register:

a, a ba, b

00 0001 0110 1111 10

CNOT:

Vorlesung Quantum Computing SS ‘08

26

2 qubit gates

– switch on the interaction Hamiltonian– use free evolution of the system

|1

|0

00 0001 0110 1111 10

CNOT:

source: http://www.c3.lanl.gov/~knill/qip/nmrprhtml/node7.html

Vorlesung Quantum Computing SS ‘08

27

the CNOT gate

control

target

iħ2

eSy

iħ2

e- Sy

iħ2

eSz

Vorlesung Quantum Computing SS ‘08

28

create entanglement

Ca= 1

Cb= 1

H1

√2

ab

ab

ab→ no factorization into product states possible1√2

UCNOT = =

1√2

1√2

1√2

1√2

Vorlesung Quantum Computing SS ‘08

29

no-cloning theorem

is a “no-copying theorem”

classical: copy with XOR

y x XOR y

0

1

0

1

0

0

1

1

x

0

1

1

0(x,0) → (x,x)

quantum mechanical: copy with CNOT ?

Vorlesung Quantum Computing SS ‘08

30

no-cloning theorem

“control” qubit is used as source“target” qubit is initialized to

try to copy a0a1

a0 a1

=

a1

a0

a1

a0

= a0 a1

Bell stateBell state

Vorlesung Quantum Computing SS ‘08

31

toward n qubits

a0a1a2a3

two–qubit state:

n–qubit state:

Hilbertspace: 2n 2n ai ii=0

e.g., n = 5:

2 -1n

Vorlesung Quantum Computing SS ‘08

32

universal computing

all possible operations can be done by using 1-qubit-rotations, phase-shifts and the CNOT gate

→ this set of gates is therefore called “universal”

(in a classical computer NOT and NAND are a universal set)

single universal gate: Toffoli gate (3 qubits)

a

b

c

a

b

c(a b)

Toffoligate

Vorlesung Quantum Computing SS ‘08

33

Toffoli gate

a, b, c (ab)a, b, c

000 000001 001010 010011 011100

110111

101100101111110

Table of Truth

Matrix

UTF =

a

b

c c(a b)

Toffoligate

b

a

Recommended