Crude oil emulsion 2

Preview:

Citation preview

Formation and characteristics of crude oil emulsion formed in chemical flooding

Haris Ramzan

Mechanical Engineer

Nazeer Hussain University

Back ground

Stable emulsions formed in polymer or ASP flooding of oil recovery.

Purpose

Study the influence of indigenious interfacial active fractions from crude and alkali, surfactant, polymer on interfacial property between crude and water, and stability of crude emulsion.

Effect of Alkaline

Crude oil: Shengli crude oil

Production: ASP flooding Alkaline : Na2CO3

Surfactant:Petroleum sulphonate

Polymer: HPAM

Crude oil: Daqing crude oil Paraffin crude oil Acid-number: 0.183 Paraffin: 18.6% Resin:12.1% Asphaltene: 0.1%Production: ASP flooding Alkaline : NaOH

Surfactant:Petroleum sulphonate

Polymer: HPAM

Crude oil

Pentane treat

Asphaltene

Insoluble Soluble

AI2O3 adsorption

Benzene

Saturate Resin1 Resin2

Benzine/ethanol

Aromatic

EthanolPetroleum ether

Separation of crude oil fractions

Gu Dong 1#Gu Dong 4#Da Qing crude oils

Table1. Composition of crude oil fractions

Fractionw / %

Gu Dong 1# Gu Dong 4# Da Qing

Saturate 47.08 46.54 68.09

Aromatic 23.65 28.18 17.25

Resin1 14.73 13.81 14.47

Resin2 0.11 0.12 0.10

Asphaltene 14.43 11.35 0.09

Parameters of crude fractions

Fraction

Oxygen in 100g crude oil/g

Gu Dong 1# Gu Dong 4# Da Qing

Saturate 0.118 0.140 0.375

Aromatic 0.170 0.211 0.086

Resin1 0.194 0.264 0.214

Asphaltene 0.316 0.317 0.001

Table2. Oxygen in crude oil fractions

Fractions Gu Dong 1# Gu Dong 4# Da Qing

Saturate 2.397 3.014 0.4760

Aromatic 5.386 5.242 1.039

Resin 6.001 8.002 5.101

Asphaltene 16.45 8.378 4.213

Crude oil 3.640 3.217 0.517

Table3. Acid number of crude oils and their fractions

Crude oils Saturate Aromatic ResinⅠ Asphaltene Crude oil

Gu Dong 1# 434 601 1025 1499 433

Gu Dong 4# 503 728 1117 1308 427

Da Qing 485 773 1396 2433 480

Table4. MW of crude oils and their fractions

Table5. Composition of model oil(w%)

  Crude oil Saturate Aromatic ResinⅠ Asphaltene

Gu Dong1# 10.00 4.59 2.25 1.49 1.44

Gu Dong4# 10.00 4.02 2.19 1.49 1.14

Da Qing 10.00 6.43 1.52 1.41 0.01

Model oils

Distilled water or NaOH/Na2CO3 solution

Aqueous phase

Interfacial tension

Crude oils  Model oil

Saturate Aromatic ResinⅠ Asphaltene Crude oil

Gu Dong1#

w % 4.60 2.53 1.46 1.44 10.00

o/w / mNּm-1 35.70 24.52 22.76 19.38 11.89

o/s / mNּm-1 13.36 5.61 4.63 0.056 0.93

w % 3.00 3.00 3.00 3.00 3.00

o/w / mNּm-1 33.03 17.90 15.78 12.75 19.27

o/s / mNּm-1 11.22 4.37 3.12 0.0053 0.762 

Table6-1. Interfacial tension between model oils and aqueous phase (45 C)

Crude oils  Model oil

Saturate Aromatic ResinⅠ Asphaltene Crude oil

Gu Dong4#

w % 4.02 2.19 1.38 1.14 10.00

o/w / mNּm-1 33.55 18.85 18.36 16.90 17.21

o/s / mNּm-1 9.12 7.11 4.30 0.86 1.71

w % 3.00 3.00 3.00 3.00 3.00

o/w / mNּm-130.07 14.42 13.33 7.03 21.48

o/s / mNּm-110.45 5.32 2.62 0.43 1.35

Table6-2. Interfacial tension between model oils and aqueous phase (45 C)

Crude oils  Model oil

Saturate Aromatic ResinⅠ Asphaltene Crude oil

Da Qing

w % 6.66 1.58 1.45 0.10 10.00

o/w / mNּm-139.96 33.57 27.63 33.68 30.46

o/s / mNּm-118.31 11.97 8.24 12.81 4.04

w % 3.00 3.00 3.00 3.00 3.00

o/w / mNּm-136.51 30.24 26.34 28.22 29.40

o/s / mNּm-114.68 10.30 2.64 4.07 2.86

Table6-3. Interfacial tension between model oils and aqueous phase (45 C)

0.0 0.1 0.2 0.3 0.4 0.50.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

Inte

rfa

cia

l sh

ea

r vi

sco

sity /

mN

s m

-1

Shear rate/ rad s-1

1.2% Na2CO

3

Di st i l l ed wat er

Figure2. Interfacial shear viscosity between 2% asphaltene model oil(Gu Dong 1#) and distilled water /1.2% Na2CO3 solution, 25 C.

Interfacial shear viscosity

Biconical disc water

oilSteel-wire

0.0 0.1 0.2 0.3 0.4 0.5

0.00

0.02

0.04

0.06

0.08

0.10 1.2% Na

2CO

3

Di st i l l ed wat er

Inte

rfa

cia

l sh

ea

r vis

co

sity

/ m

N s

m-1

Shear rate/ rad s-1

Figure3. Interfacial shear viscosity between 2% asphaltene model oil(Gu Dong 4#) and distilled water /1.2% Na2CO3 solution, 25 C.

0.0 0.1 0.2 0.3 0.4 0.5

0.00

0.01

0.02

0.03

0.04

0.05

In

terf

acia

l sh

ear

vis

co

sit

y/m

N s

m-1

Shear rate/rad s-1

1.2% NaOH distilled water

Figure4. Interfacial shear viscosity between 2% resin model

oil(Da Qing) and distilled water /1.2% NaOH solution, 25 C.

0.0 0.1 0.2 0.3 0.4 0.5

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

Inte

rfa

cia

l sh

ea

r vis

co

sity

/ m

N s

m-1

Shear rate/ rad s-1

Saturate Aromatic Resin Asphaltene

Figure5. Interfacial shear viscosity between model

oils(Gu Dong 1#) and 1.2% Na2CO3 solution, 25 C.

0.0 0.1 0.2 0.3 0.4 0.5

0.00

0.02

0.04

0.06

0.08

0.10

Interfacial shear viscosity

/ m

N s

m-1

Shear r at e/ rad s-1

Saturate Aromatic Resin Asphaltene

Figure6. Interfacial shear viscosity between model

oils(Gu Dong 4#) and 1.2% Na2CO3 solution, 25 C.

0.0 0.1 0.2 0.3 0.4 0.5-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Inte

rfa

cia

l sh

ea

r vis

co

sity

/ m

N s

m-1

Shear rate/ rad s-1

Saturate Aromatic Resin Asphaltene

Figure7. Interfacial shear viscosity between model

oils(Da Qing) and 1.2% NaOH solution, 25 C.

0 10 20 30 40 500

10

20

30

40

50

60

70

80

90

100

S

epar

atio

n of

wat

er/

%

Separation time / min

Reaction time 1 d 3 d 6 d 8 d 47d 54d

0 10 20 30 40 50 60 70

0

20

40

60

80

100

Se

pa

ratio

n o

f w

ate

r/%

Separation time/min

Reaction time 1 d 3 d 4 d 7 d 15d 21d

Figure11 Stability of the emulsion formed of asphaltene model oil

(Gu Dong 1#) and distilled water(A) or1.2%Na2CO3 water solution(B), 60 C

(A) (B)

Stability of emulsions

0 10 20 30 40 50 600

10

20

30

40

50

60

70

80

90

100

Separation time/min

Reaction time 1 d 3 d 6 d 8 d 47d 54d

Sep

arat

ion

of w

ater

/%

-2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32-10

0

10

20

30

40

50

60

70

80

90

100

Sep

arat

ion

of

wat

er/%

Separation time/min

Reaction time 1 d 3 d 9 d 14d 21d 27d 34d 77d 84d

Figure13 Stability of the emulsion formed of asphaltene model oil

(Gu Dong 4#) and distilled water(A) or1.2%Na2CO3 water solution(B), 60 C

(A) (B)

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

80

90

100

110

S

ep

ara

tio

n o

f w

ate

r/%

Separation time/min

Reaction time 1 d 3 d 9 d 14d 21d 34d 77d 84d

0 10 20 30 40 50 60 700

10

20

30

40

50

60

70

80

90

100

Se

pa

ratio

n o

f w

ate

r/%

Separation time/ min

Reaction time 1 d 3 d 9 d 14d 21d 27d 34d 77d 84d

0 10 20 30 40 50 60 700

10

20

30

40

50

60

70

80

90

100

S

ep

ara

tio

n o

f w

ate

r/%

Separation time/min

Reaction time 1 d 3 d 9 d 14d 21d 27d 34d 77d 84d

0 10 20 30 40 50 60 700

10

20

30

40

50

60

70

80

90

100

S

ep

ara

tio

n o

f w

ate

r/%

Separation time/ min

Reaction of time 1 d 3 d 14d 21d 27d 34d 77d 84d

Figure16 Stability of the emulsion formed with Da Qing crude model oil and 1.2%NaOH water solution, 60 C.

Saturate Asphaltene

Resin Crude oil

0 1 2 3 4 5 6 7 8 9 106

7

8

9

10

11

12

13

14

15

16

Inte

rfac

ial t

ensi

on

/mN

m-1

Reaction time/week

1 2 3 4 5 6 7

0.0250

0.0275

0.0300

0.0325

0.0350

0.0375

0.3 rad s-1

0.1 rad s-1

Inte

rfac

ial s

hea

r vi

sco

sity

/mN

s m

-1

Reaction time/day

Da Qing crude oil(3.0% saturate model oil, 0.6% NaOH solution, 25℃)

Interfacial tension Interfacial shear viscosity

Interfacial active fractions

418.

84

719.

47

1376

.8614

62.7

7

1593

.23

1732

.77

2849

.13

2918

.06

2953

.90

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Abs

orba

nce

2000 4000 Wavenumbers (cm-1)

719.

66

971.

46

1377

.13

1462

.43

1563

.90

1710

.58

2850

.55

2922

.10

2954

.72

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

Abs

orba

nce

2000 4000 Wavenumbers (cm-1)

Figure19 IR spectroscopy of saturate fraction(A) and the interfacially active components(B) formed

in the reaction of saturate and NaOH.

C-O stretching vibration carboxylic groups Reaction of saturate and NaOH

IR parameters of fractions and crude oils

1380

1460

A

ADegree of branch

1600

(1600 1460)

A

A Degree of aromaticity

(1750 1650)

(1600 1460)

A

A

Content of carbonyl in the hydrocarbon

1100

(1600 1460)

A

A

Content of ether in the hydrocarbon

3200

(1600 1460)

A

A

Content of acid, alcohol and phenol in the hydrocarbon

1380

1460

A

AFractions

Saturate 0.463 - 0.037 0.031 -

Aromatic 0.479 0.166 0.090 0.088 0.021

Resin1 0.696 0.355 0.385 0.201 0.204

Asphaltene 0.769 0.356 0.435 0.171 0.254

Crude oil 0.626 0.148 0.0928 0.0299 0.0327

1600

(1600 1460)

A

A

(1750 1650)

(1600 1460)

A

A

1100

(1600 1460)

A

A

3200

(1600 1460)

A

A

Table7-1 IR parameters of fractions and crude oils

Gu Dong1# crude oil

1380

1460

A

AFractions

Saturate 0.390 - 0.003 0.002 -

Aromatic 0.394 0.127 0.062 0.049 0.015

Resin1 0.546 0.265 0.264 0.095 0.150

Asphaltene 0.676 0.303 0.421 0.213 0.232

Crude oil 0.595 0.154 0.084 0.074 0.028

1600

(1600 1460)

A

A

(1750 1650)

(1600 1460)

A

A

1100

(1600 1460)

A

A

3200

(1600 1460)

A

A

Table7-2 IR parameters of fractions and crude oils

Gu Dong4# crude oil

1380

1460

A

AFractions

Saturate 0.369 - 0.052 0.045 -

Aromatic 0.386 0.162 0.199 0.067 0.024

Resin1 0.440 0.237 0.336 0.123 0.069

Asphaltene 0.584 0.262 0.312 0.107 0.052

Crude oil 0.510 0.108 0.071 0.020 0.019

1600

(1600 1460)

A

A

(1750 1650)

(1600 1460)

A

A

1100

(1600 1460)

A

A

3200

(1600 1460)

A

A

Table7-3 IR parameters of fractions and crude oils

Da Qing crude oil

Conclusion

•Carboxylic acids in the fractions of asphaltene from Gu Dong crude, the resin from Da Qing crude and the fatty acid in the fractions of saturate from Da Qing crude are responsible for decreasing the interfacial tension;

•These acids have smaller relatively molecule mass, more branch chain, more oxygen but they are not able to stabilize emulsion. It is the acids with lager relatively molecule mass are responsible for stabilizing the emulsions.

•For model oil and alkali solution system the salt or

soap formed by fast reaction of the acid, ester with

smaller relatively molecule mass and alkali is responsible

for decreasing the interfacial tension. The salt or soap

formed by slow reaction of the acid, ester with lager

relatively molecule mass and alkali is responsible

for stabilizing crude oil emulsions.

Effect of Polymer

Polymer:

Hydrolyzed polyacrylamide(HPAM)

MW: 12-18 106

Hydrolysis degree:25%.

Concentration: 1000-2500 mg/L

Emulsion:

O/W emulsion

Daqing crude oil

Table 1 Interfacial tension between model oil and HPAM solution (mNm-1)

Model oilHPAM/mg/L

Jet fuel Resin Asphaltene Crude

0 52.2 17.2 15.2 23.0

25 52.8 24.2 20.4 30.1

50 55.4 27.7 19.1 29.9

100 54.7 26.2 20.6 29.8

200 46.2 22.8 18.7 27.9

300 48.6 24.4 17.8 27.1

400 49.1 17.1 18.2 31.1

Interfacial tension

0 10 20 30 40 50-0.002

0.000

0.002

0.004

0.006

0.008

0.010

0.012In

terf

acia

l vis

co

sit

y/m

Nm

s-1

HPAM concentration/mgL-1

Interfacial shear viscosity

Figure1 Interfacial shear viscosity between resin model oil and HPAM solution(oil: 1 % resin model oil , water: HPAM solution , T: 25℃ , shear rate: 0.3 rads-1)

0.0 0.1 0.2 0.3 0.4 0.50.000

0.005

0.010

0.015

0.020

0.025

0.030In

terf

acia

l vis

co

sit

y/m

Nm

s-1

shear rate/rads-1

HPAM con. (mg/L)

0 5 10 20 50

Figure2 Interfacial shear viscosity between asphaltene model oil and HPAM solution(oil: 1 % asphaltene model oil , water: HPAM solution , T: 25 )℃

System Interfacial shear viscosity/mNms-1

Crude model oil/synthetic formation water

0.1103

Crude model oil/HPAM solution ( 50mg/L )

0.1416

T: 25 , shear rate: 0.3rads℃ -1.

Table2 Interfacial shear viscosity between crude model oil and HPAM solution

 

Resin model oil/5 %

Asphaltene model oil/5

Crude oil

0 -11.6 -9.1 -21.1

50   - -11.3

100 -15.10 -44.5 -13.5

200   -42.8 -25.1

HPAM/mgL-1

Table3 Zeta potential on the surface of oil drops/mV

Zeta potential

Conclusion:

The emulsion(o/w) formed in polymer

flooding is stabilized by the steric and

electrostatic stabilization of the polymers

Effect of Surfactant

Surfactant:

Petroleum sulphonate

Active content in the surfactant is 48.69 wt%.

Concentration: 0.3%

Emulsion:

O/W emulsion

Shengli crude oil

 

Aqueous

Model oil

0.0% TRS 0.1% TRS 0.3% TRS 0.5% TRS

IFTmN.m-1

Timemin

IFTmN.m-1

Timemin

IFTmN.m-1

Timemin

IFTmN.m-1

Timemin

3% asphaltene

4.388 850 0.118 750 0.0066 110 0.0012 60

3% resin 6.854 200 0.0212 80 0.0082 30 0.0013 25

3% crude oil

8.583 350 0.989 220 0.0168 130 0.0099 110

Table 2 Effects of petroleum solfonate on IFT

Interfacial tension

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

s /

mN

s m

-1

/ rad s-1

petroleum sulfonat 0.0 wt% petroleum sulfonat 0.1 wt% petroleum sulfonat 0.2 wt% petroleum sulfonat 0.3 wt% petroleum sulfonat 0.5 wt%

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.1

0.2

0.3

0.4

0.5

s /

mN

s m

-1

/ rad s-1

petroleum sulfonate 0.0 wt%

petroleum sulfonate 0.1 wt%

petroleum sulfonate 0.3 wt%

petroleum sulfonate 0.5 wt%

petroleum sulfonate 0.2 wt%

3% crude model 3% asphaltene model

Interfacial shear viscosity

0 20 40 60 80 100 120

0.0

0.2

0.4

0.6

0.8

1.0

vol.-

% o

il s

eper

atio

n

time / min

petroleum sulfonate 0.0% petroleum sulfonate 0.1% petroleum sulfonate 0.3% petroleum sulfonate 0.5%

0 20 40 60 80 100 120

0

20

40

60

80

100

sepa

ratio

n of

oil

phas

e / %

t / min

petroleum sulfonate 0.0 wt%

petroleum sulfonate 0.1 wt%

petroleum sulfonate 0.3 wt%

petroleum sulfonate 0.5 wt%

3% crude model 3% asphaltene model

Stability of Emulsions

Conclusion:

The emulsion(o/w) formed in ASP flooding is

stabilized by the interfacial film, steric and

electrostatic stabilization of asphaltene,

polymers and the interfacial active substances

formed by reaction of alkali and crude oils.

Thanks

Recommended