Honors ~ Cells & insulin and cell communication 1314

Preview:

Citation preview

Cells: Honors Biology ~ Edgar

Hemocytometer

Counting Guidelines

• Cells Should not be overlapping.

• Cells should be uniformly distributed

• You need to count 100 cells to be statistically significant.

• Where to Count – no bias.

Which Cells to Count

Peptidoglycancell walls

Figure 6.8a

ENDOPLASMIC RETICULUM (ER)

RoughER

SmoothER

Nuclearenvelope

Nucleolus

Chromatin

Plasmamembrane

Ribosomes

Golgi apparatus

LysosomeMitochondrion

Peroxisome

Microvilli

MicrotubulesIntermediate filaments

Microfilaments

Centrosome

CYTOSKELETON:

Flagellum NUCLEUS

Figure 6.8c

NUCLEUS

Nuclearenvelope

Nucleolus

Chromatin

Golgiapparatus

Mitochondrion

Peroxisome

Plasma membrane

Cell wall

Wall of adjacent cell

Plasmodesmata

Chloroplast

Microtubules

Intermediatefilaments

Microfilaments

CYTOSKELETON

Central vacuole

Ribosomes

Smoothendoplasmicreticulum

Roughendoplasmic

reticulum

Cell Biology and Diabetes

Red arrows indicate Beta Cells

Endomembrane System

Proinsulin - Orange

Figure 11.5a

Local signaling

Target cell

Secretingcell

Secretoryvesicle

Local regulatordiffuses throughextracellular fluid.

(a) Paracrine signaling (b) Synaptic signaling

Electrical signalalong nerve celltriggers release ofneurotransmitter.

Neurotransmitter diffuses across synapse.

Target cellis stimulated.

Figure 11.5b

Long-distance signaling

Endocrine cell Bloodvessel

Hormone travelsin bloodstream.

Target cellspecificallybinds hormone.

(c) Endocrine (hormonal) signaling

Figure 11.6-1

Plasma membrane

EXTRACELLULARFLUID

CYTOPLASM

Reception

Receptor

Signalingmolecule

1

Figure 11.6-2

Plasma membrane

EXTRACELLULARFLUID

CYTOPLASM

Reception Transduction

Receptor

Signalingmolecule

Relay molecules in a signal transductionpathway

21

Figure 11.6-3

Plasma membrane

EXTRACELLULARFLUID

CYTOPLASM

Reception Transduction Response

Receptor

Signalingmolecule

Activationof cellularresponse

Relay molecules in a signal transductionpathway

321

Igf-1

Insulin-like growth factor 1

Types of Cell Receptors

GCPR on Beta Cells

Figure 11.7c

Signalingmolecule (ligand)

21

3 4

Ligand-binding site

helix in themembrane

Tyrosines

CYTOPLASM Receptor tyrosinekinase proteins(inactive monomers)

Signalingmolecule

Dimer

Tyr

Tyr

Tyr

Tyr

Tyr

Tyr

Tyr

Tyr

Tyr

Tyr

Tyr

Tyr

Tyr

Tyr

Tyr

Tyr

Tyr

Tyr

Tyr

Tyr

Tyr

Tyr

Tyr

Tyr

Tyr

Tyr

Tyr

Tyr

Tyr

Tyr

Tyr

Tyr

Tyr

Tyr

Tyr

Tyr

P

P

P

P

P

P

P

P

P

P

P

P

Activated tyrosinekinase regions(unphosphorylateddimer)

Fully activatedreceptor tyrosinekinase(phosphorylateddimer)

Activated relayproteins

Cellularresponse 1

Cellularresponse 2

Inactiverelay proteins

6 ATP 6 ADP

Insulin Receptortyrosine kinase receptor

Signal Transduction Pathway

Figure 11.7d

Signalingmolecule (ligand)

21 3

Gate closed Ions

Ligand-gatedion channel receptor

Plasmamembrane

Gate open

Cellularresponse

Gate closed

Figure 11.10

Receptor

Signaling molecule

Activated relaymolecule

Phosphorylation cascade

Inactiveprotein kinase

1 Activeprotein kinase

1

Activeprotein kinase

2

Activeprotein kinase

3

Inactiveprotein kinase

2

Inactiveprotein kinase

3

Inactiveprotein

Activeprotein

Cellularresponse

ATPADP

ATPADP

ATPADP

PP

PP

PP

P

P

P

P i

P i

P i

Second Messengers

Figure 11.12

G protein

First messenger(signaling moleculesuch as epinephrine)

G protein-coupledreceptor

Adenylylcyclase

Second messenger

Cellular responses

Proteinkinase A

GTP

ATP

cAMP

Figure 11.16

Reception

Transduction

Response

Binding of epinephrine to G protein-coupled receptor (1 molecule)

Inactive G protein

Active G protein (102 molecules)

Inactive adenylyl cyclaseActive adenylyl cyclase (102)

ATPCyclic AMP (104)

Inactive protein kinase AActive protein kinase A (104)

Inactive phosphorylase kinase

Active phosphorylase kinase (105)

Inactive glycogen phosphorylase

Active glycogen phosphorylase (106)

Glycogen

Glucose 1-phosphate (108 molecules)

Figure 11.13

Mitochondrion

EXTRACELLULARFLUID

Plasmamembrane

Ca2

pump

Nucleus

CYTOSOL

Ca2

pump

Ca2

pump

Endoplasmicreticulum(ER)

ATP

ATP

Low [Ca2 ]High [Ca2 ]Key

Figure 11.14-1

G protein

EXTRA-CELLULARFLUID

Signaling molecule(first messenger)

G protein-coupledreceptor

Phospholipase C

DAG

PIP2

IP3

(second messenger)

IP3-gatedcalcium channel

Endoplasmicreticulum (ER)

CYTOSOL

Ca2

GTP

Figure 11.14-2

G protein

EXTRA-CELLULARFLUID

Signaling molecule(first messenger)

G protein-coupledreceptor

Phospholipase C

DAG

PIP2

IP3

(second messenger)

IP3-gatedcalcium channel

Endoplasmicreticulum (ER)

CYTOSOL

Ca2

(secondmessenger)

Ca2

GTP

Figure 11.14-3

G protein

EXTRA-CELLULARFLUID

Signaling molecule(first messenger)

G protein-coupledreceptor

Phospholipase C

DAG

PIP2

IP3

(second messenger)

IP3-gatedcalcium channel

Endoplasmicreticulum (ER)

CYTOSOL

Variousproteinsactivated

Cellularresponses

Ca2

(secondmessenger)

Ca2

GTP

Diabetes

Looking good. The pancreas of a mouse after it was transplanted with human beta cells (left) looks similar to that of an animal that produces insulin normally (right).

CREDIT: Narushima et al., Nature Biotechnology

Brimming with b's. Newfound cells in the pancreas give rise to neurons (red) and insulin-producing b cells (green).CREDIT: SEABERG ET AL., NATURE BIOTECHNOLOGY

The full picture. Human ES cells can eventually give rise to cells that resemble pancreatic beta cells (labeled β).

Cell Membranes and Transport

Honors Biology ~ Edgar

Glucose, Starch, IKI, Water

Osmosis

Osmosis

Concept Check

• If a Paramecium were to swim from a hypotonic environment to an isotonic one, would the activity of its contractile vacuole increase or decrease? Why?

Concept Check• This diagram represents osmosis

of water across a semipermeable membrane. The U-tube on the right shows the results of the osmosis. What could you do to level the solutions in the two sides of the right hand U-tube?a) Add more water to the left hand side.

b) Add more water to the right hand side.

c) Add more solute to the left hand side.

d) Add more solute to the right hand side.

Answer

•This diagram represents osmosis of water across a semipermeable membrane. The U-tube on the right shows the results of the osmosis. What could you do to level the solutions in the two sides of the right hand U-tube?

c) Add more solute to the left hand side.

Sodium Potassium

Pump

Jmol

Harvard BioVisions

Vegetables in Sucrose Solutions

-30.00

-20.00

-10.00

0.00

10.00

20.00

30.00

0 0.2 0.4 0.6 0.8 1 1.2

Sucrose Concentration (Molarity)

Per

cen

t C

han

ge

in M

ass

(%)

Beet

Potato

Carrot

Figure 11.2

Exchange of mating factors

Receptor factor

a factorYeast cell,

mating type aYeast cell,

mating type

Mating

New a/ cell

1

2

3

a

a

a/

Figure 11.17

Wild type (with shmoos) Fus3 formin

Matingfactoractivatesreceptor.

Matingfactor G protein-coupled

receptor

Shmoo projectionforming

Formin

G protein binds GTPand becomes activated.

2

1

3

4

5

P

P

P

PForminFormin

Fus3

Fus3Fus3

GDPGTP

Phosphory- lation cascade

Microfilament

Actinsubunit

Phosphorylation cascadeactivates Fus3, which movesto plasma membrane.

Fus3 phos-phorylatesformin,activating it.

Formin initiates growth ofmicrofilaments that formthe shmoo projections.

RESULTS

CONCLUSION