MPR portugal 2007

Preview:

DESCRIPTION

This 2007 presentation gives an overview on some aspects of the Cambridge Multipass Rheometer (MPR)

Citation preview

“The Cambridge Multipass Rheometer”

By

Malcolm MackleyDepartment of Chemical Engineering University of Cambridge

The Cambridge MultiPass Rheometer (MPR)

Pressure variation mode Rheology flow modeCross-slot flow mode

Key issues for Processing in general Temperature Pressure Flow Time

Key features of MPR

Temperature -10 to 210 CentigradePressure 1 to 200 bar Flow 1 to 100000 reciprocal secondsTime ms to hoursEnclosed small volume

Cambridge MPRs

MPR2

MPR4

MPR3

J Rheology 1995

J Rheology 1995

Conventional ice cream microstructure:

100m x300

Ice Crystals

Matrix

Air cells

Ice creama complex composite material:

Ice cream is a 3 phase material: diameter range -5°c

–ice crystals 25m to 40 m 15%–air bubbles 20m to 60 m 50%–matrix 35%

= 0.6 = 0.5

= 0.4

= 0.0

0

1

10

100

1000

10000

100000

0.01 0.1 1 10 100 1000 10000 100000

Shear stress (Pa)

Ap

par

ent

visc

osi

ty (

Pa.

s)

Parallel Plates MPR-3

= 0.6 = 0.5

= 0.4

= 0.0

0

1

10

100

1000

10000

100000

0.01 0.1 1 10 100 1000 10000 100000

Shear stress (Pa)

Ap

par

ent

visc

osi

ty (

Pa.

s)

Parallel Plates MPR-3

Ice cream matrix with foam inclusion

Ice cream matrix and foam inclusion

Visualisation; Linkam CSS (Cambridge Shear System)

Optical Flow birefringence

Rudy Valette CEMEF Sophia Antipolis

France

Dr David Hassell

Multi-Pass Rheometer (MPR)top piston

heating jacket

pressure transducer

slit die orcapillary inserts

bottom piston

time

diff

ere

nti

al p

ressu

re

FLOW

100

1000

10000

0.01 0.1 1 10 100 1000 10000shear rate (s-1)

*

(Pa.

s) PredictedRDSMPR2, L/D=2.5MPR2, L/D=5MPR2, L/D=20MPR4, L/D=2.5MPR4, L/D=4MPR4, L/D=5

Pressure difference vs time Flow curve

Case Study 1. Rudy Valette CMEF

LLDPE Experiment and matching simulation

Pressure drop vs TimeMPR4

0

2

4

6

8

10

12

0 0,5 1 1,5 2 2,5 3 3,5 4

Time (s)

Pre

ssu

re d

rop

(B

ars)

Experiment

Compressible Rolie Poly

Compressible Carreau

Incompressible Rolie Poly

LLDPE differential pressure responses

Rheo-X-RAY

X-Ray source

X-Ray 2D detector

Sample

Piston

Beam stop

Beryllium capillary

Detector positioning rail

The Cambridge Multipass Rheometer (MPR)

Pressure variation mode Rheology flow mode Cross-slot flow mode

Foaming Tri Tuladhar, Nitin Nowjie

Thermocouple

Capillary/ Optical window

Heating circuit

Bottom piston

Top piston

Pressure transducer

Thermal insulation

Bleed valve

5

Growth profiles for different bubbles

12

1

2

3

4

5

Initial FinalPT – TT – XT

PB – TB – XB

41.94 – 149.89 – 6.83

41.47 – 149.99 – 8.254.07 – 149.89 – 0.12

4.44 – 150.01 – 1.38

Piston speed = 0.5 mm/s

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500

Time (s)

Bo

tto

m b

arr

el p

res

su

re (

0.1

x b

ar)

Eq

uiv

ale

nt

bu

bb

le r

ad

ius

(m

)

Bubble 1

Bubble 2

Bubble 3

Bubble 4

Bubble 5

P-bot

0

50

100

150

200

250

300

350

400

0.001 0.01 0.1 1 10 100 1000 10000

Time (s)

Bu

bb

le r

adiu

s (

m)

Bubble 1

Bubble 2

Bubble 3

Bubble 4

Bubble 5

Model - So = 60microns, Dw = 1E-11 m2/s

Model - So = 60microns, Dw = 6E-16 m2/s

Model - So = 50microns, Dw = 6E-16 m2/s

Model matching with experimental data

15

Best fit conditions:

T = 150°C, Pf = 4.0 bar, Ro = 0.1 m,

co = 30wt%, o= 1105 Pa s,

Dw = 610-16 m2/s, = 1500 kg/m3,

= 0.05 N/m, KH = 110-8 Pa-1

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E-01 1.0E+00 1.0E+01

shear rate (s-1)

Vis

cosi

ty (

Pa

s)

19

Capillary: 12mm diameter, 56mm length

30% moisture content potato starch

T = 140oC

Apparent viscosity (app) of starch melt at 70 bar pressure

Starch melt rheology in the MPR

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E-01 1.0E+00 1.0E+01 1.0E+02

Frequency (Hz)

G',

G'',

*

20

Capillary: 12mm diameter, 56mm length

25% moisture content potato starch

T = 141.9oC

Viscoelastic behaviour of starch melt

Storage modulus, G’Loss modulus, G’’Complex viscosity, *

Initial pressure maintained at 70 bar

Cross Slot, Kris Coventry

• The MPR action was modified for cross-slot flow

• Pistons move out of phase and force polymer through a cross-slot geometry

• New inserts were fabricated for cross-slot flow

Flow PatternCross-Slot flow

• The aim is to generatea hyperbolic flowpattern as shown.

• Near the walls the flowdeviates from ideal.

• Along the symmetry axeswe have rotation free pure extensional flow.

Apparatus

• Molten polymer is driven through a central section by two servo-hydraulically driven pistons.

• Air pressure is used to return it so that multiple experiments can be carried out on the same apparatus Servo-hydraullically

driven piston

Servo-hydraullically driven piston

Slave piston driven by air pressure

Slave piston driven by air pressure

1.5 mm

1.5 mm0.75 mm radius

Apparatus

Centre Section

3 cm

Typical Result

-Dow PS680E

-Piston velocity of 0.5 mm/s (maximum extension rate =4.3/s).

-Inlet slit width=1.5mm

-Section depth=10mm

- T=180°C.

Pom-Pom SimulationFlowsolve

8 mode Pom-Pom Constitutive Equation.

Filament stretch

DEP + 1 wt% PS +2.5 wt% PS + 5.0 wt%

t-ts = -20 ms -17 ms -17 ms -11 ms1.2 mm

t-ts = -1 ms 0 ms 0 ms 5 ms

t-ts = 1 ms 1 ms 2 ms 6 ms

Piston diameter = 5 mm

Filament initially stretched to 1.5 mm on each side

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 20 40 60 80 100 120 140

Time (ms)

Mid

fila

men

t di

amet

er (

µm

) 10 30 50 80

100 130 150 180

200 250 300

Stretch velocity (mm/s)

Piston stop time,tstop = 150 ms

tstop = 50 ms

tstop = 30 ms

1.2 mm1.2 mm

Recommended