39
Equilibrium Temperature with Greenhouse Gases

Equilibrium Temp W Ghg

Embed Size (px)

DESCRIPTION

Lesson 4 of Climate Change for Advanced Physics; teacher: Gary Bent

Citation preview

Page 1: Equilibrium Temp W Ghg

Equilibrium Temperature with

Greenhouse Gases

Page 2: Equilibrium Temp W Ghg
Page 3: Equilibrium Temp W Ghg

z

T

Equation for temperature change with altitude in the troposphere

Γ is called the lapse rate for the troposphere.

Page 4: Equilibrium Temp W Ghg

km

Co

7.6

Average lapse rate for dry air in the troposphere

Page 5: Equilibrium Temp W Ghg

At this altitude, 95% of IR escapes to space without further absorption.

Page 6: Equilibrium Temp W Ghg

We want to find what the altitude is for 95% escape of IR,

And the surface temperature of the Earth with greenhouse gases.

Page 7: Equilibrium Temp W Ghg

We will use a two system model of the atmosphere. The two systems being the troposphere and the stratosphere.

We will assume thermal equilibrium in the stratosphere.

Page 8: Equilibrium Temp W Ghg

Stratosphere

Troposphere

Page 9: Equilibrium Temp W Ghg

4

tabsTI

Page 10: Equilibrium Temp W Ghg

4

tabsTI

4)1(

tradTI

Page 11: Equilibrium Temp W Ghg

4

tabsTI

4)1(

tradTI

4

sradTI

4

sradTI

Page 12: Equilibrium Temp W Ghg

For thermal equilibrium, power in = power out

Pin=Pout

For Pin we need to multiply all the intensities going in by area

For Pout, we need to multiply all the intensities going out by area.

Page 13: Equilibrium Temp W Ghg

4

tabsTI

4)1(

tradTI

4

sradTI

4

sradTI

Pin = A(ασTt4+(1- α)σTt

4)

Page 14: Equilibrium Temp W Ghg

4

tabsTI

4)1(

tradTI

4

sradTI

4

sradTI

Pin = A(ασTt4+σTt

4- ασTt4)

Page 15: Equilibrium Temp W Ghg

4

tabsTI

4)1(

tradTI

4

sradTI

4

sradTI

Pin = A(ασTt4+σTt

4- ασTt4) = AσTt

4

Page 16: Equilibrium Temp W Ghg

4

tabsTI

4)1(

tradTI

4

sradTI

4

sradTI

Pout = A(2εσTs4+(1- α)σTt

4)

Page 17: Equilibrium Temp W Ghg

Pin = Pout

AσTt4 = A(2εσTs

4+(1- α)σTt4)

ε=α, SO

Page 18: Equilibrium Temp W Ghg

AσTt4 = A(2ασTs

4+(1- α)σTt4)

Page 19: Equilibrium Temp W Ghg

σTt4 = 2ασTs

4+ σTt4 - ασTt

4

Page 20: Equilibrium Temp W Ghg

σTt4 = 2ασTs

4+ σTt4 - ασTt

4

Page 21: Equilibrium Temp W Ghg

0= 2ασTs4- ασTt

4

Page 22: Equilibrium Temp W Ghg

0= 2Ts4- Tt

4

Page 23: Equilibrium Temp W Ghg

0= 2Ts4- Tt

4

+Tt4 +Tt

4

Page 24: Equilibrium Temp W Ghg

Tt4 = 2Ts

4

Page 25: Equilibrium Temp W Ghg

4

1

2

t

s

TT

Page 26: Equilibrium Temp W Ghg

The temperature at which IR is escaping has to be 255 K because we have thermal equilibrium at this altitude with no absorption by greenhouse gases.

Thus Tt = 255 K

Page 27: Equilibrium Temp W Ghg

4

1

2

255 KT

s

Page 28: Equilibrium Temp W Ghg

And the answer is

Ts = 214 K

Page 29: Equilibrium Temp W Ghg

214K

214K

Page 30: Equilibrium Temp W Ghg

z

T

Now let us find the altitude at which Tt = 255 K

Page 31: Equilibrium Temp W Ghg

km

C

zz

TT o

if

if7.6

Page 32: Equilibrium Temp W Ghg

)(7.6if

o

ifzz

km

CTT

Page 33: Equilibrium Temp W Ghg

The average top of the troposphere is zf = 11 km, so

)11(7.6214i

o

izkm

km

CTK

Page 34: Equilibrium Temp W Ghg

i

o

zkm

CKKK 7.67.73255214

Page 35: Equilibrium Temp W Ghg

i

o

zkm

CKK 7.67.7341

+73.7K +73.7K

Page 36: Equilibrium Temp W Ghg

iz

km

KK 7.67.32

Page 37: Equilibrium Temp W Ghg

km

K

Kz

i

7.6

7.32

Page 38: Equilibrium Temp W Ghg

And the answer is

zi = 4.9 km

Page 39: Equilibrium Temp W Ghg

HOMEWORK:

1. Use Tf = 214 K and zf = 11 km to find the surface temperature of the Earth with greenhouse gases.

If CO2 doubles in the atmosphere, the top of the troposphere is predicted to rise to 11.6 km. What would the surface temperature of the Earth be then?