62
INTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas (en colocaciones y captaciones) Samir Homsi Aragón Inteligencia Artificial aplicada a las finanzas

Inteligencia artificial aplicada a las finanzas

Embed Size (px)

Citation preview

Page 1: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

(en colocaciones y captaciones)

Samir Homsi AragónSamir Homsi Aragón

Inteligencia Artificialaplicada a las finanzas

Page 2: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

CONTENIDOCONTENIDOCONTENIDOCONTENIDO

Inteligencia Artificialaplicada a las finanzas

Page 3: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

Índice de avanceÍndice de avance

CONTENIDOCONTENIDO

Parte I. Redes Neuronales

Parte II. Algoritmos Genéticos

Page 4: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

PARTE IPARTE IRedes NeuronalesRedes Neuronales

PARTE IPARTE IRedes NeuronalesRedes Neuronales

Inteligencia Artificialaplicada a las finanzas

Page 5: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

IntroducciónIntroducción

PARTE I. Redes NeuronalesPARTE I. Redes Neuronales

Las Redes Neuronales (NN: Neural Networks) fueron creadas con el propósito de intentar replicar el funcionamiento del cerebro. El componente principal se centra en el uso de neuronas y el funcionamiento que éstas tienen en un organismo biológico.

El primer modelo de red neuronal fue propuesto en 1943 por McCulloch y Pitts. Este modelo era binario, donde cada neurona tenía una escala o umbral prefijado. Este modelo sirvió de base para el desarrollo de toda esta nueva área del conocimiento humano.

Page 6: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

IntroducciónIntroducción

PARTE I. Redes NeuronalesPARTE I. Redes Neuronales

Una primera clasificación de los modelos de NN es:

1. Modelos inspirados en la Biología: Estos comprenden las redes que tratan de simular los sistemas neuronales biológicos, así como ciertas funciones como las auditivas o de visión.

2. Modelos artificiales aplicados: Estos modelos no tienen por qué guardar similitud estricta con los sistemas biológicos. Sus arquitecturas están bastante ligadas a las necesidades de las aplicaciones para las que son diseñados.

Page 7: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

Modelos BiológicosModelos Biológicos

PARTE I. Redes NeuronalesPARTE I. Redes Neuronales

Se estima que el cerebro humano contiene más de cien mil millones (10E11) de neuronas y 10E14 sinapsis en el sistema nervioso. Los estudios realizados sobre la anatomía del cerebro humano concluyen que hay, en general, más de 1000 sinapsis por término medio a la entrada y a la salida de cada neurona.

Aunque el tiempo de conmutación de las neuronas biológicas (unos pocos milisegundos) es casi un millón de veces mayor que en las actuales componentes de las computadoras, las neuronas naturales tienen una conectividad miles de veces superior a la de las artificiales.

El objetivo principal de las redes neuronales de tipo biológico es desarrollaroperaciones de síntesis y procesamiento de información, relacionadas con los sistemas biológicos.|

Page 8: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

Modelos BiológicosModelos Biológicos

PARTE I. Redes NeuronalesPARTE I. Redes Neuronales

Page 9: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

Modelos BiológicosModelos Biológicos

PARTE I. Redes NeuronalesPARTE I. Redes Neuronales

Page 10: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

Modelos BiológicosModelos Biológicos

PARTE I. Redes NeuronalesPARTE I. Redes Neuronales

• Existe algún generador de impulsos. Por ejemplo la mano cuando toca algo, el ojo cuando ve algo o el mismo cerebro cuando piensa en algo.

• Los impulsos son conducidos por el sistema nervioso hasta el cerebro.

• Ahí es cuando las neuronas hacen su labor. Las primeras son las que reciben el impulso (eléctrico) mediante sus dendritas.

• Estas primeras neuronas ante la señal recibida se activan, en su cuerpo se produce un proceso de orden químico y a través del axon envía una nueva señal eléctrica a las siguientes neuronas.

Page 11: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

Modelos BiológicosModelos Biológicos

PARTE I. Redes NeuronalesPARTE I. Redes Neuronales

• Ese proceso sigue a una velocidad inferior a las que alcanzan las actuales computadoras, pero es como si lo hicieran millones de computadoras al mismo tiempo.

• Cuando termina el proceso, el mismo cerebro, a través de su «red» instalada en el cuerpo humano (sistema nervioso), envía las señales respectivas.

• Por ejemplo, si la mano le envió la señal que está tocando algo en extremo caliente, será el cerebro el que procese esa información y luego de hacerlo, enviará una señal de que ciertos músculos deben mover rápidamente el brazo para que no se queme.

Page 12: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

Modelos BiológicosModelos Biológicos

PARTE I. Redes NeuronalesPARTE I. Redes Neuronales

Estímulos

La mano tiene n células receptoras

Las neuronas tienen en promedio 1000

conexiones c/u

La neurona recibe y reúne el estímulo de todas sus conexiones

La neurona procesa químicamente el impulso eléctrico de lo recibido

Emite una nueva señal a las siguientes neuronas

Page 13: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

Redes Neuronales ArtificialesRedes Neuronales Artificiales

PARTE I. Redes NeuronalesPARTE I. Redes Neuronales

Las ANN aplicadas están, en general, inspiradas en las redes neuronales biológicas, aunque poseen otras funcionalidades y estructuras de conexión distintas a las vistas desde la perspectiva biológica. Las características principales de las ANN son las siguientes:1. Auto-Organización y Adaptabilidad: utilizan algoritmos de aprendizaje adaptativo y auto-organización, por lo que ofrecen mejores posibilidades de procesado robusto y adaptativo.2. Procesado no Lineal : aumenta la capacidad de la red para aproximar funciones, clasificar patrones y aumenta su inmunidad frente al ruido.3. Procesado Paralelo: normalmente se usa un gran número de nodos de procesado, con alto nivel de interconectividad.

Page 14: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

Redes Neuronales ArtificialesRedes Neuronales Artificiales

PARTE I. Redes NeuronalesPARTE I. Redes Neuronales

Page 15: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

Redes Neuronales ArtificialesRedes Neuronales Artificiales

PARTE I. Redes NeuronalesPARTE I. Redes Neuronales

Page 16: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

Redes Neuronales ArtificialesRedes Neuronales Artificiales

PARTE I. Redes NeuronalesPARTE I. Redes Neuronales

FASES DE MODELIZACIÓN

Fase de entrenamiento: se usa un conjunto de datos o patrones de entrenamiento para determinar los pesos (parámetros) que definen el modelo de red neuronal. Se calculan de manera iterativa, de acuerdo con los valores de los valores de entrenamiento, con el objeto de minimizar el error cometido entre la salida obtenida por la red neuronal y la salida deseada.

Fase de Prueba: en la fase anterior, el modelo puede que se ajuste demasiado a las particularidades presentes en los patrones de entrenamiento, perdiendo su habilidad de generalizar su aprendizaje a casos nuevos (sobreajuste). Para evitar el problema del sobreajuste, es aconsejable utilizar un segundo grupo de datos diferentes a los de entrenamiento, el grupo de validación, que permita controlar el proceso de aprendizaje.

Page 17: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

Redes Neuronales ArtificialesRedes Neuronales Artificiales

PARTE I. Redes NeuronalesPARTE I. Redes Neuronales

TIPO DE REDES

Supervisadas. Son aquellas que cuentan con la posibilidad de comparar el resultado obtenido por la red, con el dato real que debiese haberse obtenido. Esto permite calcular el nivel de error y reacomodar los pesos de cada neurona de las capas ocultas, de tal forma que vuelva a intentarse un nuevo calculo que se aproxime más al dato correcto. Para que funcione este tipo de redes debe contarse con las parejas de datos, es decir, para cada juego de entrada de datos, su juego de salida. Esto servirá únicamente para la fase de entrenamiento y la fase de prueba. No Supervisadas. Para los modelos de entrenamiento no supervisado, el conjunto de datos de entrenamiento consiste sólo en los patrones de entrada. Por lo tanto, la red es entrenada sin el beneficio de un maestro. La red aprende a adaptarse basada en las experiencias recogidas de los patrones de entrenamiento anteriores.

Page 18: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

Función BaseFunción Base

PARTE I. Redes NeuronalesPARTE I. Redes Neuronales

FunciónBase

Función lineal tipo hiperplano

Función radial tipo hiperesfera

Page 19: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

Función Base – Uso de biasFunción Base – Uso de bias

PARTE I. Redes NeuronalesPARTE I. Redes Neuronales

Función Base

a

y

Bias o polarización: entrada constate de magnitud 1, y peso b que se introduce en el sumador

Page 20: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

Función de ActivaciónFunción de Activación

PARTE I. Redes NeuronalesPARTE I. Redes Neuronales

Función deActivación

Función sigmoidal

Función gausiana

Page 21: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

Estructura de una red neuronalEstructura de una red neuronal

PARTE I. Redes NeuronalesPARTE I. Redes Neuronales

Puede resumirse que una red neuronal se determina por las neuronas, matriz de pesos y funciones elegidas.

Hay tres tipos de capas de neuronas:• la capa de entrada,• la capa oculta y• la capa de salida.

Page 22: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

Estructuras de conexiónEstructuras de conexión

PARTE I. Redes NeuronalesPARTE I. Redes Neuronales

1. Conexiones hacia delante: los valores de las neuronas de una capa inferior son propagados hacia las neuronas de la capa superior por medio de las redes de conexiones hacia adelante.2. Conexiones hacia atrás: estas conexiones llevan los valores de las neuronas de una capa superior a otras de la capa inferior.3. Conexiones laterales: Un ejemplo típico de este tipo es el circuito “el ganador toma todo” (winner-takes-all ), que cumple un papel importante en la elección del ganador: a la neurona de salida que da el valor más alto se le asigna el valor total (por ejemplo, 1), mientras que a todas las demás se le da un valorde 0.4. Conexiones con retardo: los elementos de retardo se incorporan en las conexiones para implementar modelos dinámicos y temporales, es decir,modelos que precisan de memoria.

Page 23: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

Tamaño de una redTamaño de una red

PARTE I. Redes NeuronalesPARTE I. Redes Neuronales

En una red multicapa, puede haber una o más capas ocultas entre las capas de entrada y salida. El tamaño de las redes depende del número de capas y del número de neuronas ocultas por capa.

El número de unidades ocultas está directamente relacionado con las capacidades de la red. Para que el comportamiento de la red sea correcto, se tiene que determinar apropiadamente el número de neuronas de la capa oculta.

Page 24: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

Conceptos relacionados al aprendizajeConceptos relacionados al aprendizaje

PARTE I. Redes NeuronalesPARTE I. Redes Neuronales

Neuronas de entrada

Neuronasde salida

Par de entrenamiento

# Edad Sexo Nivel Ingresos Zona Formacion Est. Civil Ve-No1 87 Hombre 3549 Central Postgrado Viudo No2 59 Hombre 4876 Sud Postgrado Casado No3 15 Mujer 7778 Sud Primaria Casado No4 21 Mujer 7128 Norte Primaria Viudo No5 55 Hombre 9715 Norte Postgrado Soltero No6 17 Mujer 3328 Norte Primaria Viudo No7 36 Mujer 8262 Norte Postgrado Viudo No8 77 Mujer 8143 Norte Profesional Soltero No9 34 Hombre 1807 Central Profesional Divorciado No10 58 Mujer 9064 Central Profesional Casado Si11 87 Hombre 6717 Central Postgrado Divorciado No12 96 Hombre 1371 Sud Postgrado Viudo No...n

Variables independientes=

Neuronas de entrada

Variable dependiente=

Neurona de salida

Page 25: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

Conceptos relacionados al aprendizajeConceptos relacionados al aprendizaje

PARTE I. Redes NeuronalesPARTE I. Redes Neuronales

Par de entrenamiento# Edad Sexo Nivel Ingresos Zona Formacion Est. Civil Ve-No1 87 Hombre 3549 Central Postgrado Viudo No2 59 Hombre 4876 Sud Postgrado Casado No3 15 Mujer 7778 Sud Primaria Casado No4 21 Mujer 7128 Norte Primaria Viudo No5 55 Hombre 9715 Norte Postgrado Soltero No6 17 Mujer 3328 Norte Primaria Viudo No7 36 Mujer 8262 Norte Postgrado Viudo No8 77 Mujer 8143 Norte Profesional Soltero No9 34 Hombre 1807 Central Profesional Divorciado No10 58 Mujer 9064 Central Profesional Casado Si11 87 Hombre 6717 Central Postgrado Divorciado No12 96 Hombre 1371 Sud Postgrado Viudo No...n

Conjuntode pares

Como es de esperar, si se corre para el mismo par de entrenamiento este proceso varias veces, el resultado final sería, inadaptable para el resto de los pares. Ese no es el objetivo, sino lo que se desea es entrenar a la red con varias entradas (pares de entrenamiento) y luego ver que sucede cuando ingresamos alguna que no estaba en el set de datos de entrenamiento. Es por esta razón que no se itera sobre un mismo elemento del conjunto de datos hasta eliminar el error sino que se realiza un acercamiento con un elemento, luego con otro y así hasta recorrer todo el conjunto de datos. A esta recorrida sobre el conjunto de datos se la suele denominar epoch. El error no será bajo, pero la red se habrá acercado hacia una zona donde convergen todos los elementos. Al repetir el proceso varias veces, es decir iterar varios epoch, la red comenzará a entrenarse.

Page 26: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

Tasa de aprendizaje y factor momentoTasa de aprendizaje y factor momento

PARTE I. Redes NeuronalesPARTE I. Redes Neuronales

El valor de la tasa de aprendizaje controla el tamaño del cambio de los pesos en cada iteración. Se deben evitar dos extremos: un ritmo de aprendizaje demasiado pequeño puede ocasionar una disminución importante en la velocidad de convergencia y la posibilidad de acabar atrapado en un mínimo local; en cambio, un ritmo de aprendizaje demasiado grande puede conducir a inestabilidades en la función de error, lo cual evitará que se produzca la convergencia debido a que se darán saltos en torno al mínimo sin alcanzarlo. Por tanto, se recomienda elegir un ritmo de aprendizaje lo más grande posible sin que provoque grandes oscilaciones. En general, el valor de la tasa de aprendizaje suele estar comprendida entre 0.05 y 0.5.

El factor momento acelera la convergencia de los pesos. Suele tomar un valor próximo a 1 (por ejemplo, 0.9).

Page 27: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

TipsTips

PARTE I. Redes NeuronalesPARTE I. Redes Neuronales

• El número de neuronas ocultas determina la capacidad de aprendizaje de la red neuronal.

• Considerando el problema del sobreajuste, se debe usar el mínimo número de neuronas ocultas con las cuales la red rinda de forma adecuada.

• Esto se consigue evaluando el rendimiento de diferentes arquitecturas en función de los resultados obtenidos con el grupo de validación.

Page 28: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

• McCulloch y Pitts, en 1943, publicaron el primer estudio sobre el tema.

• El elemento central: perceptrón.

• Sólo permite discriminar entre dos clases linealmente

separables: XOR.

– 0.5= a = w1·x1 + w2·x2

– No hay combinación de x1 y x2 que resuelva este problema.

• Solución: más capas o funciones de transferencia no lineales.

a

y

PARTE I. Redes NeuronalesPARTE I. Redes Neuronales

Evolución ANN: PerceptronesEvolución ANN: Perceptrones

Page 29: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

• Generalización del algoritmo del perceptrón para sistemas con entradas y salidas continuas.

• Se define: =T-A= (salidas deseadas - salidas de la red).

• Minimiza una función de coste basada en ese vector de error:

• Si las funciones neuronales son lineales => un único mínimo

PARTE I. Redes NeuronalesPARTE I. Redes Neuronales

Evolución ANN: Regla deltaEvolución ANN: Regla delta

Page 30: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

• Función de transferencia lineal.

• Algoritmo de entrenamiento de Widrow-Hoff o Delta, tiene en cuenta la magnitud del error.

• Entrenamiento:– Suma de los cuadrados de los errores sea mínima.

– Superficie de error con mínimo único.

– Algoritmo tipo gradiente.

• Aproximan funciones lineales.

PARTE I. Redes NeuronalesPARTE I. Redes Neuronales

Evolución ANN: Redes Neuronales LinealesEvolución ANN: Redes Neuronales Lineales

Page 31: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

• Clave en el resurgimiento de las redes neuronales.

• Primera descripción del algoritmo fue dada por Werbos en 1974

• Generalización del algoritmo de Widrow-Hoff para redes multicapa con

funciones de transferencia no-lineales y diferenciables.

• 1989 Hornik, Stinchcombe y White– Una red neuronal con una capa de sigmoides es capaz de aproximar

cualquier función con un número finito de discontinuidades

• Propiedad de la generalización.

• En la función de transferencia no-lineal, la superficie de error tiene varios

mínimos locales.

PARTE I. Redes NeuronalesPARTE I. Redes Neuronales

Evolución ANN: BackpropagationEvolución ANN: Backpropagation

Page 32: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

• Función acotada, monótona creciente y diferenciable.

• Red de tipo feedforward.

• Suficiente con dos capas.

a

y

PARTE I. Redes NeuronalesPARTE I. Redes Neuronales

Evolución ANN: Red Perceptron Multicapa (MLP)Evolución ANN: Red Perceptron Multicapa (MLP)

Page 33: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

• Descripción:– Tras inicializar los pesos de forma aleatoria y con valores pequeños, se

selecciona el primer par de entrenamiento.

– Se calcula la salida de la red

– Se calcula la diferencia entre la salida real de la red y la salida deseada, con lo que se obtiene el vector de error

– Se ajustan los pesos de la red de forma que se minimice el error

– Se repiten los tres pasos anteriores para cada par de entrenamiento hasta que el error para todos los conjuntos de entrenamiento sea aceptable.

• Descenso por la superficie del error

• Cálculo de derivadas del error respecto de los pesos y de las bias.

Ade

lant

eA

trás

PARTE I. Redes NeuronalesPARTE I. Redes Neuronales

Evolución ANN: Algoritmo backpropagation IEvolución ANN: Algoritmo backpropagation I

Page 34: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

• Underfitting.

• Memorización o Sobreaprendizaje.

• Caracterización de la red. ¿Cuantas capas, cuantas neuronas en cada capa,…?

PARTE I. Redes NeuronalesPARTE I. Redes Neuronales

Evolución ANN: Problemas con Algoritmo BackpropagationEvolución ANN: Problemas con Algoritmo Backpropagation

Page 35: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

I• Autoorganizativas: durante el proceso de aprendizaje la red

debe descubrir por si misma regularidades o categorías => la red debe autoorganizarse en función de las señales procedentes del entorno.

• Mapa de Rasgos Autoorganizados, SOM (Kohonen, 80)

• Características:– Red competitiva

– Arquitectura unidireccional de dos capas:• Capa de entrada: m neuronas una por cada vector de entrada.

• Capa segunda se realiza el procesamiento, formando el mapa de rasgos. Tiene nx X ny neuronas operando en paralelo.

• Todas las neuronas de entrada están conectadas a las neuronas de la segunda capa, a través de los pesos wij

PARTE I. Redes NeuronalesPARTE I. Redes Neuronales

Evolución ANN: Redes Neuronales no supervisadasEvolución ANN: Redes Neuronales no supervisadas

Page 36: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

• Cada neurona (i,j) calcula la similitud entre el vector de entradas y su vector de pesos

• Vence la neurona cuyo vector de pesos es más similar al vector de entrada.

• Cada neurona sirva para detectar alguna característica del vector de entrada.

• Función de vecindad: relación entre neuronas próximas en el mapa.

PARTE I. Redes NeuronalesPARTE I. Redes Neuronales

Evolución ANN: Redes Neuronales No-SupervisadasEvolución ANN: Redes Neuronales No-Supervisadas

Page 37: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

• Ventajas de las redes neuronales artificiales:

– Aprendizaje adaptativo: lo necesario es aplicar un buen algoritmo y disponer de patrones (pares) de entrenamiento.

– Auto-organización => conduce a la generalización

– Tolerancia a fallos: las redes pueden aprender patrones que contienen ruido, distorsión o que están incompletos.

– Operación en tiempo real: procesan gran cantidad de datos en poco tiempo.

– Facilidad de inserción en tecnología ya existente.

PARTE I. Redes NeuronalesPARTE I. Redes Neuronales

Evolución ANN: Ventajas actualesEvolución ANN: Ventajas actuales

Page 38: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

• Detección de patrones.

• Filtrado de señales.

• Segmentación de datos.

• Control.

• Identificación.

En clase deberán hacerse ejercicios relativos a la aplicación de redes neuronales. Específicamente se harán ejercicios sobre:

• Predicción de series de tiempo

• Asociación

• Predicción con más de una variable dependiente

PARTE I. Redes NeuronalesPARTE I. Redes Neuronales

APLICACIONESAPLICACIONES

Page 39: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

PARTE IIPARTE IIAlgoritmos GenéticosAlgoritmos Genéticos

PARTE IIPARTE IIAlgoritmos GenéticosAlgoritmos Genéticos

Inteligencia Artificialaplicada a las finanzas

Page 40: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

Tipos de algoritmos evolutivosTipos de algoritmos evolutivos

PARTE II. Algoritmos GenéticosPARTE II. Algoritmos Genéticos

Aunque hoy en día es cada vez más difícil distinguir las diferencias entre los distintos tipos de algoritmos evolutivos existentes, por razones sobre todo históricas, suele hablarse de cuatro etapas principales:

• Programación Evolutiva • Estrategias Evolutivas • Algoritmos Genéticos • Programación Genética

Page 41: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

DefiniciónDefinición

PARTE II. Algoritmos GenéticosPARTE II. Algoritmos Genéticos

Los Algoritmos Genéticos (AGs) son métodos adaptativos que pueden usarse para resolver problemas de búsqueda y optimización. Están basados en el proceso genético de los organismos vivos. A lo largo de las generaciones, las poblaciones evolucionan en la naturaleza de acorde con los principios de la selección natural y la supervivencia de los más fuertes, postulados por Darwin. Por imitación de este proceso, los Algoritmos Genéticos son capaces de ir creando soluciones para problemas del mundo real. La evolución de dichas soluciones hacia valores óptimos del problema depende en buena medida de una adecuada codificación de las mismas.

Page 42: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

Teoría BiológicaTeoría Biológica

PARTE II. Algoritmos GenéticosPARTE II. Algoritmos Genéticos

La esencia de la teoría del Origen de las Especies de Charles Darwin, se recoge en las siguientes premisas (Fang 1994): 1. En la reproducción sexual, cada individuo pasa parte de sus rasgos genéticos a sus descendientes. 2. Además, la naturaleza produce individuos con algunos rasgos diferentes debido a cambios llamados mutaciones, generalmente producidos de forma aleatoria. 3. Los individuos mejor adaptados tienen mayor descendencia que aquellos peor adaptados. Esto dirige a la población hacia rasgos favorables. 4. A lo largo de grandes periodos de tiempo, la variación puede acumularse, produciendo nuevas especies cuyos rasgos les hace especialmente adaptables a un nicho ecológico particular.

Se puede decir que los secretos que entraña la evolución son dos: la muerte y el tiempo. Por un lado, la muerte elimina una cantidad ingente de formas vivas que estaban imperfectamente adaptadas al medio ambiente. Por otro, el tiempo permite ir acumulando las pequeñas mutaciones accidentales que resultan ser beneficiosas.

Page 43: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

FuncionamientoFuncionamiento

PARTE II. Algoritmos GenéticosPARTE II. Algoritmos Genéticos

El algoritmo genético enfatiza la importancia de la cruza sexual (operador principal) sobre el de la mutación (operador secundario) y usa selección probabilística. El algoritmo básico es el siguiente: •Generar (aleatoriamente) una población inicial. •Calcular la aptitud de cada individuo. •Seleccionar (probabilísticamente) con base a la aptitud. •Aplicar operadores genéticos (cruza y mutación) para generar la siguiente población. •Ciclar hasta que cierta condición se satisfaga.

Page 44: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

FuncionamientoFuncionamiento

PARTE II. Algoritmos GenéticosPARTE II. Algoritmos Genéticos

Page 45: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

Funcionamiento – Generación de la población inicialFuncionamiento – Generación de la población inicial

PARTE II. Algoritmos GenéticosPARTE II. Algoritmos Genéticos

Cromosoma

Gen 1 Gen 2 …… Gen n

alelo• La representación tradicional es la binaria.• A la cadena binaria se le llama “cromosoma”.• Al bloque de bits que codifica una sola variable del

problema se le denomina “gen”.• Al valor dentro de cada posición cromosómica se le llama

“alelo”.

Page 46: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

Funcionamiento – Sujeto y f(adap)Funcionamiento – Sujeto y f(adap)

PARTE II. Algoritmos GenéticosPARTE II. Algoritmos Genéticos

Cromosoma = Individuo = Sujeto = Posible Solución

Gen 1 Gen 2 …… Gen n

Evaluación mediante la función de adaptación

En base al resultado de dicha función se calcula el fitness

Fitness = fi/f

Page 47: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

Funcionamiento – Sujeto y f(adap)Funcionamiento – Sujeto y f(adap)

PARTE II. Algoritmos GenéticosPARTE II. Algoritmos Genéticos

• Hay diferentes opciones para obtener el fitness– Fitness = constante – función_objetivo– Fitness = Recíproco (función objetivo)– Fitness i = exp(-hvi)

• Con h elegida para que el fitness caiga en cierto rango particular

• Superar las dificultades graduando el valor de fitness explícitamente. Esto da control de la velocidad de convergencia del algoritmo

Page 48: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

Funcionamiento – Cruce (de un punto)Funcionamiento – Cruce (de un punto)

PARTE II. Algoritmos GenéticosPARTE II. Algoritmos Genéticos

Page 49: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

Funcionamiento – Cruce (de dos puntos)Funcionamiento – Cruce (de dos puntos)

PARTE II. Algoritmos GenéticosPARTE II. Algoritmos Genéticos

Page 50: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

Funcionamiento – Cruce (Uniforme)Funcionamiento – Cruce (Uniforme)

PARTE II. Algoritmos GenéticosPARTE II. Algoritmos Genéticos

Page 51: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

Funcionamiento – Sujeto y f(adap)Funcionamiento – Sujeto y f(adap)

PARTE II. Algoritmos GenéticosPARTE II. Algoritmos Genéticos

Gen 1 Gen 2 …… Gen n

Evaluación mediante la función de adaptación

Page 52: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

Funcionamiento – Condición de paradaFuncionamiento – Condición de parada

PARTE II. Algoritmos GenéticosPARTE II. Algoritmos Genéticos

Condición de parada: •Cantidad de generaciones•Convergencia•Tiempo

Page 53: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

Conceptos Relacionados – Términos BiológicosConceptos Relacionados – Términos Biológicos

PARTE II. Algoritmos GenéticosPARTE II. Algoritmos Genéticos

Clonación: Proceso por el que se consiguen copias idénticas de un organismo, célula o molécula de forma asexual.

Mutación: Es una alteración o cambio en la información genética de un ser vivo que va a producir un cambio de características, que se presenta súbita y espontáneamente.

Reproducción: proceso biológico que permite la creación de nuevos organismos.

Cruce: Constituye el procedimiento reproductivo de tipo sexual.

Epistático: En biología se dice que un gen es “epistático” cuando su presencia suprime el efecto de un gen que se encuentra en otra posición – (estad. multicolinealidad)

Segregación: Cuando se forman los gametos y se tiene más de un par de cromosomas en el genotipo, entonces, para fines de la reproducción sexual, es necesario elegir uno de los cromosomas existentes. A este proceso se le llama segregación.

Page 54: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

PARTE II. Algoritmos GenéticosPARTE II. Algoritmos Genéticos

Paralelismo Implícito: El paralelismo implícito se refiere al hecho de que mientras el algoritmo calcula las aptitudes de los individuos de una población, estima de forma implícita las aptitudes promedio de un número mucho más alto de cadenas cromosómicas a través del cálculo de las aptitudes promedio observadas en los “bloques constructores” que se detectan en la población.

Esquema: Es un patrón de valores de los genes de un cromosoma.

Fitness: Transforma la medida de evaluación en una medida de oportunidad de reproducción.

Elitismo: Incluir en una posición aleatoria de la población el individuo con mejor valor de fitness de la generación anterior.

Selección por torneo: Se eligen dos individuos de la población actual, el mejor de ambos pasa a la generación intermedia y recién ahí opera el cruzamiento.

Deriva genética: Favorecer más de lo que les corresponde a individuos ocasionalmente más aptos.

Evolución en avalancha: Al incrementar los individuos más aptos su presencia en la población, la diversidad disminuye y se crean superindividuos, punto llegar a un punto de convergencia no óptimo.

Conceptos Relacionados – Términos de la técnica de AGConceptos Relacionados – Términos de la técnica de AG

Page 55: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

PARTE II. Algoritmos GenéticosPARTE II. Algoritmos Genéticos

La presencia de un esquema H en la población P de la generación del instante t en un Algoritmo Genético evoluciona estadísticamente de modo exponencial.

Conceptos Relacionados – Teorema FundamentalConceptos Relacionados – Teorema Fundamental

Factor de Crecimiento

Factor de Supervivencia

Page 56: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

Conceptos Relacionados – Modelo de IslasConceptos Relacionados – Modelo de Islas

PARTE II. Algoritmos GenéticosPARTE II. Algoritmos Genéticos

Un algoritmo genético diagramado bajo el modelo de islas, es en el que la población de soluciones se divide en un número fijo de subpoblaciones, cada una evolucionando de forma independiente, pero todas resolviendo el mismo problema. Este modelo propone el uso de un operador de migración el cual periódicamente intercambia soluciones entre las subpoblaciones. Adoptando este tipo de Algoritmos Genéticos, se pueden diferenciar las subpoblaciones con diferentes parámetros de control y la búsqueda se hace más extensa y mucho más efectiva.

Page 57: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

Conceptos Relacionados – Modelo celularConceptos Relacionados – Modelo celular

PARTE II. Algoritmos GenéticosPARTE II. Algoritmos Genéticos

• Los sujetos sólo se comunican con sus vecinos inmediatos• Cada sujeto se fija en sus vecinos inmediatos y elige el mejor individuo que

encuentra• Recombina su individuo con el elegido del vecino• Si un vecindario está a 20 o 25 movimientos de otro, estos vecindarios están

aislados como en el modelo de islas• Luego de algunas generaciones hay algunos focos conteniendo individuos

similares

Page 58: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

Resumen de ventajasResumen de ventajas

PARTE II. Algoritmos GenéticosPARTE II. Algoritmos Genéticos

• Simplicidad conceptual. • Amplia aplicabilidad.• Superiores a las técnicas tradicionales en muchos problemas

del mundo real. • Tienen el potencial para incorporar conocimiento sobre el

dominio y para hibridarse con otras técnicas de búsqueda/optimización.

• Pueden explotar fácilmente las arquitecturas en paralelo. • Son robustas a los cambios dinámicos.

Page 59: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

Resumen de RequerimientosResumen de Requerimientos

PARTE II. Algoritmos GenéticosPARTE II. Algoritmos Genéticos

Para poder aplicar el algoritmo genético se requiere de los 5 componentes básicos siguientes: •Una representación de las soluciones potenciales del problema. •Una forma de crear una población inicial de posibles soluciones (normalmente un proceso aleatorio). •Una función de evaluación que clasifique las soluciones en términos de su “aptitud”. •Operadores genéticos que alteren la composición de los hijos que se producirán para las siguientes generaciones (normalmente cruce sexual y mutación). •Valores para los diferentes parámetros que utiliza el algoritmo genético (tamaño de la población, probabilidad de cruza, probabilidad de mutación, número máximo de generaciones, etc.)

Page 60: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

AplicacionesAplicaciones

PARTE II. Algoritmos GenéticosPARTE II. Algoritmos Genéticos

Industria: Equilibrado de cargas (Fulk, 93); Planificación multiobjetivo (Busc, 91); programación de operaciones (Matt, 96).

ƒServicios financieros: Estudio de riesgos (Hugh, 90); detección de fraude en créditos (Foga, 92);Selección de carteras de inversión (Nobl, 90).

ƒTráfico: Establecimiento de rutas de vehículos (Kada, 91); programación del despegue de aviones (Abra, 93).

ƒEnergía: Optimización de las redes de distribución de energía eléctrica (Ader, 85).

ƒEducación: Problemas de asignación aula-clase (Colo, 92); programación de exámenes (Ross, 94).

ƒTelecomunicaciones: Diseño de redes de área local (Kear, 95).

ƒSalud pública: Programación de pacientes en un hospital (Abla, 95).

Page 61: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

NotaNota

PARTE II. Algoritmos GenéticosPARTE II. Algoritmos Genéticos

Nótese, sin embargo, que es importante considerar que estos algoritmos son técnicas heurísticas. Por tanto, no garantizan que convergerán al óptimo de un problema dado, aunque en la práctica suelen aproximar razonablemente bien el óptimo de un problema en un tiempo promedio considerablemente menor que los algoritmos deterministas. Esta distinción es importante, pues el papel de las técnicas heurísticas es el de servir normalmente como último recurso para resolver un problema en el que los algoritmos convencionales (típicamente deterministas) no funcionan o tienen un costo computacional prohibitivo. Esto implica que antes de decidir recurrir a los algoritmos genéticos, debe analizarse la factibilidad de utilizar otro tipo de técnicas.

Page 62: Inteligencia artificial aplicada a las finanzas

INTELIGENCIA ARTIFICIAL – Aplicada a las FinanzasINTELIGENCIA ARTIFICIAL – Aplicada a las Finanzas

Inteligencia Artificialaplicada a las finanzas

Inteligencia Artificialaplicada a las finanzas

Material preparado por:Material preparado por:

Samir Homsi AragónSamir Homsi Aragón

Material preparado por:Material preparado por:

Samir Homsi AragónSamir Homsi Aragón