83
Challenges in the RF Design of Challenges in the RF Design of highly integrated Direct highly integrated Direct Conversion Receivers for Conversion Receivers for multi-band multi-standard multi-band multi-standard applications applications Laboratorio di Microelettronica Laboratorio di Microelettronica Università degli Studi di Pavia, Italy Università degli Studi di Pavia, Italy Francesco Svelto Francesco Svelto

PDF

Embed Size (px)

DESCRIPTION

 

Citation preview

Page 1: PDF

Challenges in the RF Design of highly Challenges in the RF Design of highly integrated Direct Conversion Receivers for integrated Direct Conversion Receivers for

multi-band multi-standard applicationsmulti-band multi-standard applications

Laboratorio di MicroelettronicaLaboratorio di Microelettronica

Università degli Studi di Pavia, ItalyUniversità degli Studi di Pavia, Italy

Francesco SveltoFrancesco Svelto

Page 2: PDF

Injection Locked dividers for Quadrature Generation in Direct Conversion Receivers

This Talk

A CMOS Direct Downconverter with +78dBm Minimum IIP2 for 3G Cell-Phones

A 750mV 15KHz 1/f Noise Corner 51 dBm IIP2 Direct Conversion Front-End for GSM in 90nm CMOS

LNA

IC

90°

Mixer

Mixer

VGA

VGA

VCO

Quad.Gen.

Page 3: PDF

A 0.13 m CMOS Front-End for DCS1800/UMTS/802.11b-g

This Talk

LNA

IC

90°

Mixer

Mixer

VGA

VGA

VCO

Quad.Gen.

Page 4: PDF

An Interference Robust 0.18m CMOS 3.1-8GHz UWB Receiver Front-End

This Talk

A Variable Gain RF Front-End for Multistandard WLANs Applications

LNA

IC

90°

Mixer

Mixer

VGA

VGA

VCO

Quad.Gen.

Page 5: PDF

A CMOS Direct Downconverter A CMOS Direct Downconverter

with +78dBm Minimum IIP2 with +78dBm Minimum IIP2

for 3G Cell-Phonesfor 3G Cell-Phones

International Solid-State Circuits Conference, Feb. 2005International Solid-State Circuits Conference, Feb. 2005

Page 6: PDF

• TX signal leakage sets challenging RX IIP2 (>+50dBm)

• Expensive external SAW filter alleviates IIP2 and IIP3 specs

State-of-the-Art “Hybrid” Zero-IF UMTS RX

Goal: fully integrated solution

LOLO

IC

ExternalSAW

LNA1 LNA2I

Q

Page 7: PDF

Mechanisms of 2nd Order Intermodulation

Counter-measures:

RF-LO coupling

Orthogonal RF and LO

paths

Mismatch in load resistors

Fully differential V-I converter (IIP2CM ~ +40dBm)

and 0.1% load resistors mismatch

IIP2 > +100dBm!

V-I converter

AC coupling

RF+ RF-

LO-

Common mode todifferential conversion

Low frequencyIM2 generation

LO+ LO+

Page 8: PDF

• Very high IIP2 (>+90dBm)

at low frequency

• Dramatic drop at radio

frequency

2nd Order Distortion in Switching Pairs

Parasitic capacitor at source

nodes plays a key role

RF+ RF-

LO-

2nd orderintermodulation

LO+ LO+

Page 9: PDF

Switching Pair Equivalent Model

VS - FrequencyVS - Time

LO+

Ibias

Cpar

Voff LO-VS

Ibias

Voff

0

1/fLO

VS

Cpar

t0

Voff

1/fLO = Cpar/gm

ffLO 3fLO

Page 10: PDF

IM2 Due to LO odd-harmonics

Ibias+ IIM

Voff

0

1/fLO

VS

IIM2

Cpar

Source voltage VS

ffLO 3fLO

Tailcurrent

fDC

Ibias IIM

fIM

Capacitor current down-converted by device commutation

IM2 sidebands

Page 11: PDF

Tailcurrent

Source voltage VS

IM2 sidebands

fDC

Ibias IIM

fIM

2fLO 4fLO

Gain at even LO harmonics due to duty-cycle distortion

IM2 due to LO even-harmonics

LO+

Cpar

Voff

LO-VS

IIM2

Ibias+ IIM

fLO

Page 12: PDF

IM2 contributions from harmonics

Power of down-converted side-bands around

fundamental at least 17dB higher

-190

-180

-170

-160

-150

-140

-130

-120

1 2 3 4 5 6

LO harmonic

Out

put I

M2

[dBm

]

21dB 17dB

W/L=200/0.3 m/mI=2mA

Page 13: PDF

Suppressing IM2 due to Switching Pairs

• LSW is chosen with

same impedance

magnitude as Cpar

at LO frequency

• CFAT drains IM2

currents flowing

through LSW

LO+

LO-LSW LSW

CFAT

cpar cpar

IM2 path

LO+

IM2 path

Page 14: PDF

IM2 contributions with LC filter

High order harmonics are almost unchanged

-190

-180

-170

-160

-150

-140

-130

-120

1 2 3 4 5 6

LO harmonic

Out

put I

M2

[dBm

]

Intrinsic behavior

With proposed LC filter

25dBattenuation

Page 15: PDF

V-I Converter

RC degeneration leads to high IIP2 and high IIP3

RF+ RF-iRF+ iRF-

Mdeg MdegCdeg Cdeg

Frequency [Hz]100k 1M 10M 100M 1G 10G

Tran

scon

duct

ance

[dB]

Example-30

-40

-50

-60

-70

-80

• AC Coupling tranconductor and switching pair is a solution,

but price is consumption

• Fully differential for high IIP2, Pseudo-differential for high IIP3

Page 16: PDF

V-I Converter: IIP2

Low gain at low frequency

improves IIP2RF+ RF-

Mdeg MdegCdeg Cdeg

2025303540455055606570

0 1 2 3 4 5 6 7 8 9 10

Biasing Current [mA]

IIP2CM

[dBm

]

Theory

Simulation

mCM2

2GIIV2=

G

2,rfCM

2

m,rf ds,deg

gG =

2 1+g r

Page 17: PDF

V-I Converter: IIP3

Cdeg provides low impedance at

signal frequency high IIP3

RF+ RF-

Mdeg MdegCdeg Cdeg

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10Biasing Current [mA]

IIP3

[dBm

]

RC deg.: theoryRC deg.: simulationFully diff.: simulation

22,rf ds,deg3,rfDIFF

3

m,rf ds,deg

g rgG = +

4 3 1+g r

mDIFF3

4GIIV3=

3 G

Page 18: PDF

Downconverter Schematic

• Differential load resistors

save voltage room

• Common-mode feedback

sets DC output voltage

• 4mA from 1.8V supply

RF+ RF-

912/1.13.3pF

LO+

LO-5.5nH

15pF

LO+

45/0.18

270/0.3

Op amp800

800/2

34pF

Page 19: PDF

Die Photo

• Differential inductor with

central tap RF grounded

by MIM capacitor

• Highly interdigitated

devices for matching

• Orthogonal LO and RF

paths where crossing

• 2.2mm2 die area

(1.2mm2 active area)

STMicroelectronics 0.18m RFCMOS - LQFP32 Package

Page 20: PDF

IIP2 Measurement

• The two tones are filtered by the mixer RC load

• Differential probe has negligible impact on measured IIP2

Signalgenerator

Balun

Mixer Differentialprobe

LO input

RF input

f

f = 500kHz

fTX

DC

IM2

ffTX-f LO500kHz[1.92GHz-1.98GHz]

Bal

un

-100-80-60-40-20

020406080

100120

-30 -20 -10 0 10 20 30 40 50 60 70 80 90

Input Power [dBm]

Out

put P

ower

[dB

m]

Input IP2 = +84dBm

IIP2 = 2PDSB-SC - PIM2

Page 21: PDF

50556065707580859095

100105

0 10 20 30 40 50 60

Sample #

IIP2

[dBm

]IIP2 Statistics

+78dBm

minimum IIP2

Lot #1 [March 2004]Lot #2 [June 2005]

Page 22: PDF

50

55

60

65

70

75

0 5 10 15 20

Sample #

IIP2

[dBm

]

IIP2 Statistics without Cfat

IN+ IN-

Op amp

LO-

LO+

LO-

912/1.1

CFAT

LSW

Vref

Cload

Mdeg MdegCdeg

Rload

MpMp

LSW

Rload

Cload

Cdeg

IIP2 without Cfat

X

Page 23: PDF

Conversion Gain and Noise

Conversion gain

• 16dB in-band gain

• 4.5MHz output bandwidth

Input referred noise

• 350kHz 1/f noise corner

• 4nV/√Hz average noise [10kHz-1.92MHz] -162

-160

-158

-156

-154

-152

-150

-148

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

Frequency [MHz]

Inpu

t Noi

se P

SD [d

Bm

/Hz]

10k 100k 1M 10M8

10

12

14

16

18

Frequency [Hz]

In-B

and

Gai

n [d

B]

Page 24: PDF

Measurement Summary

Voltage Gain [dB] 16

Output Bandwidth [MHz] 4.5

IIP3out-of-band [dBm] +10

IIP3in-band [dBm] +9

Minimum IIP2 [dBm] +78

Input Ref. Noise [nV/Hz] 4

Voltage Supply [V] 1.8

Current Consumption [mA] 4

Page 25: PDF

Zero-IF UMTS Receiver

Assuming:

• 18dB LNA peak gain, Q=10 13dB gain at 1.98GHz

• 0dBm LNA IIP3out-of-band

• Downconverter with measured performance

IIP2 > +65dBm

IIP3out-of-band = -3dBm

Fully integrated zero-IF 3G receiver is feasible

Antenna input:

LOLO

IC

LNA I

Q

Page 26: PDF

A 750mV 15kHz 1/f Noise Corner A 750mV 15kHz 1/f Noise Corner

51dBm IIP2 Direct – Conversion 51dBm IIP2 Direct – Conversion

Front – End for GSM in 90nm CMOSFront – End for GSM in 90nm CMOS

International Solid-State Circuits Conference, Feb. 2006International Solid-State Circuits Conference, Feb. 2006

Page 27: PDF

Wireless Receivers in Deep-Submicron CMOS

Extremely high dynamic range at low voltagein cellular direct conversion solutions

90nm GSM Front-End at 750mV, to be compatible with 65nm and 45nm nodes

LNA LOQ

LOI

-43dBm-33dBm

-23dBm

GSMRX Signal(-99dBm)

AM Interferer

3MHz6MHz

0

RX Signal

Noise

IM2

f [kHz]100 200 300

Page 28: PDF

Low-Voltage RX Front-End for GSM

• Few stacked devicesRequires high supply voltage

LNA LOQ

LOI

IN+ IN-

OUT+ OUT-

LG

LS

MRF

MC

LL

CLMSW

MRF

LO+

RL

LO-LO-

IN+ IN-

OUT- OUT+

MBIAS

Page 29: PDF

Pseudo-Differential Input Stage

Mechanism #1:• IIM2,CM transfers to the

output still as a CM current

• R: conversion CM → diff.• Load resistors: (R/R=0.3%)

R/R ~ -50dB

Mixer IIP2 < 55dBmInadequate!

R + R

LO-LO-

IN+ IN-

VIM2,OUT

LO+

+ -

R -2

R2

IIM2,CM IIM2,CM

LO+ is ON

LO- is ONLC

filter

Suffers from excessive CM distortion: IIP2CM ~ 5dBm(W=50m, I=4mA)

Page 30: PDF

Leakage Through the Commutating Pairs

• Transconductor: IIP2CM ~ 5dBm

• Leakage (Voff = 2mV):

L ~ -50dB

Mixer IIP2 < 55dBmInadequate!

Mechanism #2:• Voff1 and Voff2 determine

different leakage gainsIM2DIFF at mixer output

Voff1

R

LO-LO-

IN+ IN-

VIM2,OUT

LO+

+ -

R

IIM2,CM IIM2,CM

Voff2

LDIFF,1 LDIFF,2

LCfilter

Page 31: PDF

Solution: Shunt-Shunt Feedback

• Low-frequency

CM feedback loop

attenuates IIM2,CM

• Transconductor:

IIP2CM ~ 5dBm;

R/R, L ~ -50dB;

1+GLOOP > 40dB

Mixer IIP2 > 90dBm!

LO-LO-

IN+ IN-

LO+

Voff1 Voff2

IIM2,CM IIM2,CM

Op

Amp+ -

VCM

VREF

IFEED IFEED

IIM2,CM

1+GLOOP

IIM2,CM

1+GLOOP

R + R2

R - R2

PCM

LCfilter

Page 32: PDF

PCS1900 Direct-Downconverter Schematic

• PCM injects

common-mode noise No noise penalty

• PL reduces voltage

drop on R1

• gm,RF = 24mS further reduces switches 1/f noise contribution trading IIP2 and IIP3

• 5mA from 750mV-VDD

MSW

MRF

L1

C1

PCM

LO+

RCM

PLR1

C3

LO-LO-

VREF

+ -

IN+ IN-

OUT- OUT+

C2

250 5pF

2000/2.5

520pF

10k

400/0.3

125/0.220pF

5nH1000/0.1

Op AmpA

Page 33: PDF

PCS1900 Low-Noise Amplifier Schematic

• Inductive degeneration for very low NF

• Partially external input impedance matching minimizes NF

From simulations: Gain = 23dB; NF = 1.6dB

• 5mA from 750mV-VDD

IN+ MIN 400/0.1

MC 400/0.1

20/0.1Gain Control

PG

CL 1.9pFLL 4.2nH

IN-LS 4nH

LSMD 4.7nH

OUT- OUT+

On C

hip

CSMD

2.2pF

Page 34: PDF

Die Photo

• Dedicated RF ground avoids noise coupling from the substrate

• STMicroelectronics CMOS090 (90nm) - LQFP32 Package

• Highly interdigitated devices for matching

• 4.3mm2 die area(2.7mm2 active area)LNA

Mix

er I

Mix

er Q

Page 35: PDF

Input Impedance Matching and RF Gain

1.7 1.8 1.9 2 2.1 2.218

20

22

24

26

28

30

32

34

-40

-30

-20

-10

0

Gai

n [d

B]

|S11

| [dB

]

Frequency [GHz]

Gain - MeasurementGain - Simulation|S11| - Measurement|S11| - Simulation

Page 36: PDF

Noise Power Spectral DensityIn

put-R

efer

red

Noise

PSD

[dBm

]

Frequency [kHz]0 20 40 60 80 100

-174

-172

-170

-168

-166

-164

-162

-16015kHz 1/f noise corner

Average Noise Figure

[1kHz-100kHz]: 3.5dB

Page 37: PDF

45

50

55

60

65

70

75

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Sample #

IIP2

[dBm

]IIP2

51 dBm minimum

over 25 samples

Page 38: PDF

Voltage Gain 31.5dB

Noise Figure [1kHz-100kHz] 3.5dB

1/f Noise Corner 15kHz

Minimum IIP2 51dBm

IIP3 -10.5dBm

1dB C.P. due to 3MHz Blocker

-18dBm

Gain Reduction 6dB

Voltage Supply 750mV

Current Consumption 15mA

Die/Active Area 4.3/2.7mm2

Technology STMicroelectronics CMOS090

Measurement Summary

Page 39: PDF

Injection Locked dividers for Injection Locked dividers for

Quadrature Generation in Direct Quadrature Generation in Direct

Conversion CMOS ReceiversConversion CMOS Receivers

Journal of Solid-State Circuits, Sept. 2004Journal of Solid-State Circuits, Sept. 2004

Custom Integrated Circuits Conference, Sept. 2003Custom Integrated Circuits Conference, Sept. 2003

Page 40: PDF

Local Oscillator Generation

RF inLO

LO I

LO Q

BB I

BB Q

• Low phase noise at large offset

• Large tuning range

• Minimum power consumption

while driving large mixer LO input capacitancewhile driving large mixer LO input capacitance

Page 41: PDF

Coupled LC Oscillators

Quadrature accuracy trades with phase noise

Fixed capacitances reduce the available tuning range

I+

I+

I-

I-Q+

Q+ Q-

Q-

I+

I+

I-

I-Q+

Q+ Q-

Q-

+Cpar Cmixer

Page 42: PDF

Phase noise and tuning range set by the VCO

Quadrature accuracy set by dividers

Dividers must feature enough ‘locking band’

Injection Locking Frequency Dividers

A VCO running at 2A VCO running at 200 drives two LC frequency drives two LC frequency

dividersdividers

divideby 2

divide by 2

+

-

VCO@

20

LO_I

LO_Q

0

bias

V o-

bias

Vo+

Page 43: PDF

The DC current is actually limiting the locking range:

(es.: if IDC = Iinj, |max| ≈ 30°)

Harmonic components other than the fundamental are filtered-out by the LC tank For correct regeneration the loop phase shift is

() + () = 0

Regenerative Model, 3, 5, ...

Vocos(t+)

IDC +

IINJ @2

cos(t+)

ITANK =

IINJ/2 cos(t-)

ITANK=IINJ/2

IINJ cos(2t)IDC +

IINJ cos(2t)

cos(t+)

ITANK= IDC cos(t+) +

IINJ/2 cos(t-)

IDC

IINJ/2

ITANK

max

22

2 2DC inj

DC inj

I Iarctg

I I

Page 44: PDF

Locking Range and Quadrature Accuracy

inj

DCdev

inj 0

DC

I

Iχ 3 Δω 2Ph = Q +1 =

I4 ω 3 Q

I

V1cos(t+1)

V2sin(t+2)

+IINJ

-IINJ

IDC

IDC

Locking-range and phase accuracy improve

reducing load Q and increasing injection ratio

Page 45: PDF

• Fully Differential Topology

• DC offset cancellation loop

• 0.18m CMOS Technology

• Double Frequency VCO

• Second-Harmonic Injection Locking Dividers

CMOS Direct Conversion front-end

Servo-loop around the VGA implements a 3kHz high pass filter

2

90°

VCOLNA

IVGA

Gm

QVGA

Gm

Page 46: PDF

Die Microphotograph

Total chip area = 16mm2

3.4m

m4.7mm

I&Q I&Q VGA VGA

+ + servo servo looploop

VCOVCO

I&Q I&Q mixer mixer and and

dividersdividers

LNALNA

Page 47: PDF

VarBias

Vctrl

MN1MN2

Double Frequency VCOVsig

P-substrate

Vctrl

n-well

Cox

PolySI

n+n+

Separate supply voltage:

Improved tuning Range

Improved PSRR

0.1

0.2

0.3

0.4

-4 -2 0 2 4

VarBias-Vctrl[V]

Cap

[pF

]

Improved tuning

Page 48: PDF

Dividers Implementation

Capacitive load: parasitic only

Q lowered to 4 to keep a safety margin on quadrature error

Input trasconductor in subthresold for maximum Iinjection

Cload = 1.2pF

LO + LO -

bias

5nH

1.8 V

2kI+ I- Q- Q+

40/ 0.25

Page 49: PDF

3.5

3.6

3.7

3.8

3.9

4

0 0.3 0.6 0.9 1.2 1.5 1.8Var_control

VC

O F

req

uen

cy[G

Hz]

VddLO=1.1V

VddLO=1.2V

VddLO=1.3V

VddLO=1.4V

VCO Tuning Range

1.75

1.8

1.85

1.9

1.95

2

0 0.3 0.6 0.9 1.2 1.5 1.8Var_control

Div

iders

Fre

qu

en

cy

[GH

z]

VddLO=1.1V

VddLO=1.2V

VddLO=1.3V

VddLO=1.4V10.6%10.6%

Lower oscillation

frequency due to LC load variation

Page 50: PDF

Locking range and Phase deviation

0

1

2

3

4

5

6

7

8

9

10

1.73 1.78 1.83 1.88 1.93 1.98 2.03 2.08

Output Frequency [GHz]

model

Pha

se D

evia

tion

[°] measurements

Locking Range

0

5

10

15

20

25

30

-6 -4 -2 0 2 4 6 8 10 12 14Injected Power [dBm]

measurements

model

Lo

ckin

g R

ang

e [%

]

IINJ/IDC = 0.5

IINJ/IDC = 1

IINJ/IDC = 1.33

Phase Deviation

(down-converted signals)

IINJ/IDC=0.5

IINJ/IDC=0.9

IINJ/IDC=1.5

Page 51: PDF

Phase Noise

Page 52: PDF

* Integrated between 200 kHz and 1.92 MHz** Integrated between 10 kHz and 1.92 MHz

Performance Summary

Power consumption breakdown

47dBGain

-155dBc/HzPN@135MHz

0.18m 6M CMOS

Technology

16mm2Active Area

38mWPower

+44.8dBmMinimum IIP2

-2dBmIIP3 out-of-band

4.2dB * 5.6dB **NF

I&Q Mixer 38%

LNA 24%

VGA 9,5%

VCO 9,5%

I&Q DIV 19%

Page 53: PDF

Injection Locked Balanced Dividers

divideby 2

divide by 2

+

-

VCO@

20

LO_I

LO_Q

0Vo+ Vo-

VDCIDC

LC

Fully balanced multiplier suppress

the DC current0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4

Output Frequency, [GHz]

Otp

ut

Am

pli

tud

e,

[V]

/0≈42%

Increasing IDC

42% measured locking range with Qtank = 14

Page 54: PDF

Towards highly integrated Towards highly integrated

Multiband MultistandardMultiband Multistandard

Receivers Receivers

Page 55: PDF

Universal Mobile Terminals

Ultimate

solution: Zero-IF

fully integrated

multistandard RX

• Mixer and analog base-band blocks are easily re-configurable

• LNA is the most critical block for multistandard operation

LNA

ADCAnalog BB

Analog BB ADC

I Q

Switchplexer& SAW

IC

n

n

GSM900GPS

GSM1800/1900CDMA2000

UMTS802.11b/g HiperLAN2

HiSWANa, 802.11a,

802.16a

f[GHz]1 2 3 4 5 6

Page 56: PDF

Vout

RS

VS

LB

LE

ZL

LNA State-of-the-Art

Resonant network

for voltage gain

Resonant network for

input impedance matching

Two resonant networks must be reconfigured for

multistandard operation critical in the GHz range

Page 57: PDF

Series-shunt feedback

Input impedance:

Feedback Amplifier

RS

VOUT

VS

CBYP

ZIN

ZL

IN Lm

1Z (f) + α Z (f)

g

• Biasing current not set by impedance matching constraints allows optimization of NF and IIP3

• Load reconfiguration allows multi-standard operations

OUT L

S S

V Z (f)(f) =

V 2R

Voltage gain

(input matched):

Page 58: PDF

f1

Multi-Band Feedback LNA

Rs

Vout

Vin

Cbypass

f1

-35

-30

-25

-20

-15

-10

-5

0

Frequency

S11

[dB

]

Programmable resonance

frequency load

-10

-5

0

5

10

15

20

Frequency

Gai

n [d

B]

f2

-35

-30

-25

-20

-15

-10

-5

0

Frequency

S11

[dB

]

-10

-5

0

5

10

15

20

Frequency

Gai

n [d

B]

f2

Page 59: PDF

Concurrent Feedback LNA

Rs

Vout

Vin

Cbypass

f1 f2 f3

Multiple resonant load

-35

-30

-25

-20

-15

-10

-5

0

Frequency

S11

[dB

]

-10

-5

0

5

10

15

20

Frequency

Gai

n [d

B]

f1 f2 f3

Page 60: PDF

Input Impedance:

) f ( Z gm1

1

gm

1Zin

load21

Current Gain:

)) f (Z gm(1

1

I

I

load2in

out

• gm1 > 1/Rs

• Current gain greater than 1

Positive Feedback based solution

Bias

In

Zload (f)

Out

IBias

-1

M1

M2

Iout

Iloop Iin

Zin

Page 61: PDF

A 0.13 m CMOS Front-End for

DCS1800/UMTS/802.11b-g with

Multi-band Positive Feedback

Low Noise Amplifier

VLSI Symposium on Circuits, June 2005VLSI Symposium on Circuits, June 2005

Page 62: PDF

Multi-Standard Scenario

MultiStandardReceiver

1805 1880 2110 2170 2400 2485

DCS1800 UMTS IEEE802.11b/g

f[MHz]

230MHz 230MHz

• Cellular (DCS1800)

• Data (IEEE802.11b/g)

• Mixed voice/data (UMTS)

Applications:

Page 63: PDF

• Positive feedback realized by M2-M4

• Re-configurable LC load by inductor selection

Multi-Band LNA

M4 M2

M1

+ Vin -

Vdd

V1L2 diff

L1

L4 diff

L3

V2

Tuneable Load

+ Vout -

Vbias

V3

VariableGain

M5

Vbias

V3

M6M3

Off- Chip

VariableGain

• Three selectable bands

• 6dB gain variation

Page 64: PDF

Multi-Standard Mixer: Transconductor

• Different noise-linearity

trade-off for each standard

• GSM requires higher gm

than UMTS and WLAN but

asks for lower IIP3

• Switch V1 sets the

transconductance gain

M1 M3 M4 M2

M5 M6

M7V1 V1

Vgain

VariableGain

C1 C1Vb1

+ Vin/2 - Vin/2

iRF+ iRF-

Page 65: PDF

Multi-Standard Mixer: Switching Pairs

• LC filter improves noise

and linearity

• PMOS switching pairs for

low 1/f noise

• Multi-mode RC load sets

appropriate gain and

bandwidth for each standard

Multi-mode Load

M8

M13 M14

M9 M10 M11 M12

Vb3

UMTS DCS WLAN

MultiModeLoad

LO+ LO+LO-

C2

Vb2

Vdd

L1

iRF+ iRF-

Page 66: PDF

Input Matching

-35

-30

-25

-20

-15

-10

-5

0

1.5 1.7 1.9 2.1 2.3 2.5

Frequency [Hz]

S11

[d

B]

DCS1800

UMTS

802.11b-g

Page 67: PDF

Gain

15

18

21

24

27

30

1.5 1.7 1.9 2.1 2.3 2.5Frequency (GHz)

Gai

n [

dB

]

DCS1800

UMTS

802.11b-g

Page 68: PDF

Performance summary

DCS1800 UMTS IEEE802.11b/g

Gain (high / low) [dB] 28.5 / 13.5 29.5 / 14.5 23.5 / 8.5

NF [dB] 5.2 5.6 5.8

IIP2 [dBm] 50 51 54

IIP3 [dBm] -7.5 0 -4.8

Current Consumption: 20mA

Voltage Supply: 1.8V

Page 69: PDF

A Variable Gain RF Front-End, A Variable Gain RF Front-End,

Based on a Voltage – Voltage Based on a Voltage – Voltage

Feedback LNA, for Multistandard Feedback LNA, for Multistandard

ApplicationsApplications

Journal of Solid-State Circuits, March 2005Journal of Solid-State Circuits, March 2005

Page 70: PDF

5-6GHz Multi-Standard WLAN Scenario

• About 1GHz overall bandwidth

• Spectrum allocation fragmented in 100-250MHz sub-bands

5150 - 5350

49005000

57255825

5000 5200 5400 5600 5800

Japan: MMAC HiSWANa

[MHz]

5150 - 5350Europe: ETSI

BRAN HiperLAN2 5470 - 5725

US: IEEE 802.11a

51505250

Multi-standard narrow-band

re-configurable receiver

Page 71: PDF

WLAN Multi-Band LNA

Simulated Results

Idiss Gain NF IIP3

6mA 23dB 1.6dB 0dBm

Tunable LC load

8 selectable bands

between

4.9-5.825GHz

Capacitive feedback

1

1 2

C

C C

Lload=3.3nH

RCM=8

Cc=4Ca

Vc

Cb=2Ca

Vb

Ca=40fF

Va

C2

C1

LSMD

Cc

Vc

Cb

Vb

Ca

Va

C2

C1

LSMD

OUT

IN

ONCHIP

Page 72: PDF

Variable Gain Mixer

• Pseudo differential NMOS input stage

• Input stage current boosting

• Differential inductor (Lquad=7nH)

Variable gain feature:

• 11dB gain reduction

• 3.5dB IIP3 improvement

• Constant output pole cut-off frequency and DC output level

7/0.25

50/0.25

Lquad=7nH

Cdiff=9pF

320

200

IN-IN+

LO- LO-

LO+

CSW=25pF

VgcVgc

Vgc

SW1 SW2

SW3

Vgc

SW4 SW5MR

R1

R2

CparCpar

CSW

1.75

mA

0.75

mA

Page 73: PDF

Die Photomicrograph

Technology: STMicroelectronics (BiCMOS7G)

BiasBias

LNALNA

Mix

er I

Mix

er I

Mix

er Q

Mix

er Q

• Chip area:

1.6mm2

• Package

QFN 36

• PAD ESD

protected

Page 74: PDF

Input Impedance Matching

-30

-25

-20

-15

-10

-5

0

4.5 4.65 4.8 4.95 5.1 5.25 5.4 5.55 5.7 5.85 6

Frequency [GHz]

|S1

1|

[dB

]

Page 75: PDF

18

20

22

24

26

28

30

32

4.5 4.65 4.8 4.95 5.1 5.25 5.4 5.55 5.7 5.85 6

Frequency [GHz]

Ga

in [

dB

]Front-End Gain

Fixed IF frequency (500kHz)

Page 76: PDF

Performance Summary

High Gain Low Gain

Voltage gain [dB] 31.5 20.5

NF [dB] 2.5 2.9

IIP3 [dBm] -9.5 -6

IIP2 [dBm] 23 31

I&Q matching [dB] 0.3

Voltage Supply [V] 2.5

Current consumption [mA] 16

Technology BiCMOS SiGe 0.25mm

Page 77: PDF

An Interference Robust An Interference Robust

0.180.18m CMOS 3.1-8GHz Receiver m CMOS 3.1-8GHz Receiver

Front-End for UWB RadioFront-End for UWB Radio

Custom Integrated Circuits Conference, Sept. 2005Custom Integrated Circuits Conference, Sept. 2005

Page 78: PDF

Multi-Band OFDM UWB Scenario

IEEE802.11a

IEE

E 8

02.1

1b/g

Group#1

Group#2

Group#4

Group#3

Group#5

f [MHz]

3168 4752 6336 7920 9504 10560

• Group #1 mandatory, groups #2 - #5 optional

• Huge 5-6GHz WLAN interferer can desensitize the UWB RX

Multi-resonance

LNA with 5-6GHz

WLAN attenuation

Page 79: PDF

Multi-Resonance UWB LNA

Cext=3pF

Vbias

OUT

IN

1.1pF

220fF3nH

1nH

Zload

Lext=5.6nH

C2=700fF

C1=20fF

40/0.18

Zin

on-chip • Feedback-based LNA for superior dynamic range

• 11dB simulated WLAN attenuation

30

35

40

45

50

55

1 2 3 4 5 6 7 8 9 10Frequency [GHz]

|Zlo

ad| [

dB

]

Page 80: PDF

• Single I&Q transconductor lowers LNA load parasitic• 1.5nH inductor tunes out switching pairs parasitic• Second order LPF improves RX selectivity

I&Q Mixers

IN

Vbias

16pF

Cpar

62.5/0.18

LO I+ LO I-

600

OUT I-

4pF

Vbias

100/0.25

200/0.18

OUT I+

LO Q+ LO Q-

OUT Q-VbiasOUT Q+

625/1

1.5nH

580fF

Page 81: PDF

Gain and Input Matching

-30369

1215182124

1 2 3 4 5 6 7 8 9 10Frequency [GHz]

Gai

n [d

B]

-18-16-14-12-10-8-6-4-20

|S11

| [dB

]

Gain |S11|

Page 82: PDF

Performance summary

UWB Channel

[MHz]

Gain [dB]

IEEE802.11a blocking power

[dBm]

1dB C.P. [dBm]

IIP3 [dBm]

IIP2 [dBm]

NF [dB]

Group #1

3432 20.8 -6 -11 -3.5 36.9 7.2

3960 23.2 -6 -12.5 1 34.5 5.2

4488 20.6 -5.5 -11.5 -3.3 42.1 7.3

Group #3

6600 20.2 -5.5 -8 -3.15 46 7.7

7128 22.8 -6.5 -11.5 3.35 35.2 5.3

7656 20.7 -6 -8 -3 42 7.1

Current Consumption: 10mA

Voltage Supply: 1.8V

Page 83: PDF

These works have been carried on by the

following phd students : Francesco Gatta,

Danilo Manstretta, Paolo Rossi, Massimo

Brandolini, Antonio Liscidini, Andrea

Mazzanti, Paola Uggetti, Giuseppe Cusmai,

Marco Sosio.

I am indebted with them.

Acknowledgements