159
1B

Imber Tech Phase IV Presentation Slides B

Embed Size (px)

Citation preview

Page 1: Imber Tech Phase IV Presentation Slides B

1B

Page 2: Imber Tech Phase IV Presentation Slides B

Infinite ṁ

Specialized Propulsion Solutions:

enabling the missions of tomorrow

2B

Page 3: Imber Tech Phase IV Presentation Slides B

Kyle KloudaDesign Team Lead (DTL)

Troy KillgoreCombustor section design

Cameron SchmittInlet design

Erik OmlidNozzle section design

Courtney HoughCompressor section design

Kevin WalkerTurbine section design

Jase HeinzerothCombustor section design

3B

Page 4: Imber Tech Phase IV Presentation Slides B

• C-130 (50’s design)• 3 accidents

• P-2V Neptune (40’s design)• Half of accidents

• Half of firefighting fleet

4B

Page 5: Imber Tech Phase IV Presentation Slides B

Figure 1B: P-2V Estimated Service Life

0

2

4

6

8

10

12

2010 2012 2014 2016 2018 2020 2022

Nu

mb

er

of

Ava

ilab

le P

-2V

Year

5B

Page 6: Imber Tech Phase IV Presentation Slides B

• Current aircraft are modified

• Limitations in design increase risk during flights

• Limitation in airports for basing

• Torrent 19 mitigates risk by design and is purpose built

6B

Page 7: Imber Tech Phase IV Presentation Slides B

• Designed to withstand the weather created by wildfires

• Uses latest technologies to ensure maneuverability in adverse conditions

7B

Page 8: Imber Tech Phase IV Presentation Slides B

8B

Page 9: Imber Tech Phase IV Presentation Slides B

• Aircraft Configuration Layout• Wing• Fuselage• Landing Gear• Weight and Balance• Stability and Control• Drag Polar• Powerplant• Performance Verification

Imber tech – Kevin Warren9B

Page 10: Imber Tech Phase IV Presentation Slides B

10B

Page 11: Imber Tech Phase IV Presentation Slides B

IAB Requirements:

• Ground roll no more than 6,000 ft. (IAB)

• Must maintain 100 ft/min climb with one engine inoperative upon takeoff (IAB)

• Must have emergency payload release lever within reach of both pilots (IAB)

11BImber tech – Kevin Warren

Page 12: Imber Tech Phase IV Presentation Slides B

Imber tech – Kevin Warren12B

Page 13: Imber Tech Phase IV Presentation Slides B

OUTBOUND

1. Taxi/Takeoff ground roll2. Climb3. Cruise4. Descent

INBOUND

5. Loiter/Slurry Drop6. Climb7. Cruise8. Descent9. Landing/Taxi

Imber tech – Kevin Warren13B

Page 14: Imber Tech Phase IV Presentation Slides B

14BImber tech – Kevin Warren

10 Tanker DC-10-10 Evergreen 747-100

C-130J-30 Torrent 19

Page 15: Imber Tech Phase IV Presentation Slides B

15B

Page 16: Imber Tech Phase IV Presentation Slides B

Figure 2B: Torrent 19

Imber tech – Kelsey Kecherson16B

Page 17: Imber Tech Phase IV Presentation Slides B

Figure 3B: Torrent 19

Imber tech – Kelsey Kecherson

Figure 4B: Torrent 19

17B

Page 18: Imber Tech Phase IV Presentation Slides B

Figure 5B: Torrent 19

Imber tech – Kelsey Kecherson18B

Figure 6B: IM1 Dunamis

Page 19: Imber Tech Phase IV Presentation Slides B

19B

Page 20: Imber Tech Phase IV Presentation Slides B

Figure 7B: Pilot Seat in the Cabin

Imber tech – Kelsey Kecherson20B

Page 21: Imber Tech Phase IV Presentation Slides B

Figure 8B: View From the Pilot Seat

Imber tech – Kelsey Kecherson21B

Page 22: Imber Tech Phase IV Presentation Slides B

22B

Page 23: Imber Tech Phase IV Presentation Slides B

• Clean CLmax at Vs (sea-level)

• CLmax for payload delivery phase

• Mcr and MDD during ferry phase

Imber tech – Jared Basile23B

Page 24: Imber Tech Phase IV Presentation Slides B

Figure 9B: NASA SC(2)-0714 Experimental Data

Imber tech – Jared Basile24B

Page 25: Imber Tech Phase IV Presentation Slides B

Imber tech – Jared Basile25B

Figure 10B: Torrent 19

Page 26: Imber Tech Phase IV Presentation Slides B

Parameter Airfoil Wing

Clmax or CLmax 2.09 1.94

Clα or CLα 0.1204 0.0898

αstall 18o 20o

αl=0 -4o -4o

Table 4A: Wing Values

imber tech – Jared Basile26B

Page 27: Imber Tech Phase IV Presentation Slides B

27Bimber tech – Jared Basile

Figure 11B: Torrent 19

Page 28: Imber Tech Phase IV Presentation Slides B

Parameter Wing FlappedWing

CLmax 1.94 2.69

αstall ~19.5o ~17o

Table 4B: Comparison

Imber tech – Jared Basile28B

Page 29: Imber Tech Phase IV Presentation Slides B

Figure 12B: Sizing of High-Lift Devices

Imber tech – Jared Basile29B

Page 30: Imber Tech Phase IV Presentation Slides B

• Anderson Mcr estimation:

𝑀𝑐𝑟,𝑎𝑖𝑟𝑓𝑜𝑖𝑙 < 𝑀𝑐𝑟,𝑤𝑖𝑛𝑔 <𝑀𝑐𝑟,𝑎𝑖𝑟𝑓𝑜𝑖𝑙

cos Λ𝐿𝐸0.72 < 𝑀𝑐𝑟,𝑤𝑖𝑛𝑔 < 0.73

• Boeing MDD estimation:𝑀𝐷𝐷 = 𝑀𝑐𝑟,𝑤𝑖𝑛𝑔 + 0.08

Transonic Mach Parameter

Estimated Value

Mcr ~ 0.725

MDD ~ 0.805

Table 5B: Comparison

Imber tech – Jared Basile30B

Page 31: Imber Tech Phase IV Presentation Slides B

Imber tech – Jared Basile31B

Figure 13B: Horizontal Tail

Page 32: Imber Tech Phase IV Presentation Slides B

Parameter Airfoil HT HT w/Elevator

Clmax or CLmax 1.33 1.12 1.95

Clα or CLα 0.105 /deg 0.066 /deg 0.066 /deg

αstall 13o 21o 20o

αl=0 0o 0o -11o

Table 5A: Horizontal Tail Values

imber tech – Jared Basile32B

Page 33: Imber Tech Phase IV Presentation Slides B

Imber tech – Jared Basile33B

Figure 14B: Vertical Tail

Page 34: Imber Tech Phase IV Presentation Slides B

Parameter Airfoil VT VT w/Rudder

Clmax or CLmax

1.33 1.12 1.98

Clα or CLα 0.105 /deg 0.066 /deg 0.066 /deg

αstall 13o 22o 21o

αl=0 0o 0o -12o

Table 6A: Vertical Tail Values

imber tech – Jared Basile34B

Page 35: Imber Tech Phase IV Presentation Slides B

35B

Page 36: Imber Tech Phase IV Presentation Slides B

Figure 15B: Fuselage Length

(191 ft)

Imber tech – Michael Browne36B

Page 37: Imber Tech Phase IV Presentation Slides B

Figure 16B: Effect of Nose Fineness on Drag Divergence Mach Numberhttp://adg.stanford.edu/aa241/fuselayout/fuseplanform.html

Imber tech – Michael Browne37B

Page 38: Imber Tech Phase IV Presentation Slides B

Figure 17B: Tailcone Sizing

Imber tech – Michael Browne38B

Page 39: Imber Tech Phase IV Presentation Slides B

Figure 18B: Fuselage Planform

Imber tech – Michael Browne39B

Page 40: Imber Tech Phase IV Presentation Slides B

Figure 19B: Structural Layout

Imber tech – Michael Browne40B

Page 41: Imber Tech Phase IV Presentation Slides B

41B

Page 42: Imber Tech Phase IV Presentation Slides B

Figure 20B: Structural Layout

Imber tech – Anthony Salazar42B

Page 43: Imber Tech Phase IV Presentation Slides B

Figure 21B: Initial Landing-Gear Layout

Imber tech – Anthony Salazar43B

Page 44: Imber Tech Phase IV Presentation Slides B

Figure 22B: Initial Landing-Gear Layout

44BImber tech – Anthony Salazar

Page 45: Imber Tech Phase IV Presentation Slides B

Figure 23B: Oleo Shock Absorber

Source: Raymer, page 367, 5th Edition

Figure 24B: Shock Absorber Efficiency

Source: Raymer, page 369, 5th Edition

Figure 25B: Aircraft Gear Load Factor

Source: Raymer, page 370, 5th Edition

Imber tech – Anthony Salazar45B

Page 46: Imber Tech Phase IV Presentation Slides B

Ƞ = shock-absorbing effiencyL = average total load during deflectionS = strokeST = stroke of tire (half diameter minus rolling radius)Vvertical = vertical velocity capabilityDoleo = diameter of oleoLoleo = length of oleo

Imber tech – Anthony Salazar46B

Page 47: Imber Tech Phase IV Presentation Slides B

Figure 26B: General Tip-Over CriterionSource: Raymer, page 356, 5th Edition

Imber tech – Anthony Salazar

STRUT TRAVEL (7 DEG BEST)

STATIC GROUND LINE

> TIPBACK ANGLE

STATIC TAILDOWN ANGLE TIP BACK ANGLE

47B

Page 48: Imber Tech Phase IV Presentation Slides B

Figure 27B: Lateral Tip-Over CriterionSource: Roskam, Part 2, Page 221

Imber tech – Anthony Salazar48B

Page 49: Imber Tech Phase IV Presentation Slides B

Figure 28B: Ground-Clearance CriterionSource: Roskam, Part, 2 Page 221

Imber tech – Anthony Salazar49B

Page 50: Imber Tech Phase IV Presentation Slides B

Figure 29B: Side View

Main-Gear Retraction

Figure 30A: Bottom View

Main-Gear Retraction

Imber tech – Anthony Salazar50B

Page 51: Imber Tech Phase IV Presentation Slides B

51B

Page 52: Imber Tech Phase IV Presentation Slides B

• Roskam’s Initial Estimate: 580,000 lb

• Raymer’s Component Weight:552,277 lb

• Highest weight contributors: Fuel, slurry, wing and engines

• Baffles and flapper valves will be used

Imber tech – Matthew Hanus52B

Page 53: Imber Tech Phase IV Presentation Slides B

Material Location Density (lb/in3)

Carbon-FiberComposite

Skin 0.056-0.0567

Al 7075-T6 Ribs, spars 0.100-0.102

Al 7475 T7351 Fuselage 0.100-0.102

Low carbon steel,AISI 1010

Landing-gear 0.282-0.285

Table 8B: Material Selection

Imber tech – Matthew Hanus53B

Page 54: Imber Tech Phase IV Presentation Slides B

Aircraft Max Take-off Weight (lb)

Payload (lb)

DC-10 Air tanker 420,000 119,556

Boeing 747Evergreen

Supertanker

750,000 170,000

Torrent 19 552,277 120,000

Table 9B: Weight Comparison

Imber tech – Matthew Hanus54B

Page 55: Imber Tech Phase IV Presentation Slides B

Table 10B: Component C.G. Locations

Call Out

Component X C.G. Location in ft (in.) Z C.G. Location in ft (in.)

A Wing 85 (1,020) 27 (321)

B Horizontal Tail 192 (2,315) 66 (797)

C Vertical Tail 173 (2,081) 47 (565)

D Fuselage 78 (932) 17 (204)

E Main Landing Gear

92 (1,104) 2 (29)

F Engines (average) 59 (707) 13 (159)

G Fuel (average) 87 (1,042) 24 (286)

H Slurry 88 (1,056) 17 (205)

I Slurry Tank 88 (1,056) 12 (148)

J Torrent 19 86 (1,037) 21 (248)

Imber tech – Matthew Hanus55B

Page 56: Imber Tech Phase IV Presentation Slides B

C: Fully loaded fuel and slurryA: Empty Weight B: Fully loaded fuel, no slurry

Figure 31A: Center-of-Gravity Excursion Diagram

imber tech – Matthew Hanus56B

Page 57: Imber Tech Phase IV Presentation Slides B

• Forward Limit: 971 in.

• Aft Limit: 1,087 in.

imber tech – Matthew Hanus57B

Page 58: Imber Tech Phase IV Presentation Slides B

58B

Page 59: Imber Tech Phase IV Presentation Slides B

Figure 32B: Dimensions of Tail

Imber tech – David Wilson59B

Page 60: Imber Tech Phase IV Presentation Slides B

Figure 33B: Static Margin vs. Horizontal Tail Area

Imber tech – David Wilson60B

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

0 500 1000 1500 2000 2500 3000 3500 4000 4500

AC

Full

No slurry

No Fuel

empty

Horizontal tailX

Horizontal Tail

Page 61: Imber Tech Phase IV Presentation Slides B

Imber tech – David Wilson61B

Figure 34B: Torrent 19

Page 62: Imber Tech Phase IV Presentation Slides B

Figure 35B: Elevator Sizing

Imber tech – David Wilson62B

Page 63: Imber Tech Phase IV Presentation Slides B

Figure 36B: Moment Diagram

Imber tech – David Wilson63B

Page 64: Imber Tech Phase IV Presentation Slides B

Figure 37B: Horizontal Tail CL Curve

Imber tech – David Wilson64B

Page 65: Imber Tech Phase IV Presentation Slides B

Figure 38B: Engine Positioning

Imber tech – David Wilson65B

Page 66: Imber Tech Phase IV Presentation Slides B

Imber tech – David Wilson

• Vertical Tail Area: 1,275 ft2

• Wing sweep: 10 degrees

• Cl: drop phase: 1.4

• Cnβ : 0.116

66B

Page 67: Imber Tech Phase IV Presentation Slides B

Imber tech – David Wilson

• Dihedral: 0 Degrees

• Wing Sweep: 10 degrees

• Wing Position: High Wing

• Vertical Tail: 1,275 ft2

67B

Page 68: Imber Tech Phase IV Presentation Slides B

• Static Margin: 0.102 – 0.128

• Elevator chord: 30 %

• Vmc: 135.6 kts

• Cnβ = 0.116

• Clβ = -0.002

imber tech – David Wilson68B

Page 69: Imber Tech Phase IV Presentation Slides B

69B

Page 70: Imber Tech Phase IV Presentation Slides B

Imber tech – Inigo Ripodas70B

Figure 39B: Torrent 19

Page 71: Imber Tech Phase IV Presentation Slides B

Wing and Stabilizing Surfaces

S (ft2)

Left Wing 6,947

Right Wing 6,947

Horizontal Stabilizer 6,791

Vertical Stabilizer 2,119

Total 22,804

Table 19A: Wetted Area of Wing and Stabilizing Surfaces

imber tech – Inigo Ripodas71B

Page 72: Imber Tech Phase IV Presentation Slides B

Drag estimations modeled for various altitudes:

• From Sea-Level to 40,000 ft in altitude in 10,000 ft increments

Imber tech – Inigo Ripodas72B

Page 73: Imber Tech Phase IV Presentation Slides B

imber tech – Inigo Ripodas

• Parasite Drag:• Skin friction

• Miscellaneous

• Leakages & Protuberances

• Wave Drag

• Induced Drag:• “Drag-due-to-lift” factor

73B

Page 74: Imber Tech Phase IV Presentation Slides B

• Thrust Required is the same as Total Drag (Assuming SLUF)

• Thrust Available obtained from Infinite Mdot

• Plots from Sea-Level to 40,000 ft

Imber tech – Inigo Ripodas74B

Page 75: Imber Tech Phase IV Presentation Slides B

• Thrust Required is the same as Total Drag (Assuming SLUF)

• Thrust Available obtained from Infinite Mdot

• Plots from Sea-Level to 40,000 ft

Imber tech – Inigo Ripodas75B

Page 76: Imber Tech Phase IV Presentation Slides B

• Thrust Required is the same as Total Drag (Assuming SLUF)

• Thrust Available obtained from Infinite Mdot

• Plots from Sea-Level to 40,000 ft

Imber tech – Inigo Ripodas76B

Page 77: Imber Tech Phase IV Presentation Slides B

• Thrust Required is the same as Total Drag (Assuming SLUF)

• Thrust Available obtained from Infinite Mdot

• Plots from Sea-Level to 40,000 ft

Imber tech – Inigo Ripodas77B

Page 78: Imber Tech Phase IV Presentation Slides B

• Thrust Required is the same as Total Drag (Assuming SLUF)

• Thrust Available obtained from Infinite Mdot

• Plots from Sea-Level to 40,000 ft

Imber tech – Inigo Ripodas78B

Page 79: Imber Tech Phase IV Presentation Slides B

79B

Page 80: Imber Tech Phase IV Presentation Slides B

ṁ - Kyle Klouda

• Fan and Compressor Design• Low- and High-Pressure Turbine Design• Combustor • Labor Hour and Cost Estimation• Conclusions and Recommendations

80B

Page 81: Imber Tech Phase IV Presentation Slides B

ṁ81B

Page 82: Imber Tech Phase IV Presentation Slides B

ṁ - Troy Killgore

Figure 40B: GE90-85B(http://www.epower-propulsion.com)

82B

Page 83: Imber Tech Phase IV Presentation Slides B

ṁ - Troy Killgore

Figure 41B: Trent 800(http://cv01.twirpx.net)

83B

Page 84: Imber Tech Phase IV Presentation Slides B

ṁ - Troy Killgore

Figure 42B: PW4084(http://www.pw.utc.com)

84B

Page 85: Imber Tech Phase IV Presentation Slides B

ṁ - Troy Killgore

Engine Characteristics

Dry Weight (engine) (lb) 15396

Thrust(dry) (lb) 96240

TSFC(dry) (lbm/hr*lbf) 0.3115

TSFC(cruise) (lbm/hr*lbf) 0.854

Cruise Altitude (feet) 38000

Cruise Speed (Mach) 0.75

Bypass Ratio 7.5

Overall Pressure Ratio 37

Spool No. 2

Fan Stages 1

LPC Stages 4

HPC Stages 9

LPT Stages 5

HPT Stages 2

airflow (lbm/s) 3995.8

Length (inches) 348

Case Diameter (inches) 169.5

Fan Diameter (inches) 136

Table 20B: Dunamis Values

85B

Page 86: Imber Tech Phase IV Presentation Slides B

ṁ86B

Page 87: Imber Tech Phase IV Presentation Slides B

Figure 43B: Constraint Diagram

(75, 0.62)

Climb

2G Maneuver

Aircraft Stall

ṁ - Troy Killgore87B

Page 88: Imber Tech Phase IV Presentation Slides B

• Bleed air for slurry tank pressurization

• Design choices based on similar thrust class turbofan

engines

ṁ - Troy Killgore88B

Page 89: Imber Tech Phase IV Presentation Slides B

ṁ - Troy Killgore

Ps ContoursMinimum Time to ClimbMission Profile

(4)

(1)

(2)

(3)

300 500 700 900 1100

40

30

20

10

Figure 44B : Ps Optimization

Alt

itu

de

(kft

)

Velocity (ft/s)

89B

Page 90: Imber Tech Phase IV Presentation Slides B

Wing Loading (psf) 75

Thrust Loading 0.62

Aircraft Weight (lbf) 564,396

SLS Installed Thrust (lbf) 349,926

Number of Engines 4

SLS Installed Thrust per Engine (lbf) 87,483

SLS Uninstalled Thrust per Engine (lbf) 96,240

Design Point Mass Flow (lbm/s) 2440.30

Cruise TSFC (lbf/hr*lbm) 0.854

Table 21B: Engine Characteristics

ṁ - Troy Killgore

• 5% overall loss assumed

90B

Page 91: Imber Tech Phase IV Presentation Slides B

ṁ91B

Page 92: Imber Tech Phase IV Presentation Slides B

ṁ - Kyle Klouda

Figure 45B: Engine Dimensions

92B

Page 93: Imber Tech Phase IV Presentation Slides B

Figure 46B: Final Inlet Design

93B

Page 94: Imber Tech Phase IV Presentation Slides B

ṁ - Cameron Schmitt

Figure 47B: IM-1 DUNAMIS

94B

Page 95: Imber Tech Phase IV Presentation Slides B

ṁ - Cameron Schmitt

Figure 48B: Inlet

95B

Page 96: Imber Tech Phase IV Presentation Slides B

ṁ - Cameron Schmitt

Figure 49B: IM-1 DUNAMIS

96B

Page 97: Imber Tech Phase IV Presentation Slides B

ṁ - Cameron Schmitt

Figure 50B: Blow-In-Door Configurations

97B

Page 98: Imber Tech Phase IV Presentation Slides B

ṁ - Cameron Schmitt

Condition PEXT(psi) PINTpsi) ΔP (Psi) Doors

2-G Drop 9.95 8.54 1.41OPEN

T/O 11.17 9.59 1.58OPEN

Climb 10kft 9.95 8.54 1.41OPEN

Climb 17kft 6.60 8.02 -1.42CLOSED

Climb 24kft 4.74 6.21 -1.47CLOSED

Climb 31kft 3.30 4.74 -1.43CLOSED

Cruse 38kft 2.21 3.55 -1.34CLOSED

Climb Out 5.85 7.69 -1.84CLOSED

Table 22B: Pressure Calculations

98B

Page 99: Imber Tech Phase IV Presentation Slides B

ṁ - Cameron Schmitt

A1=12076in2

Auxiliary area = 4524 in2

Condition M0 Alt (ft)M1 Φ(%) Φ(%)2-G Drop 0.232 10000 0.553 10.06 2.89T/O 0.232 7000 0.529 9.54 2.57Climb 10kft 0.232 10000 0.553 10.06 2.88Climb 17kft 0.612 17000 0.564 0.21 N/AClimb 24kft 0.658 24000 0.562 0.80 N/AClimb 31kft 0.704 31000 0.558 1.91 N/ACruse 38kft 0.75 38000 0.552 3.64 N/AClimb Out 0.66 19000 0.566 0.78 N/A

D1= 124in (10.33ft)

Table 23B: Install Losses

99B

Page 100: Imber Tech Phase IV Presentation Slides B

ṁ - Cameron Schmitt

Figure 51B: Inlet Front View

100B

Page 101: Imber Tech Phase IV Presentation Slides B

ṁ - Cameron Schmitt

Figure 52B: Cowling Profile

210in.

68in.62in.

101B

Page 102: Imber Tech Phase IV Presentation Slides B

m - Erik Omlid

Figure 53B: Nozzle

102B

Page 103: Imber Tech Phase IV Presentation Slides B

m - Erik Omlid

Figure 53B: Nozzle

103B

Page 104: Imber Tech Phase IV Presentation Slides B

m - Erik Omlid

Figure 54B: Nozzle Chevrons

104B

Page 105: Imber Tech Phase IV Presentation Slides B

m - Erik Omlid

External Nozzles

•EC1: 14 external chevrons (long)

•EC3: 18 external chevrons

•EC2: 14 spoon-shaped chevrons

•EC4: 18 external chevrons

Figure 55B: External Nozzles(http://www.lufthansagroup.com)

105B

Page 106: Imber Tech Phase IV Presentation Slides B

m - Erik Omlid

•EC3: 18 external chevrons•IC1: 14 internal chevrons

Figure 56B: Nozzle Selection(http://www.lufthansagroup.com)

106B

Page 107: Imber Tech Phase IV Presentation Slides B

m - Erik Omlid

Figure 57B: Core Plug

107B

Page 108: Imber Tech Phase IV Presentation Slides B

m - Erik Omlid

Figure 58B: Thrust Reverser Location

108B

Page 109: Imber Tech Phase IV Presentation Slides B

m - Erik Omlid

Figure 59B: Nozzle

109B

Page 110: Imber Tech Phase IV Presentation Slides B

Takeoff/Landing 1.72%

2k ft/min Climb 1.66%

Cruise 1.58%

2G maneuver 1.68%

Slurry Drop 2.10%

• Based on similar engines

• 5% bogey combined with the inlet

• Mission analysis based on 5% bogey

m - Erik Omlid110B

Page 111: Imber Tech Phase IV Presentation Slides B

• Initial Design Parameters

• Component Designs

• Fan

• Booster Compressor

• High Pressure Compressor

ṁ - Courtney Hough111B

Page 112: Imber Tech Phase IV Presentation Slides B

• Fan

• Booster Compressor

• High-Pressure Compressor

ṁ - Courtney Hough

Design Point (Sea Level)

Mach 0

Altitude (ft) 0

Temperature (R) 490

Table 24B: Component Design Point

Low-Pressure Compressor

112B

Page 113: Imber Tech Phase IV Presentation Slides B

ṁ - Courtney Hough

Figure 60B: Fan Dimensions

*All dimensions in inches

113B

Page 114: Imber Tech Phase IV Presentation Slides B

ṁ - Courtney Hough

Figure 61B: Engine Model

114B

Page 115: Imber Tech Phase IV Presentation Slides B

ṁ - Courtney Hough

Design Parameter

Stages 3

Pressure (psia) 25.91

Temperature Rise (R) 140.37

Entrance Angle (deg) 0

Tip Radius (in) 34.35

Angular Velocity(rad/s)

282.35

Inlet Mach 0.5

Mass Flow (lbm/s) 399.32

Design Pressure Ratio 1.94

Table 25B: Booster Design Parameters

115B

Page 116: Imber Tech Phase IV Presentation Slides B

ṁ -Courtney HoughFigure 62B: Booster Dimensions

*All dimensions in inches

116B

Page 117: Imber Tech Phase IV Presentation Slides B

ṁ - Courtney Hough

Design Parameter

Stages 9

Pressure (psia) 50.26

Temperature Rise (R) 812.70

Entrance Angle (deg) 0

Tip Radius (in) 15.94

Angular Velocity(rad/s)

1054

Inlet Mach 0.4

Mass Flow (lbm/s) 399.32

Design Pressure Ratio 10.57

Table 26B: HPC Design Parameters

117B

Page 118: Imber Tech Phase IV Presentation Slides B

ṁ - Courtney Hough

Figure 63B: HPC Dimensions

*All dimensions are in inches

118B

Page 119: Imber Tech Phase IV Presentation Slides B

ṁ - Courtney Hough

Figure 64B: Fan Model

Figure 66B: HPC Model

Figure 65B: Booster Model119B

Page 120: Imber Tech Phase IV Presentation Slides B

Figure 67B: Turbine

120B

Page 121: Imber Tech Phase IV Presentation Slides B

ṁ - Kevin Walker

Figure 68B: High-Pressure Turbine

121B

Page 122: Imber Tech Phase IV Presentation Slides B

ṁ - Kevin Walker

• Materials

• Rim/disk - Nimonic 105

(wrought nickel superalloy)

• Airfoils – Rene’ 80

(nickel-based superalloy)

122B

Page 123: Imber Tech Phase IV Presentation Slides B

ṁ - Kevin Walker

• Stage Loading Coefficient: Measure of stage work Typical

Values 1.3 – 2.2

• Flow Coefficient: Measure of ability to allow air through.

Typical Values 0.5 – 1.1

• Velocity Ratio: Ratio of the rotor speed to the equivalent

velocity due to total enthalpy drop.

Typical Values 0.5 – 0.6

123B

Page 124: Imber Tech Phase IV Presentation Slides B

ṁ - Kevin Walker

Figure 69B: Low-Pressure Turbine

124B

Page 125: Imber Tech Phase IV Presentation Slides B

ṁ - Kevin Walker

• Materials

• Rim/disk - Nimonic 105

(wrought nickel superalloy)

• Airfoils – Rene’ 80

(nickel-based superalloy)

125B

Page 126: Imber Tech Phase IV Presentation Slides B

ṁ - Kevin Walker

• Stage Loading Coefficient: Measure of stage work Typical

Values 1.3 – 2.2

• Flow Coefficient: Measure of ability to allow air through.

Typical Values 0.5 – 1.1

• Velocity Ratio: Ratio of the rotor speed to the equivalent

velocity due to total enthalpy drop.

Typical Values 0.5 – 0.6

126B

Page 127: Imber Tech Phase IV Presentation Slides B

ṁ127B

Page 128: Imber Tech Phase IV Presentation Slides B

ṁ - Jase Heinzeroth

Figure 70B: Combustor Dimensions

128B

Page 129: Imber Tech Phase IV Presentation Slides B

ṁ - Jase Heinzeroth

Figure 71B: Combustor

129B

Page 130: Imber Tech Phase IV Presentation Slides B

ṁ - Jase Heinzeroth

Figure 72B: Combustor

130B

Page 131: Imber Tech Phase IV Presentation Slides B

ṁ - Jase Heinzeroth

Figure 73B: Diffuser Side View

131B

Page 132: Imber Tech Phase IV Presentation Slides B

ṁ - Jase Heinzeroth

Figure 74B: Diffuser Profile

132B

Page 133: Imber Tech Phase IV Presentation Slides B

ṁ - Jase Heinzeroth

• Hastelloy X • Maximum material temperature: 2400 °R

• Calculated Gas Temperature inside combustor: 3280 °R

133B

Page 134: Imber Tech Phase IV Presentation Slides B

ṁ - Jase Heinzeroth

Figure 75B: Combustor Cut

134B

Page 135: Imber Tech Phase IV Presentation Slides B

ṁ - Jase Heinzeroth

Figure 76B: PZ Length

135B

Page 136: Imber Tech Phase IV Presentation Slides B

ṁ - Jase Heinzeroth

Figure 77B: SZ Length

136B

Page 137: Imber Tech Phase IV Presentation Slides B

ṁ - Jase Heinzeroth

Figure 78B: DZ Length

137B

Page 138: Imber Tech Phase IV Presentation Slides B

ṁ - Kyle Klouda138B

Page 139: Imber Tech Phase IV Presentation Slides B

ṁ - Kyle Klouda

Date Engineering Management Engineering Technical Administration Professional Development Sum Projected

8/30/2013 73.5 73.5 136.5

9/6/2013 5 158.5 237 273

9/13/2013 4 6 164.5 411.5 409.5

9/20/2013 25 31 3 42 126.5 639 546

9/27/2013 4 119.66 762.66 682.5

10/4/2013 10 28 42.3 842.96 819

10/11/2013 12 45 7 14 41.2 962.16 955.5

10/18/2013 30 85 9 52 98 1236.16 1092

10/25/2013 13 102.3 1351.46 1228.5

11/1/2013 11 75 22 1459.46 1365

11/8/2013 15 85 8 1567.46 1501.5

11/15/2013 22 74 12 1675.46 1638

11/22/2013 42 139.33 1856.79 1774.5

11/29/2013 25 87 11 10 3 1992.79 1911

12/6/2013 43 123 9 57 6 2230.79 2047.5

Table 27B: Hours Spent

139B

Page 140: Imber Tech Phase IV Presentation Slides B

ṁ - Kyle Klouda140B

Page 141: Imber Tech Phase IV Presentation Slides B

ṁ - Kyle Klouda

Table 28B: Hours Spent

Engineering Management 261Engineering 778.33Technical 39Professional Development 875.16Administrative 210.3total 1288.63

141B

Page 142: Imber Tech Phase IV Presentation Slides B

ṁ - Kyle Klouda

Table 29B: Costs

Category Hours CostsEngineering Management 261 $26,100 Engineering 778.33 $50,591 Technical 39 $1,560 Administrative 210.3 $4,206 Sub-total 1,289 $82,457 Professional Development 875.16 $43,758 Total 2,164 $126,215

142B

Page 143: Imber Tech Phase IV Presentation Slides B

• Research ways to design thrust reversers further

• Research ways to design engine structure and struts

143B

Page 144: Imber Tech Phase IV Presentation Slides B

144B

Page 145: Imber Tech Phase IV Presentation Slides B

145BImber tech – Kevin Warren

Sea Level

38,000 ft

Page 146: Imber Tech Phase IV Presentation Slides B

• Cruise phase of mission

• Mach = 0.75

• Climb rate greater than zero

146Bimber tech – Kevin Warren

Page 147: Imber Tech Phase IV Presentation Slides B

• Aircraft designed to withstand adverse weather of wildfires

• Severe up- and down-drafts have caused structural failure in other aircraft

Imber tech – Kevin Warren147B

Page 148: Imber Tech Phase IV Presentation Slides B

Figure 79B: Max Thrust Takeoff with 3 engines

Imber tech – Kevin Warren148B

Page 149: Imber Tech Phase IV Presentation Slides B

• RFP requires a 2,000 ft/min climb to 10,000 ft

• IAB requires a 100 ft/min climb with one engine inoperative upon takeoff

• Max rate-of-climb based on thrust, drag, weight and flight velocity

• At max thrust (sea-level) and minimum drag

Imber tech – Kevin Warren149B

Page 150: Imber Tech Phase IV Presentation Slides B

Imber tech – Kevin Warren150B

Figure 80B: Torrent 19

Page 151: Imber Tech Phase IV Presentation Slides B

• Flaps at 20 degrees

• Spoilers and Thrust Reversers

• Max Braking

Figure 81B: Landing Performance

Imber tech – Kevin Warren151B

Page 152: Imber Tech Phase IV Presentation Slides B

152B

Page 153: Imber Tech Phase IV Presentation Slides B

• Engines: $15 million each

• 40 years in service• 50 missions per year

• 2 airframes for static testing

153BImber tech – Kevin Warren

Page 154: Imber Tech Phase IV Presentation Slides B

Table 30B: Labor Hours

Imber tech – Kevin Warren154B

Page 155: Imber Tech Phase IV Presentation Slides B

Table 31B: Hours Spent

Category Hours

Management 359.2

Engineering 707.1

Technical 478.75

Administration 233.75

Subtotal 1778.8

Professional Development 674.75

Total 2453.55

Imber tech – Kevin Warren155B

Page 156: Imber Tech Phase IV Presentation Slides B

Table 32B: Costs

Category Cost

Management $35,920

Engineering $45,961.5

Technical $19,150

Administration$4,675

Subtotal $105,706.5

Professional Development$33,737.5

Total $139,444

Imber tech – Kevin Warren156B

Page 157: Imber Tech Phase IV Presentation Slides B

157B

Page 158: Imber Tech Phase IV Presentation Slides B

• Structure:

• Analyze door system structure to ensure tail support is adequate

• Investigate different gear-door configurations

• Further define and analyze internal support structure

• S&C:• Analyze tail structure for feasibility, investigate reducing

areas

• Analyze engine placement

• Build scale model and perform wind tunnel testing to test and analyze performance characteristics

158BImber tech – Kevin Warren

Page 159: Imber Tech Phase IV Presentation Slides B

159B