213
12 Channel HVA Board Hardware Design and Test Document Rev. 1.5

12 Channel HVA Board Hardware Design and Test Document

Embed Size (px)

Citation preview

12 Channel HVA Board Hardware Design and Test Document

Rev. 1.5

Revision History Date Rev Author Comment

10/29/02 1.1 Rob Yamashita Initial Document 12/10/02 1.2 Rob Yamashita Fixed DAC Test and High Voltage Amplifier

Test Procedure. Added Table of context 2/10/03 1.3 Rob Yamashita Fixed dip switch settings in test procedure and

in manual address selection 2/11/03 1.4 Rob Yamashita Created PDF and added datasheets. 2/24/03 1.5 Rob Yamashita Added rework instructions

1 12 Channel HVA Board 1.1 Overview

The 12 Channel HVA board is used drive piezo material on a telescope. Each channel can swing the voltage from -400V to +400V. Each channel on the board is individually addressable through one of two DAC on board. Dip switches set the upper three address bits for the board allowing the address range on the board to go from 0-95. This makes it possible for 8 boards to be placed in one chassis, while still allowing each channel to be addressed individually.

1.2 Technical Specification • 12 individual High Voltage Amplifier channels • +/-400 Volt Output Range Power Requirements • +5V ≈ 2.5A • -5V ≈ 80mA • +15V • -15V • +400V • -400V

1.3 Mechanical Specification

• Eurocard 6U (160mm x 233.35mm) Form Factor • P2 96 pin DIN Connector • P1 32 pin TYPE-F-EURO • 4 Layer PCB construction

1.4 Block Diagram

1.5 PCB Layout Front

P2 -9

6 pi

n D

IN

CY37256

MAX547

8 Channel, 13 Bit DAC

MAX547

8 Channel, 13 Bit DAC

+400V

-400V

+400V

-400V

+400V

-400V

+400V

-400V

+400V

-400V

+400V

-400V

+400V

-400V

+400V

-400V

+400V

-400V

+400V

-400V

+400V

-400V

+400V

-400V

P1 –

TYPE

F E

UR

O

P2 -9

6 pi

n D

IN

CY37256

MAX547

8 Channel, 13 Bit DAC

MAX547

8 Channel, 13 Bit DAC

MAX547

8 Channel, 13 Bit DAC

MAX547

8 Channel, 13 Bit DAC

+400V

-400V

+400V

-400V

+400V

-400V

+400V

-400V

+400V

-400V

+400V

-400V

+400V

-400V

+400V

-400V

+400V

-400V

+400V

-400V

+400V

-400V

+400V

-400V

+400V

-400V

+400V

-400V

+400V

-400V

+400V

-400V

+400V

-400V

+400V

-400V

+400V

-400V

+400V

-400V

+400V

-400V

+400V

-400V

+400V

-400V

+400V

-400V

+400V

-400V

+400V

-400V

+400V

-400V

+400V

-400V

+400V

-400V

+400V

-400V

+400V

-400V

+400V

-400V

+400V

-400V

+400V

-400V

+400V

-400V

+400V

-400V

P1 –

TYPE

F E

UR

O

1.6 PCB Layout Back

1.7 Rework Instruction

This rework instruction is for board with the marking pointed out by red arrow in picture below.

The following picture displays all of the rework required on the front of the PCB.

The following picture displays all of the rework required on the back side of the PCB.

1

2

The following picture shows the pins that need to be cut off of connector P1.

12

3

5

9

10

11

4

7

6

8

12

1

2

3 4

5

76

P2

Com

pone

nt S

ide

1.8 Manual Address Range Select

• Switches 5-7 set upper address bits

Switch 5 6 7 Address Range

ON ON ON 0-11 OFF ON ON 12-23 ON OFF ON 24-31 OFF OFF ON 32-47 ON ON OFF 48-59 OFF ON OFF 60-71 ON OFF OFF 72-83 OFF OFF OFF 84-95

2 Test Procedure 2.1 High Voltage Amplifier Low Voltage Bench Test

High Voltage Amplifier Channel Low Voltage Bench Test Requirements Function Generator Oscilloscope, 2 channel DC Power Supply with 5V, 15V and -15V outputs Cables to connect power supply and Function generator to board Procedure 2.1.1. Set up Function Generator to create a square wave with a 4ms period and

amplitude +/-200mV. 2.1.2. Connect power supply GND to J13 pins 1 and 2, +5V to pin 3, +15V to pin 4 and

-15V to pin 5. 2.1.3. Also connect +15V to J1 pin 7 and -15V to pin 1. 2.1.4. Turn on power supply. 2.1.5. Connect output of Function Generator to J2 pin 3 and GND from the Function

Generator to pin 1. 2.1.6. Also connect the output and GND from the Function Generator to channel 1 of

the Oscilloscope. 2.1.7. Connect the GND from the second channel of the Oscilloscope to J1 pin 4 and

probe R9 pin 2(side closest to P1).

5 7

6

5 7

6

Check to see that a. Waveform on channel 2 of the Oscilloscope swings from -15V to +15V. b. Waveform on channel 2 of the Oscilloscope is 180 phase shifted version of

channel 1. c. Transitions are fast and not rounded at the top.

2.1.8. If any of the above criteria are not met, channel fails test. Keep track of board Serial Number and channel for debugging later.

2.1.9. Repeat steps 5-9 using corresponding connector in step 5 and corresponding resistor in step 7 for each of the channels.

2.1.10. If all channels pass testing, board has passed High Voltage Amplifier Channel Low Voltage Bench Test.

2.2 CPLD Programming

Requirements Cypress ISR programming software Cypress UltraISR programming cable 5V power supply Programming file – hva.jed Procedure 1. Plug Cypress UltraISR programming cable into Parallel port of pc and start Cypress

ISR programming software. 2. Select ‘New’ from the ‘File’ menu

J2-1

J2-3

R9-2

+15V

-15V

Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

Channel 6

Channel 7

Channel 8

Channel 9

Channel 10

Channel 11

GND+5V

+15V-15V

GND

3. Type ‘1’ in the ‘Number of devices in JTAG Chain’ text box. 4. Type a filename in the ‘JTAG Chain Filename’ text box. 5. Browse and select or type in the directory that you would like to save the

programming session in. 6. Press ‘Ok’

7. In the ‘Devices’ box select ‘CY37256P160’. 8. In the ‘Operation’ box select ‘Program & Verify’. 9. Use the ‘Browse’ button to locate and set the path and filename in the ‘filename’ text

box to ‘\\path\...\hva.jed’.

10. Press the button to compose the programming file. 11. Plug 5V power and GND into header J13 pin 5 and pin 1 respectively. Note: Pin 1 is the pin closest to connector P2. 12. Connect Cypress UltraISR programming cable to header J16. Connector should be

polarized, but if not ensure that pin 1 of cable connects to pin 1 of header. Note: Pin 1 of header is the pin closest to LED1 and the nearest board edge. 13. Turn on power supply.

14. Press the button to program the CPLD. Programming may take several second to complete

15. Check log that is displayed to see that CPLD programmed and verified successfully. If programming or verify was not successful- a. Verify that the path and filename are correct in the ‘filename’ textbox. If not, repeat

from step 9. b. Check to see that power and ground are connected correctly and that supply voltage

is set to 5V DC. If not, repeat form step 11. c. Check to see that part is correct and it is soldered correctly to board. If not, correct

problem and repeat from step 11. 16. Turn off power supply and disconnect cables.

2.3 DAC Test

Requirements 2 Multifunction Boards 1 Chassis 2 PCs with Linux OS 2 FC-FC Multimode Fiber Optic Cables Oscilloscope Procedure 1. On AOUIM open 3 Xterm windows 2. In first Xterm window type ‘rlogin –l ao aoicm’ and hit return 3. Type the password, ‘wai!mea’ and hit return. 4. Change to the ‘dio32’ directory. 5. Type ‘su aroot’ and hit return. 6. Type the password, ‘wai!mea’ and hit return. 7. Type ‘start_dio’ and hit return. This should start dio32. 8. In second Xterm window type ‘rlogin –l ao aoicm’ and hit return. 9. Type the password, ‘wai!mea’, and hit return. 10. Change to ‘dio32’ directory. 11. Type ‘cat /dev/rtf0’ and hit return. 12. In the third Xterm window, type ‘rlogin –l ao aoicm’ and hit return. 13. Type the password, ‘wai!mea’ and hit return. 14. Change to the ‘dio32’ directory. 15. Type ‘cat > /dev/rtf1’ and hit return. 16. You should now be able to see the commands that you type in Xterm 3 show up in

Xterm window 2. To test this type ‘test’ in Xterm 3. If you do not see ‘test’ in Xterm 2 a. Hit ‘ctrl-c’ in Xterm 3. b. In Xterm 3, type ‘exit’ and hit return. c. Hit ‘ctrl-c’ in Xterm 2. d. In Xterm 2, type ‘exit’ and hit return. e. In Xterm 1, type ‘stop_dio’ and hit return. f. Repeat from step 7.

17. Make sure that all dip switches on SW1 are in the ‘ON’ position 18. Plug board that you would like to test into chassis. 19. Connect oscilloscope GND to J2 pin 1 and channel 1 to J2 pin 2. 20. Turn on power by flipping switch on front of chassis 21. In window #2 type ‘a i’ and hit return. 22. Type ‘f a 0’ and hit return to direct commands to channel 0. 23. Type ‘f m 1’ and hit return to set the test pattern to sawtooth. 24. Type ‘f p 10000’ and hit return to set the period of the pulse to 10000 ms. 25. Type ‘f b’ and hit return to start pattern generation. 26. Check the oscilloscope to see a saw tooth pattern is being generated.

If output stays constant on oscilloscope

a. Turn off chassis power by flipping switch on front of chassis. b. Wait 5-10 seconds and turn power back on. c. Check if pattern is being generated. d. If not repeat a-c 4 times. e. If still no output, move oscilloscope probe to corresponding connector on channel

2 and type ‘f a 1’ and hit return, then repeat steps 21-24. f. If still no output there may be a problem with the DAC. Turn off chassis and

remove board. g. Check for assembly errors around U48 and U49.

27. Type ‘f e’ and hit return 28. Type ‘f a ‘ and the next channel number, then hit return. 29. Move oscilloscope probe and ground pin to corresponding connector on channel and

repeat steps 23-27 until all channels 0-11 have all been tested, noting pass/fail of all channels.

Connectors for Channel 1 of Oscilloscope

If all channels pass the previous test, continue onto the next test starting from step 28. The next test is to check the addressing of the DAC, to make sure that there isn’t any aliasing. If any of the channels failed the previous test go to step 71, debug board and retest. 30. Connect oscilloscope GND to J2 pin 1 and channel 1 to J2 pin 2. 31. Type ‘f a 0’ and hit return to direct commands to channel 0. 32. Type ‘f b’ and hit return to start pattern generation. 33. Check the oscilloscope to see a saw tooth pattern is being generated. 34. Move oscilloscope GND and probe to the corresponding pins on the connector for

Channel 1. 35. Check that channel is NOT outputting the sawtooth pattern. If output remains flat, the

channel has passed test. 36. Move oscilloscope to next channel and repeat step 33 until all channels have been

tested, noting pass/fail of all channels. 37. Move oscilloscope to channel 6. 38. Type ‘f e’ and hit return. 39. Type ‘f a 6’ and hit return.

J2-2

Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

Channel 6

Channel 7

Channel 8

Channel 9

Channel 10

Channel 11

40. Type ‘f b’ and hit return. 41. Check the oscilloscope to see that sawtooth pattern is being generated. 42. Move oscilloscope to next channel. 43. Check that channel is NOT outputting the sawtooth pattern. If output remains flat,

channel has passed the test. 44. Move oscilloscope to next channel and repeat step 41 until all channels have been

tested, noting pass/fail of all channels. 45. Type ‘f e’ and hit return. If all channels pass the previous test, continue onto the next test starting from step 44. The next test is to check that the dip switch controlling the upper address bits is working properly. If any of the channels failed the previous test go to step 71, debug board and retest. 46. Move switch #5 on SW1 to the on position. 47. Move oscilloscope GND and probe to channel 0. 48. Type ‘f a 12’ and hit return. 49. Type ‘f b’ and hit return. 50. Check oscilloscope to make sure that the sawtooth pattern is being generated. 51. Type ‘f e’ and hit return. 52. Type ‘f a 0’ and hit return. 53. Type ‘f b’ and hit return. 54. Check to make sure that the sawtooth pattern is NOT being generated. 55. Type ‘f e’ and hit return. 56. Type ‘f a 24’ and hit return. 57. Type ‘f b’ and hit return. 58. Check to make sure that the sawtooth pattern is NOT being generated. 59. Type ‘f e’ and hit return. 60. Move switch #5 on SW1 to the off position and switch #6 on SW1 to the on position. 61. Type ‘f a 24’ and hit return. 62. Type ‘f b’ and hit return. 63. Check oscilloscope to make sure that the sawtooth pattern is being generated. 64. Type ‘f e’ and hit return. 65. Type ‘f a 0’ and hit return. 66. Type ‘f b’ and hit return. 67. Check to make sure that the sawtooth pattern is NOT being generated. 68. Type ‘f e’ and hit return. 69. Type ‘f a 12’ and hit return. 70. Type ‘f b’ and hit return. 71. Check to make sure that the sawtooth pattern is NOT being generated. 72. Type ‘f e’ and hit return. 73. Turn off power and remove board. 74. If there are more boards to test repeat from step 17. Else go on to step 75. 75. Press ‘ctrl-c’ in Xterm 3. 76. Type ‘exit’ in Xterm 3 and hit return. 77. Press ‘ctrl-c’ in Xterm 2. 78. Type ‘exit’ in Xterm 2 and hit return. 79. In Xterm 1 type ‘stop_dio’ and hit return. 80. Type ‘exit’ and hit return.

2.4 High Voltage Amplifier Test

Requirements 2 Multifunction Boards 1 Chassis 2 PCs with Linux OS 2 FC-FC Multimode Fiber Optic Cables

High Voltage Oscilloscope High Voltage Cable Piezo Material with two leads connected to it NOTE: You will be working with +/-400 volts with this test. Make sure to follow ALL steps in the order that they are written. Failure to do so could result in serious electrical shock. Procedure 1. On AOUIM open 3 Xterm windows 2. In first Xterm window type ‘rlogin –l ao aoicm’ and hit return 3. Type the password, ‘wai!mea’ and hit return. 4. Change to the ‘dio32’ directory. 5. Type ‘su aroot’ and hit return. 6. Type the password, ‘wai!mea’ and hit return. 7. Type ‘start_dio’ and hit return. This should start dio32. 8. In second Xterm window type ‘rlogin –l ao aoicm’ and hit return. 9. Type the password, ‘wai!mea’, and hit return. 10. Change to ‘dio32’ directory. 11. Type ‘cat /dev/rtf0’ and hit return. 12. In the third Xterm window, type ‘rlogin –l ao aoicm’ and hit return. 13. Type the password, ‘wai!mea’ and hit return. 14. Change to the ‘dio32’ directory. 15. Type ‘cat > /dev/rtf1’ and hit return. 16. You should now be able to see the commands that you type in Xterm 3 show up in

Xterm window 2. To test this type ‘test’ in Xterm 3. If you do not see ‘test’ in Xterm 2 a. Hit ‘ctrl-c’ in Xterm 3. b. In Xterm 3, type ‘exit’ and hit return. c. Hit ‘ctrl-c’ in Xterm 2. d. In Xterm 2, type ‘exit’ and hit return. e. In Xterm 1, type ‘stop_dio’ and hit return. f. Repeat from step 7.

17. Make sure that all dip switches on SW1 are in the ‘OFF’ position 18. Plug board that you would like to test into slot one of the chassis. 19. Connect oscilloscope channel 1 to J2 pin 2. 20. Turn on power by flipping switch on front of chassis 21. In window #2 type ‘a i’ and hit return. 22. Type ‘f a 0’ and hit return to direct commands to channel 0. 23. Type ‘f m 1’ and hit return to set the test pattern to sawtooth. 24. Type ‘f p 10000’ and hit return to set the period of the pulse to 10000 ms. 25. Type ‘f b’ and hit return to start pattern generation. 26. Check the oscilloscope to see a saw tooth pattern is being generated.

If output stays constant on oscilloscope a. Turn off chassis power by flipping switch on front of chassis. b. Wait 5-10 seconds and turn power back on. c. Check if pattern is being generated. d. If not repeat a-c 4 times.

27. Type ‘f e’ and hit return 28. Connect GND connector from oscilloscope to one of the leads on the Piezo material

and stick it into socket 15 on the high voltage cable. 29. Connect probe of channel 2 on the oscilloscope to the other lead on of the Piezo

material and stick it into socket 1 of the high voltage cable. 30. Turn on high voltage power supply, switch on back of chassis. 31. Type ‘f b’ and then hit return. 32. Check to see that the voltage from channel 2 roughly follows the sawtooth pattern on

channel 1 of the oscilloscope. See example below. 33. Type ‘f e’ and then hit return.

34. Turn off high voltage power supply, switch on back of chassis. NOTE: This is a very important step. +/-400V is being carried on the high voltage cable and if you do not turn off the high voltage supply before doing step #34 there is a high risk for electrical shock.

35. Type ‘f a ‘ and the next channel number, then hit return. 36. Move oscilloscope channel 1 probe to the corresponding connector on channel(see

picture below) the next channel and the oscilloscope channel 2 probe to the corresponding socket on the high voltage cable(see picture below).

Connectors for Channel 1 of Oscilloscope

37. Repeat steps 23-34 until all channels 0-11 have all been tested, noting pass/fail of all

channels. 38. Turn off power and remove board. 39. If there are more boards to test repeat from step 17. Else go on to step 40 40. Press ‘ctrl-c’ in Xterm 3. 41. Type ‘exit’ in Xterm 3 and hit return. 42. Press ‘ctrl-c’ in Xterm 2. 43. Type ‘exit’ in Xterm 2 and hit return. 44. In Xterm 1 type ‘stop_dio’ and hit return. 45. Type ‘exit’ and hit return.

J2-2

Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

Channel 6

Channel 7

Channel 8

Channel 9

Channel 10

Channel 11

3 Schematic

Note: that schematic only shows one channel of High Voltage Amplifier. Each channel is identical in design.

1 2 3 4 5 6

A

B

C

D

654321

D

C

B

A

Title

Number RevisionSize

B

Date: 29-Oct-2002 Sheet of File: F:\IFA\HVA\BACKUP~22.DDB Drawn By:

IN-10

+15-15HV+HV-

HVO10

chan10hva00000.sch

IN-10

+15-15HV+HV-

HVO10

IN-11

+15--15HV+HV-

HVO11

chan11hva00001.sch

IN-11

+15--15HV+HV-

HVO11

IN-0

+15-15VHV+HV-

HVO0

chan0hva00002.sch

IN-0

+15-15VHV+HV-

HVO0IN-8

+15-15HV+HV-

HVO8

chan8hva00003.sch

IN-8

+15-15HV+HV-

HVO8

IN-9

+15-15HV+HV-

HVO9

chan9hva00004.sch

IN-9

+15-15HV+HV-

HVO9 IN-1

+15-15HV+HV-

HVO1

chan1hva00005.sch

IN-1

+15-15HV+HV-

HVO1

IN-2

+15-15VHV+HV-

HVO2

chan2hva00006.sch

IN-2

+15-15VHV+HV-

HVO2

IN-3

+15-15HV+HV-

HVO3

chan3hva00007.sch

IN-3

+15-15HV+HV-

HVO3

IN-4

+15-15HV+HV-

HVO4

chan4hva00008.sch

IN-4

+15-15HV+HV-

HVO4

IN-5

+15-15HV+HV-

HVO5

chan5hva00009.sch

IN-5

+15-15HV+HV-

HVO5

IN-6

+15-15HV+HV-

HVO6

chan6hva00010.sch

IN-6

+15-15HV+HV-

HVO6

IN-7

+15-15HV+HV-

HVO7

chan7hva00011.sch

IN-7

+15-15HV+HV-

HVO7

D[0..15]ADDR[0..7]VCCDGND+15VGND-15VCTRL[8..15]CTRL[0..7]DATA_L_ENABLEDATA_L_DIRADDR_ENABLEADDR_DIRCTRL_L_ENABLECTRL_L_DIRCTRL_H_ENABLECTRL_H_DIRDATA_H_ENABLEDATA_H_DIR

busbus.sch

D[0..15]ADDR[0..7]VCCDGND+15VGND-15VCTRL[8..15]CTRL[0..7]DATA_L_ENABLEDATA_L_DIRADDR_ENABLEADDR_DIRCTRL_L_ENABLECTRL_L_DIRCTRL_H_ENABLECTRL_H_DIRDATA_H_ENABLEDATA_H_DIR

HVO0

HVO1

HVO2

HVO3

HVO4

HVO5

HVO6

HVO7

HVO8

HVO9

HVO10

HVO11

1 2

JP1JUMPER

+

C5322uF 25V Ta

VCC VOUT0

VOUT1

VOUT2

VOUT3

VOUT4

VOUT5

VOUT6

VOUT7

VOUT8

VOUT9

VOUT10

VOUT11

VOUT(0..11)DO(0..12)ADDRI(0..2)

CLRWR

-5VDAALD(0..3)DA1LD(0..3)

SHDN(0..2)

DACS0DACS1VCCGND

adcadc.sch

VOUT(0..11)DO(0..12)ADDRI(0..2)

CLRWR

-5VDAALD(0..3)DA1LD(0..3)

SHDN(0..2)

DACS0DACS1VCCGND

D[0..15]ADDR(0..7)CTRL(8..15)CTRL(0..7)

DATA_L_ENABLEDATA_L_DIR

DATA_H_ENABLEDATA_H_DIR

ADDR_ENABLEADDR_DIR

CTRL_L_ENABLECTRL_L_DIR

CTRL_H_ENABLECTRL_H_DIR

DO(0..12)

WRCLR

ADDRI(0..2)

DAALD(0..3)DA1LD(0..3)

SHDN(0..2)

DACS1DACS0

GNDGND

VCC

hva_addrhva_addr.sch

D[0..15]ADDR(0..7)CTRL(8..15)CTRL(0..7)

DATA_L_ENABLEDATA_L_DIR

DATA_H_ENABLEDATA_H_DIR

ADDR_ENABLEADDR_DIR

CTRL_L_ENABLECTRL_L_DIR

CTRL_H_ENABLECTRL_H_DIR

DO(0..12)

WRCLR

ADDRI(0..2)

DAALD(0..3)DA1LD(0..3)

SHDN(0..2)

DACS1DACS0

GNDGND

VCC

-5VVCCGND

neg_supneg_sup.sch

-5VVCCGND -5V

HVO(0..11)HV-HV+

hv_bushv_bus.sch

-5VHVO(0..11)HV-HV+

VCC

VCC

1 2 3 4 5 6

A

B

C

D

654321

D

C

B

A

Title

Number RevisionSize

B

Date: 29-Oct-2002 Sheet of File: F:\IFA\CD - 8.28.02\hva_top_Rob.DDB Drawn By:

D21N4001

C40.1u

+ C31u

R2

1.0K

R1

1k

R4221k

R19

221k

R22

1k

Q2

MOSFET N

anode 1

cathode 2base4

collector5emitter6

U3

CNY17

anode1 cathode2

base 4collector 5emitter 6U1

CNY17

IN - 2

IN + 3OUT6

VC

C-4

VCC

+7

OFFSE NULL- 1

OFFSE NULL+ 5

NC8

U2MAX427CSA(8)

VOUT0

+15-15

HV+

HV-

HVO0

C8

18pf

AK

D412V

AK

D312V

R9

240

R21

180k

R25

249k

R23

249k

R17

249k

R7

180k

R13

180k

R14

180k

R12

180k

R20

180k

R15

360k

R8

360k

R10

360k

C62.2n

C52.2n

C10.1u

D11N4001

D51N4001

D71N4001

Q1

MOSFET N

+

C71u

R51k

R3

240

R16

249k

R61k

TEST POINT

C22.2n

123

J2

CON3

GND

R11

7.3k

R18

7.3k

+15V

-15V

TESTPOINT

NOTE: TESTPOINTS ARE CONNECTED WITH WIRE. THIS CONNECTION IS NOT ON THE PCB

1 2 3 4 5 6

A

B

C

D

654321

D

C

B

A

Title

Number RevisionSize

B

Date: 29-Oct-2002 Sheet of File: F:\IFA\CD - 8.28.02\hva_top_Rob.DDB Drawn By:

C1C1

C2C2C3C3C4C4

C5C5

C6C6

C7C7

C8C8

C9C9

C10C10

C11C11

C12C12

C13C13

C14C14

C15C15

C16C16

C17C17

C18C18

C19C19

C20C20

C21C21

C22C22

C23C23

C24C24C25C25C26C26

C27C27

C28C28

C29C29

C30C30

C31C31

C32C32

B1B1

B2B2B3B3B4B4

B5B5

B6B6

B7B7

B8B8

B9B9

B10B10

B11B11

B12B12

B13B13

B14B14

B15B15

B16B16

B17B17

B18B18

B19B19

B20B20

B21B21

B22B22

B23B23

B24B24B25B25B26B26

B27B27

B28B28

B29B29

B30B30

B31B31

B32B32

A1A1

A2A2A3A3A4A4

A5A5

A6A6

A7A7

A8A8

A9A9

A10A10

A11A11

A12A12

A13A13

A14A14

A15A15

A16A16

A17A17

A18A18

A19A19

A20A20

A21A21

A22A22

A23A23

A24A24A25A25A26A26

A27A27

A28A28

A29A29

A30A30

A31A31

A32A32

ABCP1

DIN96

RB_D5

RB_D10

R_ADDR7R_ADDR6R_ADDR5R_ADDR4R_ADDR3R_ADDR2R_ADDR1

DGND

RB_D13RB_D12RB_D11

RB_D9RB_D8

RB_D7DGND

RB_D6

RB_D4RB_D3RB_D2RB_D1RB_D0

R_CTRL0

GND

GND

D[0..15] ADDR[0..7]

GND

VCC

8 CHANNEL ADC BOARD

700-155-01 LAYOUT

PETER ONAKA1 OF XX

12345

J13

CON5

VCC

DGND

+15V

GND

-15V

11

22

+ C8622uF 25V Ta

-15V

+15VVCC

+15V

DGNDGND

-15V

CTRL[8..15]

R_CTRL10R_CTRL11R_CTRL12R_CTRL13

CTRL[0..7]

R_CTRL1R_CTRL2R_CTRL3R_CTRL4R_CTRL5R_CTRL6

DATA_L_ENABLEDATA_L_DIR

ADDR_ENABLEADDR_DIR

CTRL_L_ENABLECTRL_L_DIR

CTRL_H_ENABLECTRL_H_DIR

R_CTRL8R_CTRL9R_CTRL10R_CTRL11R_CTRL12R_CTRL13GNDGND

CTRL8CTRL9CTRL10CTRL11CTRL12CTRL13CTRL14CTRL15

CTRL0CTRL1CTRL2CTRL3CTRL4CTRL5CTRL6CTRL7

R_CTRL0R_CTRL1R_CTRL2R_CTRL3R_CTRL4R_CTRL5R_CTRL6R_CTRL7

G19

DIR1

A12

B1 18

A23

B2 17

A34B3 16

A45B4 15

A56

B5 14

A67

B6 13

A78

B7 12

A89

B8 11

VCC20 GND 10

U46

74ACT245

DATA_H_ENABLEDATA_H_DIR

RB_D0RB_D1RB_D2RB_D3RB_D4RB_D5RB_D6RB_D7

RB_D8RB_D9RB_D10RB_D11RB_D12RB_D13

D0D1D2D3D4D5D6D7

D8D9D10D11D12D13D14D15

ADDR7ADDR6ADDR5ADDR4ADDR3ADDR2ADDR1ADDR0

R_ADDR7R_ADDR6R_ADDR5R_ADDR4R_ADDR3R_ADDR2R_ADDR1GND

+ C14622uF 25V Ta

+ C7722uF 25V Ta

G19

DIR1

A12

B1 18

A23

B2 17

A34

B3 16

A45

B4 15

A56

B5 14

A67B6 13

A78B7 12

A89

B8 11

VCC20 GND 10

U39

74ACT245

G19

DIR1

A12

B1 18

A23

B2 17

A34B3 16

A45B4 15

A56

B5 14

A67

B6 13

A78

B7 12

A89

B8 11

VCC20 GND 10

U35

74ACT245

G19

DIR1

A12

B1 18

A23

B2 17

A34B3 16

A45B4 15

A56

B5 14

A67

B6 13

A78

B7 12

A89

B8 11

VCC20 GND 10

U40

74ACT245

G19

DIR1

A12

B1 18

A23

B2 17

A34

B3 16

A45

B4 15

A56

B5 14

A67B6 13

A78B7 12

A89

B8 11

VCC20 GND 10

U51

74ACT245

+ C1201.0uF C125

0.1u

VCC

+ C971.0uF C102

0.1u

VCC

+ C1081.0uF C103

0.1u

VCC

+ C1241.0uF C119

0.1u

VCC

+ C1501.0uF C144

0.1u

VCC

VCC

VCC

VCC

VCC

R297

0Ohm connection

VCC VCC VCC

VCCVCC

DGND

NC was GND

Note: Pins A9-A11 are shorted to GND with rework

Note: A31 was connected to GND, trace cut and jumpered to -15V-15VNote: A32 is jumpered to VCC

Note: was DGND

Note: Pins B20-B21, B23 are shorted to GND with rework

VCCNote: C32 is jumpered to VCCNote: C31 is jumpered to +15V+15V

GND

GNDNote: C10 is jumpered to GND

Note: was DGND

GNDGND

R_ADDR0

RB_D15RB_D15

R_CTRL14R_CTRL15

R_CTRL14R_CTRL15

R_CTRL7R_CTRL8R_CTRL9

Note: Pins A17-A21 are shorted to GND with rework

RB_D14RB_D15

R_ADDR0

Not Found

1 2 3 4 5 6

A

B

C

D

654321

D

C

B

A

Title

Number RevisionSize

B

Date: 29-Oct-2002 Sheet of File: F:\IFA\CD - 8.28.02\hva_top_Rob.DDB Drawn By:

VOUTB1

VOUTA2

VDD3

REFAB4

AGNDAB5

LDAB6

LDCD7

CS8

WR9

A210

A111

A0

12

D12

13

D11

14

D10

15

D9

16

D8

17

D7

18

D6

19

D5

20

D4

21

D3

22

D2 23D1 24D0 25LDEF 26LDGH 27GND 28AGNDGH 29REFGH 30VDD 31VOUTH 32VOUTG 33VO

UT

F34

VO

UTE

35V

SS36

RE

FF37

AG

ND

F38

CLR

39A

GN

DC

D40

REF

CD41

VSS

42V

OU

TD

43V

OU

TC44

U48

MAX547

VOUTB1

VOUTA2

VDD3

REFAB4

AGNDAB5

LDAB6

LDCD7

CS8

WR9

A210

A111

A0

12

D12

13

D11

14

D10

15

D9

16

D8

17

D7

18

D6

19

D5

20

D4

21

D3

22

D2 23D1 24D0 25LDEF 26LDGH 27GND 28AGNDGH 29REFGH 30VDD 31VOUTH 32VOUTG 33VO

UT

F34

VO

UTE

35V

SS36

REF

F37

AG

ND

F38

CLR

39A

GN

DC

D40

REF

CD41

VSS

42V

OU

TD

43V

OU

TC44

U49

MAX547

NC1

IN-2

IN+3

VEE4 NC 5OUT 6VCC 7SHDN 8U42

MAX4131

NC1

IN-2

IN+3

VEE4 NC 5OUT 6VCC 7SHDN 8U54

MAX4131

NC1

IN-2

IN+3

VEE4 NC 5OUT 6VCC 7SHDN 8U41

MAX4131

NC1

NC2

NC3

ANODE4 NC 5CATHODE 6

CATHODE 8

NC 7

U47

REF1004

VOUT(0..11)

VOUT0VOUT1

VO

UT2

VO

UT3

VO

UT4

VO

UT5

VOUT6VOUT7

VO

UT8

VO

UT9

VO

UT1

0V

OU

T11

DO(0..12)ADDRI(0..2)

DO0DO1DO2

DO

3D

O4

DO

5D

O6

DO

7D

O8

DO

9D

O10

DO

11D

O12

DO0DO1DO2

DO

3D

O4

DO

5D

O6

DO

7D

O8

DO

9D

O10

DO

11D

O12

AD

DR

I0

ADDRI1ADDRI2

ADDRI0

ADDRI1ADDRI2

C1230.1u

C1280.1u

C1310.1u

C1320.1u

VCC

-5V

C1330.1u

C1300.1u

VCC

C1270.1u

C1220.1u

DAALD(0..3)DA1LD(0..3)

C1390.1u

C1400.1u

C370.1u

C1290.1u

C1170.1u

C350.1u

C380.1u

C1490.1u

C360.1u

C1420.1u

C1410.1u

R30149.9K 1%

VCC

R289

14.0K 1%R292

35.7K 1%C118

33pf

R291

7.3K 1%

R290

7.3K

R300

7.3K

R302

7.3K

C1160.1u

SHDN(0..2)

SHDN1SHDN2

C115

33pf

C148

33pf

DACS0

DACS1

DA1LD0DA1LD1

DA1LD2DA1LD3

DAALD0DAALD1

DAALD2DAALD3

SHDN0

R299

7.3K

R?

7.3K

R296

7.3KR298

7.3K

VCC

C1510.1u

IN -2

IN +3 OUT 6

VC

C-4

VC

C+7

OFFSE NULL-1

OFFSE NULL+5

NC 8

U55MAX427CSA

R304

7.3K

C1520.1u

12

JP2

HEADER 2

WR

VCC

GNDGND

GND

VCC

-5V

-5V

GN

D

CLR

CLR

GN

D

VCC

GND GNDGND

VCC

R297

7.3K

-5V

-5V

GN

DC

LRG

ND

VCC VCC

VCC

+15V-15V

VCC

VCC

VCC

VCC

GND

-5V

VCC

VCC

1 2 3 4 5 6

A

B

C

D

654321

D

C

B

A

Title

Number RevisionSize

B

Date: 29-Oct-2002 Sheet of File: F:\IFA\CD - 8.28.02\hva_top_Rob.DDB Drawn By:

GND1

I/0 162

I/0 173

I/0 184

I/0 195

TCLK6

I/0 217

I/0 228

I/0 239

GND10

I/0 2411

I/0 2512

I/0 2613

I/0 2714

I/0 2815I/0 2916I/0 3017

I/0 3118

CLK 019

VCCO20

GND21

CLK 122

I/0 3223

I/0 3324

I/0 3425

I/0 3526

I/0 3627

I/0 3728

I/0 3829

I/0 3930

GND31

I/O 4032

I/O 4133

I/O 4234

I/O 4335

I/O 4436

I/O 4537I/O 4638

I/O 4739

VCCO40

GN

D41

I/O

48

42

I/O

49

43

I/O

50

44

I/O

51

45

TM

S46

I/O

53

47

I/O

54

48

I/O

55

49

GN

D50

I/O

56

51

I/O

57

52

I/O

58

53

I/O

59

54

I/O

60

55

I/O

61

56

I/O

62

57

I/O

63

58

I 2

59

VCC

O60

GN

D61

VCC

62

I/O

64

63

I/O

65

64

I/O

66

65

I/O

67

66

I/O

68

67

I/O

69

68

I/O

70

69

I/O

71

70

GN

D71

I/O

72

72

I/O

73

73

I/O

74

74

I/O

75

75

TD

O76

I/O

77

77

I/O

78

78

I/O

79

79

VCC

O80

GND 81I/O 80 82I/O 81 83I/O 82 84I/O 83 85I/O 84 86I/O 85 87I/O 86 88

GND 90I/O 88 91I/O 89 92I/O 90 93I/O 91 94I/O 92 95I/O 93 96I/O 94 97I/O 95 98

I/O 87 89

CLK 2 99VCCO 100GND 101CLK3 102I/O 96 103I/O 97 104I/O 98 105I/O 99 106I/O 100 107I/O 101 108I/O 102 109I/O 103 110GND 111I/O 104 112I/O 105 113I/O 106 114I/O 107 115TDI 116I/O 109 117I/O 110 118I/O 111 119VCCO 120

GN

D12

1I/

O 1

1212

2I/

O 1

1312

3I/

O 1

1412

4I/

O 1

1512

5I/

O 1

1612

6I/

O 1

1712

7I/

O 1

1812

8I/

O 1

1912

9G

ND

130

I/O

120

131

I/O

121

132

I/O

122

133

I/O

123

134

I/O

124

135

I/O

125

136

I/O

126

137

I/O

127

138

JTA

G E

N13

9V

CC14

0G

ND

141

VCC

O14

2I/

O 0

143

I/O

114

4I/

O 2

145

I/O

314

6I/

O 4

147

I/O

514

8I/

O 6

149

I/O

715

0G

ND

151

I/O

815

2I/

O 9

153

I/O

10

154

I/O

11

155

I/O

12

156

I/O

13

157

I/O

14

158

I/O

15

159

VCC

O16

0

U44

CY37256

RES0 1RES1 2RES2 3RES3 4COM0 5RES46

RES57

RES68

RES79

COM110

R295

RES_8 4.7K

C1130.1u

C1120.1u

C1430.1u

C1340.1u

C1110.1u

C1260.1u

C1090.1u

C1100.1u

C1210.1u

C1450.1u

C1470.1u

D[0..15]

ADDR(0..7)

CTRL(8..15)

CTRL(0..7)DATA_L_ENABLE

DATA_L_DIR

DA

TA

_H_E

NA

BLE

DA

TA

_H_D

IR

AD

DR

_EN

ABL

EA

DD

R_D

IR

CTRL_L_ENABLE

CTRL_L_DIR

CTRL_H_ENABLECTRL_H_DIR

NC 1GND 7

VCC14 OUTPUT8U53

OSCILLATOR

DO(0..12)

WRCLR

ADDRI(0..2)

DAALD(0..3)

DA1LD(0..3)

1 23 45 67 89 10

J16

HEADER 5X2

VCC

SHDN(0..2)DACS1

DACS0

1 2

U43A

74AC14

C1140.1u

3 4

U43B

74AC14

VCC

R2937.3K

R294511k

LED1

LED

LED2

LED

LED3

LED

56

U43C

74AC14

98

U43D

74AC14

1110

U43E

74AC14

12345678910

J17

HEADER 5x2

R?

1K

R?

1K

R?

1K

CTRL0CTRL1CTRL2CTRL3CTRL4CTRL5CTRL6CTRL7

VCCGND

VCC

GNDVCC

GND

CTRL8CTRL9CTRL10CTRL11CTRL12CTRL13CTRL14CTRL15

ADDR0ADDR1ADDR2ADDR3ADDR4ADDR5ADDR6ADDR7

VCC

GN

D

TM

S

TMS

GN

D

13 12

VC

C14

GN

D7

U43F

74AC14

12345678

161514131211109

SW1

SW DIP-8VCC

VC

CG

ND

VC

C

GN

D

VC

C

TD

O

TDO

VCC

GND

DA1LD0DA1LD1DA1LD2DA1LD3

GND

DAALD0DAALD1DAALD2DAALD3

VCC

VCCGND

GNDGNDVCC

ADDR0ADDR1ADDR2

TDI

TDI

VCC

GN

D

GN

D

DO

0D

O1

DO

2D

O3

DO

4D

O5

DO

6D

O7

DO

8D

O9

DO

10D

O11

DO

12VCC

GN

DV

CC

GN

D

VCC

D0

D1

D2

D3

D4

D5

D6

D7

D8

D9

D10

D11

D12

D13

D14

D15

TCK

TCKJTAGEN

JTA

GEN

GNDVCC

GND

VCC

VCC VCCVCC VCC

VCC VCC VCC VCC

SHDN0SHDN1SHDN2

VCC

1 2 3 4 5 6

A

B

C

D

654321

D

C

B

A

Title

Number RevisionSize

B

Date: 29-Oct-2002 Sheet of File: F:\IFA\CD - 8.28.02\hva_top_Rob.DDB Drawn By:

OUT1

FB2

SHDN3

REF4 GND 5V+ 6V+ 7LX 8U25

MAX764CSA

-5V

D50

DIODE SCHOTTKY

+

C58220uF

L147uH+ C72

220uF12

J8

CON2

C640.1u

C750.1uC63

0.1u

VCC

GND

4 Datasheets 4.1 IRFBG20

4.2 IRG4PH50U

Parameter Max. UnitsVCES Collector-to-Emitter Breakdown Voltage 1200 VIC @ TC = 25°C Continuous Collector Current 45IC @ TC = 100°C Continuous Collector Current 24 AICM Pulsed Collector Current 180ILM Clamped Inductive Load Current 180VGE Gate-to-Emitter Voltage ± 20 VEARV Reverse Voltage Avalanche Energy 170 mJPD @ TC = 25°C Maximum Power Dissipation 200PD @ TC = 100°C Maximum Power Dissipation 78TJ Operating Junction and -55 to + 150TSTG Storage Temperature Range

Soldering Temperature, for 10 seconds 300 (0.063 in. (1.6mm) from case )°C

Mounting torque, 6-32 or M3 screw. 10 lbf•in (1.1N•m)

IRG4PH50UUltra Fast Speed IGBTINSULATED GATE BIPOLAR TRANSISTOR

E

C

G

n-channel

TO-247AC

FeaturesFeaturesFeaturesFeaturesFeatures

Benefits

VCES = 1200V

VCE(on) typ. = 2.78V

@VGE = 15V, IC = 24A

Parameter Typ. Max. UnitsRθJC Junction-to-Case ––– 0.64RθCS Case-to-Sink, Flat, Greased Surface 0.24 ––– °C/WRθJA Junction-to-Ambient, typical socket mount ––– 40Wt Weight 6 (0.21) ––– g (oz)

Thermal Resistance

Absolute Maximum Ratings

W

• UltraFast: Optimized for high operating frequencies up to 40 kHz in hard switching, >200 kHz in resonant mode• New IGBT design provides tighter parameter distribution and higher efficiency than previous generations• Optimized for power conversion; SMPS, UPS and welding• Industry standard TO-247AC package

• Higher switching frequency capability than competitive IGBTs• Highest efficiency available• Much lower conduction losses than MOSFETs• More efficient than short circuit rated IGBTs

01/14/02

www.irf.com 1

PD - 91574B

IRG4PH50U

2 www.irf.com

Parameter Min. Typ. Max. Units ConditionsV(BR)CES Collector-to-Emitter Breakdown Voltage 1200 — — V VGE = 0V, IC = 250µAV(BR)ECS Emitter-to-Collector Breakdown Voltage 18 — — V VGE = 0V, IC = 1.0A∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage — 1.20 — V/°C VGE = 0V, IC = 1.0mA

— 2.56 3.5 IC = 20A— 2.78 3.7 IC = 24A VGE = 15V

— 3.20 — IC = 45A See Fig.2, 5

— 2.54 — IC = 24A , TJ = 150°CVGE(th) Gate Threshold Voltage 3.0 — 6.0 VCE = VGE, IC = 250µA∆VGE(th)/∆TJ Temperature Coeff. of Threshold Voltage — -13 — mV/°C VCE = VGE, IC = 250µAgfe Forward Transconductance 23 35 — S VCE = 100V, IC = 24A

— — 250 VGE = 0V, VCE = 1200V

ICES Zero Gate Voltage Collector Current — — 2.0 µA VGE = 0V, VCE = 24V, TJ = 25°C

— — 5000 VGE = 0V, VCE = 1200V, TJ = 150°CIGES Gate-to-Emitter Leakage Current — — ±100 nA VGE = ±20V

Parameter Min. Typ. Max. Units ConditionsQg Total Gate Charge (turn-on) — 160 250 IC = 24AQge Gate - Emitter Charge (turn-on) — 27 40 nC VCC = 400V See Fig. 8Qgc Gate - Collector Charge (turn-on) — 53 83 VGE = 15Vtd(on) Turn-On Delay Time — 35 —tr Rise Time — 15 — TJ = 25°Ctd(off) Turn-Off Delay Time — 200 350 IC = 24A, VCC = 960Vtf Fall Time — 290 500 VGE = 15V, RG = 5.0ΩEon Turn-On Switching Loss — 0.53 — Energy losses include "tail"Eoff Turn-Off Switching Loss — 1.41 — mJ See Fig. 9, 10, 14Ets Total Switching Loss — 1.94 2.6td(on) Turn-On Delay Time — 31 — TJ = 150°Ctr Rise Time — 18 — IC = 24A, VCC = 960Vtd(off) Turn-Off Delay Time — 320 — VGE = 15V, RG = 5.0Ωtf Fall Time — 280 — Energy losses include "tail"Ets Total Switching Loss — 5.40 — See Fig. 11, 14Eon Turn-On Switching Loss — 0.35 — TJ = 25°C, VGE = 15V, RG = 5.0ΩEoff Turn-Off Switching Loss — 1.43 — IC = 20A, VCC = 960V

— 1.78 2.9 Energy losses include "tail"— 4.56 — See Fig. 9, 10, 11, 14, TJ = 150°C

LE Internal Emitter Inductance — 13 — nH Measured 5mm from packageCies Input Capacitance — 3600 — VGE = 0VCoes Output Capacitance — 160 — pF VCC = 30V See Fig. 7Cres Reverse Transfer Capacitance — 31 — ƒ = 1.0MHz

Electrical Characteristics @ TJ = 25°C (unless otherwise specified)

V

Switching Characteristics @ TJ = 25°C (unless otherwise specified)

ns

mJ

Repetitive rating; pulse width limited by maximumjunction temperature.

Pulse width ≤ 80µs; duty factor ≤ 0.1%. Pulse width 5.0µs, single shot.

Notes: Repetitive rating; VGE = 20V, pulse width limited by

max. junction temperature. ( See fig. 13b ) VCC = 80%(VCES), VGE = 20V, L = 10µH, RG = 5.0Ω,

(See fig. 13a)

VCE(ON) Collector-to-Emitter Saturation Voltage

mJ

ns

Ets Total Switching Loss

IRG4PH50U

www.irf.com 3

Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental)

Fig. 2 - Typical Output Characteristics Fig. 3 - Typical Transfer Characteristics

0

2 0

4 0

6 0

0.1 1 1 0 1 0 0

f , Frequency (kHz)

Load

Cur

rent

(A

)

A

60% of rated voltage

I

Id e a l d io d e s

S qua re w ave :

F o r b o th :

D uty cyc le: 50%T = 125 °CT = 90°CG ate drive as spec ified

s inkJ

P ow er D issipa tion = 40W

Triangula r w ave :

I

C lam p voltage :80% of ra ted

1

10

100

1000

1 10

V , Collector-to-Emitter Voltage (V)

I ,

Col

lect

or-t

o-E

mitt

er C

urre

nt (

A)

CE

C

V = 15V20µs PULSE WIDTH

GE

T = 25 CJo

T = 150 CJo

1

10

100

1000

5 6 7 8 9 10 11 12

V , Gate-to-Emitter Voltage (V)

I ,

Col

lect

or-t

o-E

mitt

er C

urre

nt (

A)

GE

C

V = 50V5µs PULSE WIDTH

CC

T = 25 CJo

T = 150 CJo

IRG4PH50U

4 www.irf.com

Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig. 5 - Typical Collector-to-Emitter Voltagevs. Junction Temperature

Fig. 4 - Maximum Collector Current vs. CaseTemperature

-60 -40 -20 0 20 40 60 80 100 120 140 1602.0

2.5

3.0

3.5

4.0

T , Junction Temperature ( C)

V

, C

olle

ctor

-to-

Em

itter

Vol

tage

(V)

J °

CE

V = 15V80 us PULSE WIDTH

GE

I = A12C

I = A24C

I = A48C

25 50 75 100 125 1500

10

20

30

40

50

T , Case Temperature ( C)

Max

imum

DC

Col

lect

or C

urre

nt(A

)

C °

0.001

0.01

0.1

1

0.00001 0.0001 0.001 0.01 0.1 1

Notes:1. Duty factor D = t / t2. Peak T = P x Z + T

1 2

J DM thJC C

P

t

t

DM

1

2

t , Rectangular Pulse Duration (sec)

The

rmal

Res

pons

e (Z

)

1

thJC

0.01

0.02

0.05

0.10

0.20

0.50

SINGLE PULSE(THERMAL RESPONSE)

IRG4PH50U

www.irf.com 5

Fig. 7 - Typical Capacitance vs.Collector-to-Emitter Voltage

Fig. 8 - Typical Gate Charge vs.Gate-to-Emitter Voltage

Fig. 9 - Typical Switching Losses vs. GateResistance

Fig. 10 - Typical Switching Losses vs.Junction Temperature

0 40 80 120 160 2000

4

8

12

16

20

Q , Total Gate Charge (nC)

V

,

Gat

e-to

-Em

itter

Vol

tage

(V

)

G

GE

V = 400VI = 24ACC

C

1 10 1000

1000

2000

3000

4000

5000

6000

7000

V , Collector-to-Emitter Voltage (V)

C, C

apac

itanc

e (p

F)

CE

VCCC

====

0V,CCC

f = 1MHz+ C

+ C

C SHORTEDGEies ge gc , ceres gcoes ce gc

Cies

Coes

Cres

0 10 20 30 40 50

RG, Gate Resistance (Ω)

0.0

1.0

2.0

3.0

4.0

5.0

Tot

al S

witc

hing

Los

ses

(mJ)

VCC = 960V

VGE = 15V

TJ = 25°C

I C = 24A

-60 -40 -20 0 20 40 60 80 100 120 140 160

TJ, Junction Temperature (°C)

0.1

1

10

100

Tot

al S

witc

hing

Los

ses

(mJ)

RG = 5.0ΩVGE = 15V

VCC = 960VIC = 48A

IC = 24A

IC = 12A

IRG4PH50U

6 www.irf.com

Fig. 11 - Typical Switching Losses vs.Collector-to-Emitter Current

Fig. 12 - Turn-Off SOA

1

10

100

1000

1 10 100 1000 10000

V = 20VT = 125 C

GEJ

o

V , Collector-to-Emitter Voltage (V)I

, C

olle

ctor

-to-

Em

itter

Cur

rent

(A

)CE

C

SAFE OPERATING AREA

0 10 20 30 40 50

IC, Collector Current (A)

0

5

10

15

20

Tot

al S

witc

hing

Los

ses

(mJ)

RG = 5.0ΩTJ = 150°CVGE = 15V

VCC = 960V

IRG4PH50U

www.irf.com 7

960V4 X IC@25°C

D.U.T.

50V

L

V *C

* Dr iver sam e type as D .U .T.; Vc = 80% of V ce(m ax)* Note: D ue to the 50V pow er supply, pulse w idth and inductor w ill increase to obta in ra ted Id.

1000V

Fig. 13a - Clamped InductiveLoad Test Circuit

Fig. 13b - Pulsed CollectorCurrent Test Circuit

480µF960V

0 - 960VRL =

t=5µsd(o n )t

t ft r

90%

td (o ff)

10%

90%

10%5%

VC

IC

E o n E o ff

ts o n o ffE = (E +E )

Fig. 14b - Switching LossWaveforms

50V

Driver*

1000V

D.U.T.

IC

CV

LFig. 14a - Switching Loss

Test Circuit

* Driver same type as D.U.T., VC = 960V

IRG4PH50U

8 www.irf.com

Case Outline and Dimensions — TO-247AC

D im e n s ion s in M i ll im e te rs a n d (In ch es )CONFORMS TO JEDEC OUTLINE TO-247AC (TO-3P)

- D -5 .3 0 ( .2 0 9 )4 .7 0 ( .1 8 5 )

3 .6 5 ( .1 4 3 )3 .5 5 ( .1 4 0 )

2 .5 0 ( .0 8 9 )1 .5 0 ( .0 5 9 )

4

3 X0 .8 0 ( .0 3 1 )0 .4 0 ( .0 1 6 )

2 .6 0 ( .1 0 2 )2 .2 0 ( .0 8 7 )3 .4 0 ( .1 3 3 )

3 .0 0 ( .1 1 8 )

3 X

0 .2 5 ( .0 1 0 ) M C A S

4 .3 0 ( .1 7 0 )3 .7 0 ( .1 4 5 )

- C -

2X5 .5 0 ( .2 17 )4 .5 0 ( .1 77 )

5 .5 0 ( .2 1 7)

0 .2 5 ( .0 1 0 )

1 .4 0 ( .0 5 6 )1 .0 0 ( .0 3 9 )

DM MB- A -

1 5 .9 0 ( .6 2 6 )1 5 .3 0 ( .6 0 2 )

- B -

1 2 3

2 0 .3 0 (.8 0 0 )1 9 .7 0 (.7 7 5 )

1 4 .8 0 ( .5 8 3 )1 4 .2 0 ( .5 5 9 )

2 .4 0 ( .0 9 4 )2 .0 0 ( .0 7 9 )

2 X

2 X

5 .4 5 ( .2 1 5 )

*

N O TE S : 1 D IM E N S IO N S & T O L E R A N C IN G P E R A N S I Y 14 .5 M , 1 9 8 2 . 2 C O N TR O L L IN G D IM E N S IO N : IN C H . 3 D IM E N S IO N S A R E S H O W N M ILL IM E TE R S (IN C H E S ). 4 C O N FO R M S TO JE D E C O U TL IN E T O -2 4 7 AC .

L E A D A S S IG N M E N T S 1 - G A T E 2 - C O L L E C TO R 3 - EM IT TE R 4 - C O L L E C TO R

* L O N G E R L E A D ED (2 0m m ) V E R S IO N A V A IL A B LE (T O -24 7 A D )T O O R D E R A D D "-E " S U FF IXT O P A R T N U M B ER

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020

IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590

IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086

IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 838 4630IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673, Taiwan Tel: 886-2-2377-9936

http://www.irf.com/ Data and specifications subject to change without notice. 01/02

4.3 74AC14

© 1999 Fairchild Semiconductor Corporation DS009917 www.fairchildsemi.com

November 1988

Revised December 1999

74AC

14 • 74AC

T14 H

ex Inverter w

ith S

chm

itt Trigg

er Inp

ut

74AC14 • 74ACT14Hex Inverter with Schmitt Trigger Input

General DescriptionThe 74AC14 and 74ACT14 contain six inverter gates eachwith a Schmitt trigger input. They are capable of transform-ing slowly changing input signals into sharply defined, jitter-free output signals. In addition, they have a greater noisemargin than conventional inverters.

The 74AC14 and 74ACT14 have hysteresis between thepositive-going and negative-going input thresholds (typi-cally 1.0V) which is determined internally by transistorratios and is essentially insensitive to temperature and sup-ply voltage variations.

Features ICC reduced by 50%

Outputs source/sink 24 mA

74ACT14 has TTL-compatible inputs

Ordering Code:

Device also available in Tape and Reel. Specify by appending suffix letter “X” to the ordering code.

Logic Symbol

IEEE/IEC

Pin Descriptions

Connection Diagram

Function Table

FACT is a trademark of Fairchild Semiconductor Corporation.

Order Number Package Number Package Description

74AC14SC M14A 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150” Narrow Body

74AC14SJ M14D 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide

74AC14MTC MTC14 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MS-153, 4.4mm Wide

74AC14PC N14A 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300” Wide

74ACT14SC M14A 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150” Narrow Body

74ACT14MTC MTC14 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MS-153, 4.4mm Wide

74ACT14PC N14A 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300” Wide

Pin Names Description

In Inputs

O n Outputs

Input Output

A O

L H

H L

www.fairchildsemi.com 2

74A

C14

• 7

4AC

T14 Absolute Maximum Ratings(Note 1) Recommended Operating

Conditions

Note 1: Absolute maximum ratings are those values beyond which damageto the device may occur. The databook specifications should be met, with-out exception, to ensure that the system design is reliable over its powersupply, temperature, and output/input loading variables. Fairchild does notrecommend operation of FACT circuits outside databook specifications.

DC Electrical Characteristics for AC

Note 2: All outputs loaded; thresholds on input associated with output under test.

Note 3: Maximum test duration 2.0 ms, one output loaded at a time.

Note 4: IIN and ICC @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V VCC.

Supply Voltage (VCC) −0.5V to +7.0V

DC Input Diode Current (IIK)

VI = −0.5V −20 mA

VI = VCC + 0.5V +20 mA

DC Input Voltage (VI) −0.5V to VCC + 0.5V

DC Output Diode Current (IOK)

VO = −0.5V −20 mA

VO = VCC + 0.5V +20 mA

DC Output Voltage (VO) −0.5V to VCC + 0.5V

DC Output Source

or Sink Current (IO) ±50 mA

DC VCC or Ground Current

per Output Pin (ICC or IGND) ±50 mA

Storage Temperature (TSTG) −65°C to +150°CJunction Temperature (TJ)

PDIP 140°C

Supply Voltage (VCC)

AC 2.0V to 6.0V

ACT 4.5V to 5.5V

Input Voltage (VI) 0V to VCC

Output Voltage (VO) 0V to VCC

Operating Temperature (TA) −40°C to +85°C

Symbol ParameterVCC TA = +25°C TA = −40°C to +85°C

Units Conditions(V) Typ Guaranteed Limits

VOH Minimum HIGH Level 3.0 2.99 2.9 2.9

V IOUT = −50 µAOutput Voltage 4.5 4.49 4.4 4.4

5.5 5.49 5.4 5.4

3.0 2.56 2.46

V

IOH = 12

4.5 3.86 3.76 IOH = 24 mA

5.5 4.86 4.76 IOH = 24 mA (Note 2)

VOL Maximum LOW Level 3.0 0.002 0.1 0.1

V IOUT = 50 µAOutput Voltage 4.5 0.001 0.1 0.1

5.5 0.001 0.1 0.1

3.0 0.36 0.44

V

IOL = 12

4.5 0.36 0.44 IOL 24 mA

5.5 0.36 0.44 IOL = 24 mA (Note 2)

IIN (Note 4) Maximum Input Leakage Current 5.5 ±0.1 ±1.0 µA VI = VCC, GND

Vt+ Maximum Positive 3.0 2.2 2.2

TA = Worst CaseThreshold 4.5 3.2 3.2 V

5.5 3.9 3.9

Vt− Minimum Negative 3.0 0.5 0.5

TA = Worst CaseThreshold 4.5 0.9 0.9 V

5.5 1.1 1.1

VH(MAX) Maximum Hysteresis 3.0 1.2 1.2

TA = Worst Case4.5 1.4 1.4 V

5.5 1.6 1.6

VH(MIN) Minimum Hysteresis 3.0 0.3 0.3

TA = Worst Case4.5 0.4 0.4 V

5.5 0.5 0.5

IOLD Minimum Dynamic 5.5 75 mA VOLD = 1.65V Max

IOHD Output Current (Note 3) 5.5 −75 mA VOHD = 3.85V Min

ICC Maximum Quiescent 5.5 2.0 20.0 µA

VIN = VCC

(Note 4) Supply Current or GND

3 www.fairchildsemi.com

74AC

14 • 74AC

T14

AC Electrical Characteristics for AC

Note 5: Voltage Range 3.3 is 3.3V ± 0.3V

Voltage Range 5.0 is 5.0V ± 0.5V

DC Electrical Characteristics for ACT

Note 6: All outputs loaded; thresholds on input associated with output under test.

Note 7: Maximum test duration 2.0 ms, one output loaded at a time.

Symbol Parameter

VCC TA = +25°C TA = −40°C to +85°C

Units(V) CL = 50 pF CL = 50 pF

(Note 5) Min Typ Max Min Max

tPLH Propagation Delay 3.3 1.5 9.5 13.5 1.5 15.0ns

5.0 1.5 7.0 10.0 1.5 11.0

tPHL Propagation Delay 3.3 1.5 7.5 11.5 1.5 13.0ns

5.0 1.5 6.0 8.5 1.5 9.5

Symbol ParameterVCC TA = +25°C TA = −40°C to +85°C

Units Conditions(V) Typ Guaranteed Limits

VIH Minimum HIGH Level 4.5 1.5 2.0 2.0V

VOUT = 0.1V

Input Voltage 5.5 1.5 2.0 2.0 or VCC − 0.1V

VIL Maximum LOW Level 4.5 1.5 0.8 0.8V

VOUT = 0.1V

Output Voltage 5.5 1.5 0.8 0.8 or VCC − 0.1V

VOH Minimum HIGH Level 4.5 4.49 434 4.4V IOUT = −50µA

Output Voltage 5.5 5.49 5.4 5.4

V

VIN = VIL or VIH

4.5 3.86 3.76 IOH = −24 mA

5.5 4.86 4.76 IOH = −24 mA (Note 6)

VOL Maximum LOW Level 4.5 0.001 0.1 0.1V IOUT = 50 µA

Output Voltage 5.5 0.001 0.1 0.1

V

VIN = VIL or VIH

4.5 0.36 0.44 IOL = 24 mA

5.5 0.36 0.44 IOL = 24 mA (Note 6)

IIN Maximum Input Leakage Current 5.5 ±0.1 ±1.0 µA VI = VCC, GND

VH(MAX) Maximum Hysteresis 4.5 1.4 1.4V TA = Worst Case

5.5 1.6 1.6

VH(MIN) Minimum Hysteresis 4.5 0.4 0.4V TA = Worst Case

5.5 0.5 0.5

Vt+ Maximum Positive 4.5 2.0 2.0V TA = Worst Case

Threshold 5.5 2.0 2.0

Vt− Minimum Negative 4.5 0.8 0.8V TA = Worst Case

Threshold 5.5 0.8 0.8

ICCT Maximum ICC/Input 5.5 0.6 1.5 mA VI = VCC − 2.1V

IOLD Minimum Dynamic 5.5 75 mA VOLD = 1.65V Max

IOHD Output Current (Note 7) 5.5 −75 mA VOHD = 3.85V Min

ICC Maximum Quiescent 5.5 2.0 20.0 µA

VIN = VCC

Supply Current or GND

www.fairchildsemi.com 4

74A

C14

• 7

4AC

T14 AC Electrical Characteristics for ACT

Note 8: Voltage Range 5.0 is 5.0V ± 0.5V

Capacitance

Symbol Parameter

VCC TA = +25°C TA = −40°C to +85°C

Units(V) CL = 50 pF CL = 50 pF

(Note 8) Min Typ Max Min Max

tPLH Propagation Delay5.0 3.0 8.0 10.0 3.0 11.0 ns

Data to Output

tPHL Propagation Delay5.0 3.0 8.0 10.0 3.0 11.0 ns

Data to Output

Symbol Parameter Typ Units Conditions

CIN Input Capacitance 4.5 pF VCC = OPEN

CPD Power Dissipation Capacitance for AC 25.0pF VCC = 5.0V

for ACT 80

5 www.fairchildsemi.com

74AC

14 • 74AC

T14

Physical Dimensions inches (millimeters) unless otherwise noted

14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150” Narrow BodyPackage Number M14A

www.fairchildsemi.com 6

74A

C14

• 7

4AC

T14 Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm WidePackage Number M14D

7 www.fairchildsemi.com

74AC

14 • 74AC

T14

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm WidePackage Number MTC14

www.fairchildsemi.com 8

74A

C14

• 7

4AC

T14

Hex

Inve

rter

wit

h S

chm

itt

Trig

ger

Inp

ut

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300” WidePackage Number N14A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied andFairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORTDEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILDSEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systemswhich, (a) are intended for surgical implant into thebody, or (b) support or sustain life, and (c) whose failureto perform when properly used in accordance withinstructions for use provided in the labeling, can be rea-sonably expected to result in a significant injury to theuser.

2. A critical component in any component of a life supportdevice or system whose failure to perform can be rea-sonably expected to cause the failure of the life supportdevice or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

4.4 74AC245

© 1999 Fairchild Semiconductor Corporation DS009944 www.fairchildsemi.com

November 1988

Revised November 1999

74AC

245 • 74AC

T245 O

ctal Bid

irection

al Transceiver w

ith 3-S

TAT

E

74AC245 • 74ACT245Octal Bidirectional Transceiver with 3-STATEInputs/Outputs

General DescriptionThe AC/ACT245 contains eight non-inverting bidirectionalbuffers with 3-STATE outputs and is intended for bus-ori-ented applications. Current sinking capability is 24 mA atboth the A and B ports. The Transmit/Receive (T/R) inputdetermines the direction of data flow through the bidirec-tional transceiver. Transmit (active-HIGH) enables datafrom A ports to B ports; Receive (active-LOW) enablesdata from B ports to A ports. The Output Enable input,when HIGH, disables both A and B ports by placing them ina HIGH Z condition.

Features ICC and IOZ reduced by 50%

Noninverting buffers

Bidirectional data path

A and B outputs source/sink 24 mA

ACT245 has TTL-compatible inputs

Ordering Code:

Device also available in Tape and Reel. Specify by appending suffix letter “X” to the ordering code.

FACT is a trademark of Fairchild Semiconductor Corporation.

Order Number Package Number Package Description

74AC245SC M20B 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300” Wide Body

74AC245SJ M20D 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide

74AC245MTC MTC20 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

74AC245PC N20A 20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300” Wide

74ACT245SC M20B 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300” Wide Body

74ACT245SJ M20D 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide

74ACT245MSA MSA20 20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide

74ACT245MTC MTC20 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

74ACT245PC N20A 20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300” Wide

www.fairchildsemi.com 2

74A

C24

5 •

74A

CT

245

Connection Diagram

Logic Symbols

IEEE/IEC

Pin Descriptions

Truth Table

H = HIGH Voltage LevelL = LOW Voltage LevelX = Immaterial

PinDescription

Names

OE Output Enable Input

T/R Transmit/Receive Input

A0–A7 Side A 3-STATE Inputs or 3-STATE Outputs

B0–B7 Side B 3-STATE Inputs or 3-STATE Outputs

InputsOutputs

OE T/R

L L Bus B Data to Bus A

L H Bus A Data to Bus B

H X HIGH-Z State

3 www.fairchildsemi.com

74AC

245 • 74AC

T245

Absolute Maximum Ratings(Note 1) Recommended OperatingConditions

Note 1: Absolute maximum ratings are those values beyond which damageto the device may occur. The databook specifications should be met, with-out exception, to ensure that the system design is reliable over its powersupply, temperature, and output/input loading variables. Fairchild does notrecommend operation of FACT circuits outside databook specifications.

DC Electrical Characteristics for AC

Note 2: All outputs loaded; thresholds on input associated with output under test.

Note 3: Maximum test duration 2.0 ms, one output loaded at a time.

Note 4: IIN and ICC @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V VCC.

Supply Voltage (VCC) −0.5V to +7.0V

DC Input Diode Current (IIK)

VI = −0.5V −20 mA

VI = VCC + 0.5V +20 mA

DC Input Voltage (VI) −0.5V to VCC + 0.5V

DC Output Diode Current (IOK)

VO = −0.5V −20 mA

VO = VCC + 0.5V +20 mA

DC Output Voltage (VO) −0.5V to VCC + 0.5V

DC Output Source

or Sink Current (IO) ±50 mA

DC VCC or Ground Current

per Output Pin (ICC or IGND) ±50 mA

Storage Temperature (TSTG) −65°C to +150°CJunction Temperature (TJ)

PDIP 140°C

Supply Voltage (VCC)

AC 2.0V to 6.0V

ACT 4.5V to 5.5V

Input Voltage (VI) 0V to VCC

Output Voltage (VO) 0V to VCC

Operating Temperature (TA) −40°C to +85°CMinimum Input Edge Rate (∆V/∆t)

AC Devices

VIN from 30% to 70% of VCC

VCC @ 3.3V, 4.5V, 5.5V 125 mV/ns

Minimum Input Edge Rate (∆V/∆t)

ACT Devices

VIN from 0.8V to 2.0V

VCC @ 4.5V, 5.5V 125 mV/ns

Symbol ParameterVCC(V)

TA = +25°C TA = −40°C to +85°CUnits Conditions

Typ Guaranteed Limits

VIH Minimum HIGH Level 3.0 1.5 2.1 2.1 VOUT = 0.1V

Input Voltage 4.5 2.25 3.15 3.15 V or VCC − 0.1V

5.5 2.75 3.85 3.85

VIL Maximum LOW Level 3.0 1.5 0.9 0.9 VOUT = 0.1V

Input Voltage 4.5 2.25 1.35 1.35 V or VCC − 0.1V

5.5 2.75 1.65 1.65

VOH Minimum HIGH Level 3.0 2.99 2.9 2.9

Output Voltage 4.5 4.49 4.4 4.4 V IOUT = −50 µA

5.5 5.49 5.4 5.4

VIN = VIL or VIH

3.0 2.56 2.46 IOH = −12 mA

4.5 3.86 3.76 V IOH = −24 mA

5.5 4.86 4.76 IOH = −24 mA (Note 2)

VOL Maximum LOW Level 3.0 0.002 0.1 0.1

Output Voltage 4.5 0.001 0.1 0.1 V IOUT = 50 µA

5.5 0.001 0.1 0.1

VIN = VIL or VIH

3.0 0.36 0.44 IOL = 12 mA

4.5 0.36 0.44 V IOL = 24 mA

5.5 0.36 0.44 IOL = 24 mA (Note 2)

IIN (Note 4) Maximum Input Leakage Current 5.5 ± 0.1 ± 1.0 µA VI = VCC, GND

IOLD Dynamic Output 5.5 75 mA VOLD = 1.65V Max

IOHD Current Minimum (Note 3) 5.5 −75 mA VOHD = 3.85V Min

ICC (Note 4) Maximum Quiescent Supply Current 5.5 4.0 40.0 µA VIN = VCC or GND

IOZT Maximum I/O VI (OE) = VIL, VIH

Leakage Current 5.5 ± 0.3 ± 3.0 µA VI = VCC, GND

VO = VCC, GND

www.fairchildsemi.com 4

74A

C24

5 •

74A

CT

245

DC Characteristics for ACT

Note 5: All outputs loaded; thresholds on input associated with output under test.

Note 6: Maximum test duration 2.0 ms, one output loaded at a time.

AC Electrical Characteristics for AC

Note 7: Voltage Range 3.3 is 3.3V ± 0.3VVoltage Range 5.0 is 5.0V ± 0.5V

Symbol ParameterVCC TA = +25°C TA = −40°C to +85°C

Units Conditions(V) Typ Guaranteed Limits

VIH Minimum HIGH Level 4.5 1.5 2.0 2.0V

VOUT = 0.1V

Input Voltage 5.5 1.5 2.0 2.0 or VCC − 0.1V

VIL Maximum LOW Level 4.5 1.5 0.8 0.8V

VOUT = 0.1V

Input Voltage 5.5 1.5 0.8 0.8 or VCC − 0.1V

VOH Minimum HIGH Level 4.5 4.49 4.4 4.4V IOUT = −50 µA

Output Voltage 5.5 5.49 5.4 5.4

VIN = VIL or VIH

4.5 3.86 3.76 IOH = −24 mA

5.5 4.86 4.76 V IOH = −24 mA (Note 5)

VOL Maximum LOW Level 4.5 0.001 0.1 0.1V IOUT = 50 µA

Output Voltage 5.5 0.001 0.1 0.1

VIN = VIL or VIH

4.5 0.36 0.44V

IOL = 24 mA

5.5 0.36 0.44 IOL = 24 mA (Note 5)

IIN Maximum Input 5.5 ±0.1 ±1.0 µA VI = VCC, GND

Leakage Current

ICCT Maximum5.5 0.6 1.5 mA VI = VCC − 2.1V

ICC/Input

IOLD Dynamic Output 5.5 75 mA VOLD = 1.65V Max

IOHD Current Minimum (Note 6) 5.5 −75 mA VOHD = 3.85V Min

ICC Maximum Quiescent5.5 4.0 40.0 µA

VIN = VCC

Supply Current or GND

IOZT Maximum I/O VI (OE) = VIL, VIH

Leakage Current 5.5 ±0.3 ±3.0 µA VI = VCC, GND

VO = VCC, GND

VCC TA = +25°C TA = −40°C to +85°C

Symbol Parameter (V) CL = 50 pF CL = 50 pF Units

(Note 7) Min Typ Max Min Max

tPLH Propagation Delay 3.3 1.5 5.0 8.5 1.0 9.0ns

An to Bn or Bn to An 5.0 1.5 3.5 6.5 1.0 7.0

tPHL Propagation Delay 3.3 1.5 5.0 8.5 1.0 9.0ns

An to Bn or Bn to An 5.0 1.5 3.5 6.0 1.0 7.0

tPZH Output Enable Time 3.3 2.5 7.0 11.5 2.0 12.5ns

5.0 1.5 5.0 8.5 1.0 9.0

tPZL Output Enable Time 3.3 2.5 7.5 12.0 2.0 13.5ns

5.0 1.5 5.5 9.0 1.0 9.5

tPHZ Output Disable Time 3.3 2.0 6.5 12.0 1.0 12.5ns

5.0 1.5 5.5 9.0 1.0 10.0

tPLZ Output Disable Time 3.3 2.0 7.0 11.5 1.5 13.0ns

5.0 1.5 5.5 9.0 1.0 10.0

5 www.fairchildsemi.com

74AC

245 • 74AC

T245

AC Electrical Characteristics for ACT

Note 8: Voltage Range 5.0 is 5.0V ± 0.5V

Capacitance

VCC TA = +25°C TA = −40°C to +85°C

Symbol Parameter (V) CL = 50 pF CL = 50 pF Units

(Note 8) Min Typ Max Min Max

tPLH Propagation Delay5.0 1.5 4.0 7.5 1.5 8.0 ns

An to Bn or Bn to An

tPHL Propagation Delay5.0 1.5 4.0 8.0 1.0 9.0 ns

An to Bn or Bn to An

tPZH Output Enable Time 5.0 1.5 5.0 10.0 1.5 11.0 ns

tPZL Output Enable Time 5.0 1.5 5.5 10.0 1.5 12.0 ns

tPHZ Output Disable Time 5.0 1.5 5.5 10.0 1.0 11.0 ns

tPLZ Output Disable Time 5.0 2.0 5.0 10.0 1.5 11.0 ns

Symbol Parameter Typ Units Conditions

CIN Input Capacitance 4.5 pF VCC = OPEN

CI/O Input/Output Capacitance 15.0 pF VCC = 5.0V

CPD Power Dissipation Capacitance 45.0 pF VCC = 5.0V

www.fairchildsemi.com 6

74A

C24

5 •

74A

CT

245

Physical Dimensions inches (millimeters) unless otherwise noted

20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300” Wide BodyPackage Number M20B

7 www.fairchildsemi.com

74AC

245 • 74AC

T245

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm WidePackage Number M20D

www.fairchildsemi.com 8

74A

C24

5 •

74A

CT

245

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm WidePackage Number MSA20

9 www.fairchildsemi.com

74AC

245 • 74AC

T245

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Thin Shrink Small Outline Package, (TSSOP) JEDECPackage Number MTC20

www.fairchildsemi.com 10

74A

C24

5 •

74A

CT

245

Oct

al B

idir

ecti

on

al T

ran

scei

ver

wit

h 3

-STA

TE

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Plastic Dual-In-Line (PDIP), JEDEC MS-001, 0.300” WidePackage Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied andFairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORTDEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILDSEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systemswhich, (a) are intended for surgical implant into thebody, or (b) support or sustain life, and (c) whose failureto perform when properly used in accordance withinstructions for use provided in the labeling, can be rea-sonably expected to result in a significant injury to theuser.

2. A critical component in any component of a life supportdevice or system whose failure to perform can be rea-sonably expected to cause the failure of the life supportdevice or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

4.5 AN1095

Design of IsolatedConverters Using SimpleSwitchersINTRODUCTION

Isolated converters are required to provide electrical isola-tion between two interrelated systems. Isolation between thepower source and the load is required in certain applicationsin order to meet safety specifications such as UL1459, whichnecessitates 500V of isolation for telecom applications.

Isolation must be provided between all the input and outputstages of the power converter. Thus, isolation must be pro-vided in the power stage and the control loop. Power stageisolation is generally provided using transformer. Isolation inthe feedback/control loop is often provided through an opto-coupler (also known as opto-isolator).

Transformers are well suited for power stage isolation, sincethey are known for providing good dielectric barrier betweentwo systems, with the ability to have multiple outputs. Trans-formers also allow stepping up or stepping down of the inputvoltage.

In isolated switching power supplies, opto-couplers are verywidely used to provide isolation in the feedback loop. Opto-couplers do an excellent job of isolation, minimizing circuitcomplexity and reducing cost. One of the disadvantages ofusing an opto-coupler is its low bandwidth. The bandwidth ofthe converter is reduced by the introduction of an extra polein the control loop gain of the converter. This is not a problemin conventional low frequency converters. However, in mod-ern high-frequency converters, the opto-coupler imposes se-vere restrictions on control loop bandwidth/speed.

Another disadvantage of using opto-isolator is the large unit-to-unit variation in the current transfer ratio (CTR). CTR orthe coupling efficiency is defined as the ratio of opto-isolatortransistor collector current to the diode current. The loopgain is directly proportional to CTR gain. Hence, high varia-tion in CTR imposes constraints on control loop design.

PART I. DESIGN OF OPTO-ISOLATED POWER SUPPLY

Design Approach

With the advent of SIMPLE SWITCHER™, and the associ-ated “Switchers Made Simple” software (SMS4.2.1,SMS3.3), the non-isolated converter design has becomevery simple. However, the non-isolated converters can bemodified to isolated converters very easily. The procedurefor design of opto-isolated converter is as follows:

Step 1: Design the power stage components for a flybackconverter using SMS4.2.1/3.3. The “Switchers Made Simple”software can be used to design the transformer, input/outputcapacitors, output rectifier, clamping network, etc.

Step 2: Modify the feedback/control loop by introducing asecondary side controller (such as LM3411) and an opto-isolator for feedback isolation. Also, disable the internal ref-erence in the Simple Switcher.

Design of Power Stage Components

The first step in the design process is to enter the converterspecifications (shown in Table 1) in the input menu of the“Switchers Made Simple” software. Using these specifica-

tions, the software will design the power stage components.The following example will be based on Switchers MadeSimple 4.2.1 (SMS4.2.1) and the associated LM258X fly-back converters.

If the input specifications are entered as shown in Figure 1,SMS4.2 will design a buck converter instead of flyback. In or-der to design a flyback converter when the output voltage islower than input voltage levels, it is necessary to enter ini-tially a fictitious output voltage value which is greater thanVIN(min). The software will then design a flyback. Now, go tothe main menu and change input requirements. Change thefictitious output voltage value to the required value. If the out-put voltage is greater than the minimum input voltage, theseextra steps are not necessary.

TABLE 1. Isolated Power Converter Specifications(Example)

Input Voltage 10V to 30V

Output Voltage 5V

Load (maximum) 2A

Operating Temp. Range 0˚C to 70˚C

Modify the component values, input specs, etc. to suit the re-quirements. The software will design all the power stagecomponents and give a list of vendors. In the exampleshown in Figure 2, the component values were enteredmanually to produce a surface mount design.

The isolation voltage of the transformer is not listed in thesoftware. The isolation voltage is generally mentioned in thetransformer manufacturer’s catalog. Select a transformertaking into consideration the isolation voltage. Any of thetransformers listed in the LM258X Simple Switcher datasheets meet UL1459 spec, and are suitable for telecomapplications.

SIMPLE SWITCHER® is a registered trademark of National Semiconductor Corporation

AN100151-1

FIGURE 1. Enter the Converter Specifications in theInput Menu of SMS4.2.1

National SemiconductorApplication Note 1095Ravindra AmbatipudiAugust 1998

Design

ofIsolatedC

onvertersU

singS

imple

Sw

itchersA

N-1095

© 1998 National Semiconductor Corporation AN100151 www.national.com

The software will also produce a schematic of the non-isolated converter as shown in Figure 3. This concludes thefirst step of the design process.

Modification of Control Loop for Isolated Design

The second step in designing an opto-isolated converter is tomodify the feedback loop by using a secondary controllersuch as LM3411 and to use an opto-isolator for feedback

isolation. To do this, connect an opto-coupler between thesecondary controller and the compensation pin for feedbackisolation. Power stage isolation is provided by thetransformer.

AN100151-2

FIGURE 2. Main Screen of SMS4.2.1 Summarizes the Design

AN100151-3

FIGURE 3. Circuit Designed using SMS4.2.1

www.national.com 2

The reference and the error amplifier internal to LM2587have to be disabled in order to avoid interaction with the ref-erence in secondary controller and to avoid excessive gainin the feedback loop. Figure 5 shows the internal block dia-gram of LM2587. By connecting the feedback pin to ground

and by connecting the opto-coupler output to the compensa-tion pin, the error-amp is by-passed. For this reason, anyvoltage option of the LM2587 can be used. This completesthe design of the isolated converter.

AN100151-4

FIGURE 4. Modification of Non-Isolated Flyback to Isolated Flyback

www.national.com3

Figure 6 shows the circuit diagram of an LM2587 basedopto-isolated flyback power supply. With the LM2587 erroramplifier disabled, the feedback control now consists ofLM3411-5.0 secondary side controller and the opto-isolator.Resistors Ro and Rd are required for biasing the opto-isolator. Capacitor Cs is required for soft-start.Note: Short Circuit Protection. In LM258X switchers, the soft-start com-

parator and the short-circuit protection are both controlled by the feed-back pin voltage. At start-up, when the output voltage is zero, the soft-

start comparator is activated and the output gradually increases to thenominal value. After this, the soft-start comparator gets disabled andthe short-circuit protection is enabled. Now if the output is shorted, thefrequency will change to 25% of normal operating frequency.

The short-circuit protection is activated only after the soft-start is dis-abled. In the isolated converter, the feedback pin is grounded. Theconverter never comes out of soft-start mode. So the short-circuit pro-tection (which changes the frequency to 25 kHz under short circuitconditions) never gets activated. Hence, an external circuit is requiredfor short-circuit protection.

AN100151-5

FIGURE 5. LM2587 Block Diagram; Grounding Feedback Pin Disables Error Amplifier, Opto-Coupler DeliversFeedback to Compensation Pin Instead

www.national.com 4

Selection of Compensation Components

The compensation circuit design involves selection of theopto-coupler output resistance, Ro, the opto-coupler input re-sistance, Rd, and the feedback capacitance, Cf. The com-pensator transfer function is the small-signal transfer func-tion from the output voltage, VO to the control voltage, Vc.The transfer function, A(s) is given by:

Thus, the compensator is a two pole, one zero compensator.In the above equation, CTR is the opto-coupler current trans-fer ratio or coupling-efficiency. The power stage transferfunction is a one pole, one zero (esr) compensator (in thefrequency range of interest). Choose Ro and Rd such thatvoltage Vc is always more than 0.3V. Also, the maximumvoltage on the compensation pin should be no more than 2V.

Choose Cf to place a zero to cancel the power stage pole, asshown in Figure 7. If the compensator is designed as shownabove, the loop gain should have very good phase marginand gain margin. In Figure 7,

where fp1 is the frequency of the power stage pole in currentmode converter, fz is the compensator zero, and fesr is theesr zero. fc is the loop cross over frequency. fp2 is the pole(s)created due to current mode control (located at high frequen-cies close to half the switching frequency).

AN100151-6

FIGURE 6. 10 Watt Opto-Isolated Flyback Converter

www.national.com5

The loop gain measured on the experimental converter shown in Figure 6, is shown in Figure 8. The bandwidth and phase marginare very much lower than expected.

AN100151-9

FIGURE 7. The Estimated Loop Response

AN100151-10 AN100151-11

FIGURE 8. Measured Loop Gain of the Experimental Converter (Bandwidt h = 3 kHz and Phase Margin = 20˚)

www.national.com 6

Since the bandwidth and phase margin are very low, a transient step of 0 to 1A produces a very poor transient response, asshown in Figure 9. This also indicates poor stability in the control loop.

PART II. IMPROVING TRANSIENT RESPONSE OFOPTO-ISOLATED CONVERTERS

What Causes the Divergence Between Estimated andMeasured Results?

The converter shown in Figure 6 uses an opto-isolatorCNY17-3 for feedback isolation and LM3411 for secondaryside control. Since this converter is operated at 100 kHzswitching frequency, then it is desired to have its loop cross-

over at around 10 kHz–20 kHz for superior transient perfor-mance. However, the opto-coupler CNY17-3 used in thisconfiguration has a −3 dB frequency of 5 kHz–10 kHz de-pending on the resistance Ro shown in Figure 6. The opto-coupler pole will introduce a phase-shift of more than 45˚ ataround 10 kHz as shown in Figure 10. Because this fact wasnot taken into consideration while designing the compensa-tor or loop gain, the measured phase margin and the band-width are lower than what was estimated.

AN100151-12

FIGURE 9. Transient Response for a Step Change in Load from 0 to 1A

AN100151-13

FIGURE 10. Opto-Coupler CNY17-3 Adds More Than 45˚ of Phase Shift at the Desired Loop Bandwidth of 10 kHz

www.national.com7

What Limits the Bandwidth of the Opto-Coupler?

The severe bandwidth limitations of the opto-coupler is dueentirely to the characteristics of the opto-coupler photo-transistor. When forward current is passed through the opto-coupler diode, it emits infra-red radiation. This radiant energyis transmitted through an optical coupling medium and fallson the surface of the photo-transistor. In order to make thephoto-transistor base region sensitive to light, and to mini-

mize the losses in radiant energy transfer, the photo-transistors are designed to have a very large base-collectorjunction area and a very thick base region. This results in avery large base capacitance, Cob. This capacitance is typi-cally in the order of several pico farads. However, this getseffectively multiplied due to the Miller effect, resulting in avery large Miller capacitance Com. The Miller capacitance isin the order of several nana farads.

The Miller capacitance Com, coupled with the resistance Ro,will produce a pole in its transfer function. This pole shouldbe taken into consideration while designing the compensa-tion circuit.

It can also be observed from the opto-isolator characteristicsthat the phase changes very dramatically at very high fre-quencies. This is due to the inherent delay in transmission ofradiant energy through the optical medium. If the input signalto the opto-coupler, as shown in Figure 11, is a sinusoid, theoutput signal is also a sinusoid, but phase shifted due to thedelay. As the frequency of this sinusoid increases, the phaseshift increases, almost linearly. The phase shift will increaselinearly only if this shift is due to time delay.

How To Solve The Opto-Coupler Bandwidth Problems?

The control loop bandwidth can be improved in three ways:

1. The phase margin can be improved by reducing the sys-tem cross-over frequency. However, the transient perfor-mance of the converter is sacrificed.

2. Opto-isolators with better frequency characteristics(such as MOC8101) can be used. However, these opto-couplers are more expensive.

3. The opto-isolator pole can be compensated by introduc-ing an additional zero in the control loop. This requiresproper prediction of opto-coupler pole.

Estimation of The Opto-Coupler Pole

The opto-coupler pole can be estimated in a number ofways. One method is to characterize the pole by actualbench measurements. Figure 12 shows the bench measure-ment setup for characterization of an opto-coupler using anetwork analyzer. A signal is injected at the opto-coupler in-put and frequency of this signal is swept over the frequencyrange of interest. The input signal is measured with probe Aand the output signal with probe B. By taking the ratio of theinput signal to the output signal, the frequency characteris-tics are obtained.

AN100151-14

FIGURE 11. Opto-Coupler Transmission Delay Adds Phase Change at High Frequencies (as the frequency of theinput sinusoid increases, the phase shift between the input and output increases linearly)

www.national.com 8

Figure 13 shows the typical performance curve obtained byactual measurements for the opto-coupler CNY17-3. In thisfigure, the opto-coupler bandwidth (pole) has been plottedversus the resistance Ro. The opto-coupler pole can be veryeasily predicted from this curve. As an example, let us pre-

dict the pole for CNY17-3 when the resistance, Ro = 5 kΩ.Draw a line parallel to Y-axis at Ro = 5 kΩ. From the point ofintersection on the curve, read the corresponding value onY-axis. The opto-coupler pole would be at 4 kHz.

From the results of Part I, it is very obvious that the opto-isolator pole imposes severe restrictions on the control loopbandwidth. This pole can be compensated in two ways:

• If the base connection is available, then by connecting alarge resistor between the base and emitter of the opto-coupler photo-transistor, the bandwidth can be improved.However, the opto-coupler gain will reduce by doing so.

• The bandwidth can also be improved by introducing anadditional zero in the compensation circuit.

Implementation of the Opto-Coupler PoleCompensation

For the circuit shown in Figure 6, the opto-coupler pole canbe estimated as discussed in previous sections. However,the soft-start capacitor appears in parallel with opto-coupler

device capacitances and influences the position of the opto-coupler pole. The additional zero required to compensate theopto-coupler pole can be obtained by connecting a capacitorin parallel with Rd1 as shown in Figure 14. In the process,this creates an additional pole due to Rd2 and Cd. To obtainsufficient gain margin and attenuation of high frequencyswitching noise, this pole can be placed at a high frequencyabove the cross-over frequency.

AN100151-15

FIGURE 12. Bench Measurement Setup for Frequency Characterization of Opto-Coupler Pole Using a NetworkAnalyzer

AN100151-16

FIGURE 13. Opto-Coupler CNY17-3 Bandwidth versus Resistance R o

www.national.com9

The modified compensator transfer function is:

where:

CTR = Opto-coupler current transfer ratio or coupling effi-ciency

Rf = feedback resistor internal to LM3411 (92k forLM3411-5.0)

Cc = Compensation capacitor

An additional zero can also be obtained by connecting a re-sistor in series with capacitor Cs, the additional zero requiredto compensate the opto-coupler pole can be placed at a fre-quency equal to fz.

(Assuming Cs is very much larger than the opto-couplerMiller capacitance).

Notice that the compensator transfer function is directly de-pendent on the opto-coupler CTR, which varies from unit-to-unit, so it is important to take this factor into consideration.This means that an opto-coupler with low CTR variation andguaranteed limits should be used.

Figure 15 shows the loop gain with modified compensator.Significant improvement in bandwidth and phase margin areobserved. The loop gain is as expected and shows excellentstability. As expected, the transient response is also im-proved, as shown in Figure 16.

AN100151-17

FIGURE 14. Compensating the Opto-Coupler Pole to Improve the Bandwidth Limitations

www.national.com 10

AN100151-20 AN100151-21

FIGURE 15. Significant Improvement in Bandwidth and Phase Margin is Observed with Opto-Coupler PoleCompensation (Bandwidth = 10 kHz and Phase Margin = 60˚)

AN100151-22

FIGURE 16. Transient Response with Opto-Coupler Pole Compensation (0 to 1A Step-Change in Load)

www.national.com11

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:1. Life support devices or systems are devices or sys-

tems which, (a) are intended for surgical implant intothe body, or (b) support or sustain life, and whose fail-ure to perform when properly used in accordancewith instructions for use provided in the labeling, canbe reasonably expected to result in a significant injuryto the user.

2. A critical component in any component of a life supportdevice or system whose failure to perform can be rea-sonably expected to cause the failure of the life supportdevice or system, or to affect its safety or effectiveness.

National SemiconductorCorporationAmericasTel: 1-800-272-9959Fax: 1-800-737-7018Email: [email protected]

www.national.com

National SemiconductorEurope

Fax: +49 (0) 1 80-530 85 86Email: [email protected]

Deutsch Tel: +49 (0) 1 80-530 85 85English Tel: +49 (0) 1 80-532 78 32Français Tel: +49 (0) 1 80-532 93 58Italiano Tel: +49 (0) 1 80-534 16 80

National SemiconductorAsia Pacific CustomerResponse GroupTel: 65-2544466Fax: 65-2504466Email: [email protected]

National SemiconductorJapan Ltd.Tel: 81-3-5620-6175Fax: 81-3-5620-6179

AN

-109

5D

esig

nof

Isol

ated

Con

verte

rsU

sing

Sim

ple

Sw

itche

rs

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

4.6 CNY17

DESCRIPTIONThe CNY17 series consists of a Gallium Arsenide IREDcoupled with an NPN phototransistor.

CNY17-1 CNY17-3CNY17-2 CNY17-4

APPLICATIONS • Power supply regulators • Digital logic inputs• Microprocessor inputs • Appliance sensor systems• Industrial controls

FEATURES• CNY17-1/2/3 are also available in white package by specifying -M suffix (eg. CNY17-2-M)• UL recognized (File # E90700)• VDE recognized

-102497 for white package -Add option V for white package (e.g., CNY17-2V-M)-File #102497 -Add option ‘300’ for black package (e.g., CNY17-2.300)-File #94766

• Current transfer ratio in select groups• High BVCEO 70V minimum

1

2

6

5 COL

4 EMITTER

BASEANODE

CATHODE

3

SCHEMATIC

Parameters Symbol Device Value UnitsTOTAL DEVICE

TSTG All -55 to +150 °CStorage TemperatureOperating Temperature TOPR All -55 to +100 °CLead Solder Temperature TSOL All 260 for 10 sec °CTotal Device Power Dissipation @ 25°C (LED plus detector) -M 250

mWnon -M 260

Derate Linearly From 25°C PD -M 2.94mW/°C

non -M 3.50EMITTER

IF-M 60

mAContinuous Forward Current non -M 90Reverse Voltage VR All 6 V

Forward Current - Peak (1 µs pulse, 300 pps) IF(pk)-M 1.5

Anon -M 3.0

LED Power Dissipation 25°C Ambient -M 120mW

Derate Linearly From 25°C PDnon -M 135

-M 1.41mW/°C

non -M 1.8DETECTOR -M 150

mWDetector Power Dissipation @ 25°C

PDnon -M 200

Derate Linearly from 25°C -M 1.76mW/°C

non -M 2.67 2001 Fairchild Semiconductor CorporationDS300208 6/06/01 1 OF 11 www.fairchildsemi.com

WHITE PACKAGE (-M SUFFIX) BLACK PACKAGE (NO -M SUFFIX)

6

1

6

6

1

1

6

1

6

1

6

1

PHOTOTRANSISTOR OPTOCOUPLERS

Parameters Test Conditions Symbol Device Min Typ Max UnitsEMITTER IF = 60 mA -M 1.35 1.65

VInput Forward Voltage IF = 10 mA VF non -M 1.15 1.50

Capacitance VF = 0 V, f = 1.0 MHz CJnon -M 50

pF-M 18

Reverse Leakage Current VR = 6 V IR All 0.001 10 µADETECTOR

Breakdown VoltageCollector to Emitter IC = 1.0 mA, IF = 0 BVCEO All 70 100 V

Collector to Base IC = 10 µA, IF = 0 BVCBO All 70 120 VEmitter to Collector IE = 100 µA, IF = 0 BVECO All 7 10 VLeakage Current

Collector to Emitter VCE = 10 V, IF = 0 ICEO All 1 50 nA

Collector to Base VCB = 10 V, IF = 0 ICBO All 20 nACapacitance

pFCollector to Emitter VCE = 0, f = 1 MHz CCE All 8

Collector to Base VCB = 0, f = 1 MHz CCB All 20 pFEmitter to Base VEB = 0, f = 1 MHz CEB All 10 pF

INDIVIDUAL COMPONENT CHARACTERISTICS

ELECTRICAL CHARACTERISTICS (TA = 25°C Unless otherwise specified.)

www.fairchildsemi.com 2 OF 11 6/06/01 DS300208

PHOTOTRANSISTOR OPTOCOUPLERS

CNY17-1 CNY17-3CNY17-2 CNY17-4

Characteristic Test Conditions Symbol Device Min Typ** Max Units

Input-Output Isolation Voltage f = 60 Hz, t = 1 min. VISOBlack Package 5300 Vac(rms)*

‘-M’ White Package 7500 Vac(pk)Isolation Resistance VI-O = 500 VDC RISO All 1011 !

Isolation Capacitance VI-O = ", f = 1 MHz CISOBlack Package 0.5

pF‘-M’ White Package 0.2

ISOLATION CHARACTERISTICS

Note* 5300 Vac(rms) for 1 minute equates to approximately 9000 Vac (pk) for 1 second** Typical values at TA = 25°C

DC Characteristics Test Conditions Symbol Device Min Typ Max UnitsCNY17-1/-1-M 40 80

Current Transfer Ratio,IF = 10 mA, VCE = 5 V CTR

CNY17-2/-2-M 63 125%

Collector to Emitter CNY17-3/-3-M 100 200CNY17-4 160 320

Saturation Voltage IF = 10 mA, IC = 2.5 mA VCE(SAT) All .40 VAC Characteristics Test Conditions Symbol Device Min Typ Max UnitsNon-Saturated Switching Times

Turn-On Time (Fig.19 and Fig.20) RL = 100 Ω, IC = 2 mA, VCC = 10 V ton non -M 10 µs

Turn-Off Time (Fig.19 and Fig.20) RL = 100 Ω, IC = 2 mA, VCC = 10 V toff non -M 10 µsDelay Time (Fig.19 and Fig.20) IF = 10 mA, VCC = 5 V, RL = 75 Ω td -M 5.6 µsRise Time (Fig.19 and Fig.20) IF = 10 mA, VCC = 5 V, RL = 75 Ω tr -M 4.0 µsStorage Time (Fig.19 and Fig.20) IF = 10 mA, VCC = 5 V, RL = 75 Ω ts -M 4.1 µsFall Time (Fig.19 and Fig.20) IF = 10 mA, VCC = 5 V, RL = 75 Ω tf -M 3.5 µs

Saturated Switching Times IF = 20 mA, VCE = 0.4 V CNY17-1 5.5

Turn-On Time (Fig.19 and Fig.20) IF = 10 mA, VCE = 0.4 Vton CNY17-2, CNY17-3,

8.0µs

CNY17-4IF = 20 mA, VCE = 0.4 V CNY17-1 4.0

IF = 10 mA, VCE = 0.4 VCNY17-2, CNY17-3,

6.0Rise-Time (Fig.19 and Fig.20) CNY17-4 µs

IF = 20 mA, VCC = 5 V, RL = 1 KΩtr CNY17-1-M 4.0

IF = 10 mA, VCC = 5 V, RL = 1 KΩ CNY17-2-M,CNY17-3-M 6.0

Delay Time (Fig.19 and Fig.20)IF = 20 mA, VCC = 5 V, RL =1 KΩ

tdCNY17-1-M 5.5

µsIF = 10 mA, VCC = 5 V, RL =1 KΩ CNY17-2, CNY17-3 8.0

IF = 20 mA, VCE = 0.4 V CNY17-1 34.0Turn-Off Time (Fig.19 and Fig.20)

IF = 10 mA, VCE = 0.4 Vtoff CNY17-2, CNY17-3,

39.0µs

CNY17-4IF = 20 mA, VCE = 0.4 V CNY17-1 20.0

IF = 10 mA, VCE = 0.4 VCNY17-2, CNY17-3,

24.0Fall-Time (Fig.19 and Fig.20) tf CNY17-4 µs

IF = 20 mA, VCC = 5 V, RL =1 KΩ CNY17-1-M 20.0IF = 10 mA, VCC = 5 V, RL = 1 KΩ CNY17-2-M,CNY17-3-M 24.0

Storage Time (Fig.19 and Fig.20)IF = 20 mA, VCC = 5 V, RL =1 KΩ

tsCNY17-1-M 34.0

µsIF = 10 mA, VCC = 5 V, RL =1 KΩ CNY17-2-M,CNY17-3-M 39.0

TRANSFER CHARACTERISTICS (TA = 25°C Unless otherwise specified.)

PHOTOTRANSISTOR OPTOCOUPLERS

CNY17-1 CNY17-3CNY17-2 CNY17-4

DS300208 6/06/01 3 OF 11 www.fairchildsemi.com

Fig.1 Normalized CTR vs. Forward Current(Black Package)

Fig.2 Normalized CTR vs. Forward Current(White Package)

IF - FORWARD CURRENT (mA) IF - FORWARD CURRENT (mA)

0 5 10 15 20

NO

RM

ALI

ZE

D C

TR

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 VCE = 5.0V TA = 25˚C

Normalized toIF = 10 mA

0 2 4 6 8 10 12 14 16 18 20

NO

RM

ALI

ZE

D C

TR

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6 VCE = 5.0V TA = 25˚C

Normalized toIF = 10 mA

Fig. 3 Normalized CTR vs. Ambient Temperature(Black Package)

Fig. 4 Normalized CTR vs. Ambient Temperature(White Package)

-75 -50 -25 0 25 50 75 100 125

NO

RM

ALI

ZE

D C

TR

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Normalized toIF = 10 mA TA = 25˚C

IF = 10 mA

IF = 20 mA

TA - AMBIENT TEMPERATURE (˚C) TA - AMBIENT TEMPERATURE (˚C)

-60 -40 -20 0 20 40 60 80 100

NO

RM

ALI

ZE

D C

TR

0.2

0.4

0.6

0.8

1.0

1.2

1.4

IF = 5 mA IF = 5 mA

IF = 10 mA

IF = 20 mA

Normalized toIF = 10 mA TA = 25˚C

Fig. 5 CTR vs. RBE (Unsaturated)(Black Package)

Fig. 6 CTR vs. RBE (Unsaturated)(White Package)

RBE- BASE RESISTANCE (kΩ) RBE- BASE RESISTANCE (kΩ)

NO

RM

ALI

ZE

D C

TR

( C

TR

RB

E /

CT

RR

BE

(OP

EN

))

NO

RM

ALI

ZE

D C

TR

( C

TR

RB

E /

CT

RR

BE

(OP

EN

))

10 100 10000.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

IF = 20 mA

IF = 10 mA

IF = 5 mA

VCE= 5.0 V

10 100 10000.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

VCE= 5.0 V

IF = 20 mA

IF = 10 mA

IF = 5 mA

PHOTOTRANSISTOR OPTOCOUPLERS

CNY17-1 CNY17-3CNY17-2 CNY17-4

www.fairchildsemi.com 4 OF 11 6/06/01 DS300208

Fig. 9 Switching Speed vs. Load Resistor(Black Package)

R-LOAD RESISTOR (kΩ)

0.1 1 10 100

SW

ITC

HIN

G S

PE

ED

- (

µs)

0.1

1

10

100

1000

Toff

Ton

Tf

IF = 10 mA VCC = 10 VTA = 25˚C

Fig. 7 CTR vs. RBE (Saturated)(Black Package)

Fig. 8 CTR vs. RBE (Saturated)(White Package)

Tr

SW

ITC

HIN

G S

PE

ED

- (

µs)

Fig. 10 Switching Speed vs. Load Resistor(White Package)

R-LOAD RESISTOR (kΩ)0.1 1 10 100

0.1

1

10

100

1000

Toff

Ton

Tf

IF = 10 mA VCC = 10 VTA = 25˚C

Tr

RBE- BASE RESISTANCE (k Ω)

RBE- BASE RESISTANCE (k Ω) RBE- BASE RESISTANCE (k Ω)

RBE- BASE RESISTANCE (k Ω)

NO

RM

ALI

ZE

D C

TR

( C

TR

RB

E /

CT

RR

BE

(OP

EN

))

NO

RM

ALI

ZE

D C

TR

( C

TR

RB

E /

CT

RR

BE

(OP

EN

))10 100 1000

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

VCE= 0.3 V

IF = 5 mA

IF = 10 mA

IF = 20 mA

10 100 10000.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

IF = 20 mA

IF = 10 mA

IF = 5 mA

VCE= 0.3 V

10 100 1000 10000 100000

NO

RM

ALI

ZE

D t o

n -

(ton

(RB

E) /

t on(

open

))

NO

RM

ALI

ZE

D t o

n -

(ton

(RB

E) /

t on(

open

))

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Fig. 11 Normalized ton vs. RBE(Black Package)

Fig. 12 Normalized ton vs. RBE(White Package)

10 100 1000 10000 1000000.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

VCC = 10 VIC = 2 mA

RL = 100 Ω

VCC = 10 VIC = 2 mA

RL = 100 Ω

PHOTOTRANSISTOR OPTOCOUPLERS

CNY17-1 CNY17-3CNY17-2 CNY17-4

DS300208 6/06/01 5 OF 11 www.fairchildsemi.com

10 100 1000 10000 1000000.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

RBE- BASE RESISTANCE (k Ω)

10 100 1000 10000 1000000.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

VCC = 10 VIC = 2 mA

RL = 100 Ω

VCC = 10 VIC = 2 mA

RL = 100 Ω

NO

RM

ALI

ZE

D t o

ff -

(tof

f(R

BE

) / t o

ff(op

en))

NO

RM

ALI

ZE

D t o

ff -

(tof

f(R

BE

) / t o

ff(op

en))

Fig. 13 Normalized toff vs. RBE(Black Package)

RBE- BASE RESISTANCE (k Ω)

Fig. 14 Normalized toff vs. RBE(White Package)

IF - LED FORWARD CURRENT (mA)

VF -

FO

RW

AR

D V

OLT

AG

E (

V)

Fig. 16 LED Forward Voltage vs. Forward Current(White Package)

1 10 1001.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

TA = 25˚C

TA = 55˚C

TA = 100˚C

IF - LED FORWARD CURRENT (mA)

VF -

FO

RW

AR

D V

OLT

AG

E (

V)

Fig. 15 LED Forward Voltage vs. Forward Current(Black Package)

1 10 1001.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

TA = 25˚C

TA = 55˚C

TA = 100˚C

Fig. 18 Dark Current vs. Ambient Temperature(Black Package)

TA - AMBIENT TEMPERATURE (˚C)

0 25 50 75 100 125

I CE

O -

CO

LLE

CTO

R-E

MIT

TE

R D

AR

K C

UR

RE

NT

(µA

)

10-6

10-5

10-4

10-3

10-2

10-1

100

101

VCE = 10 V

Fig. 17 Collector Current vs. Collector-Emitter Saturation Voltage

VCESAT - (V)

0.01 0.1 1

I C -

(m

A)

0.01

0.1

1

10

IF = 2.5mA

IF = 5mA

IF = 10mAIF = 20mA

IB = 0; TA = 25oC

PHOTOTRANSISTOR OPTOCOUPLERS

CNY17-1 CNY17-3CNY17-2 CNY17-4

www.fairchildsemi.com 6 OF 11 6/06/01 DS300208

PHOTOTRANSISTOR OPTOCOUPLERS

CNY17-1 CNY17-3CNY17-2 CNY17-4

INPUT PULSE

OUTPUT PULSE

ton toff

RL

IF IC

VCC = 5V

OUTPUT (VCE)INPUT

tr

tdtf

ts

10%

90%

Figure 19. Switching Time Test Circuit

Figure 20. Switching Time Waveforms

DS300208 6/06/01 7 OF 11 www.fairchildsemi.com

NOTEAll dimensions are in inches (millimeters)

PHOTOTRANSISTOR OPTOCOUPLERS

CNY17-1 CNY17-3CNY17-2 CNY17-4Black Package (No -M Suffix)

Lead Coplanarity : 0.004 (0.10) MAX

0.270 (6.86)0.240 (6.10)

0.350 (8.89)0.330 (8.38)

0.300 (7.62)TYP

0.405 (10.30)MAX

0.315 (8.00)MIN

0.016 (0.40) MIN

2

5

PIN 1ID.

0.016 (0.41)0.008 (0.20)

0.100 (2.54)TYP

0.022 (0.56)0.016 (0.41)

0.070 (1.78)0.045 (1.14)

0.200 (5.08)0.165 (4.18)

4

3

0.020 (0.51)MIN

1

6

0.100 (2.54)TYP

0.020 (0.51)MIN

0.350 (8.89)0.330 (8.38)

0.270 (6.86)0.240 (6.10)

PIN 1ID.

0.022 (0.56)0.016 (0.41)

0.070 (1.78)0.045 (1.14)

0.200 (5.08)0.135 (3.43)

0.300 (7.62)TYP0° to 15°

0.154 (3.90)0.100 (2.54)

SEAT

ING

PLA

NE

0.016 (0.40)0.008 (0.20)

SEAT

ING

PLA

NE

0.016 (0.40)0.008 (0.20)

0.070 (1.78)0.045 (1.14)

0.350 (8.89)0.330 (8.38)

0.154 (3.90)0.100 (2.54)

0.200 (5.08)0.135 (3.43)

0.004 (0.10)MIN

0.270 (6.86)0.240 (6.10)

0.400 (10.16)TYP

0° to 15°0.022 (0.56)0.016 (0.41)

0.100 (2.54) TYP

0.070 (1.78)

0.060 (1.52)

0.030 (0.76)

0.100 (2.54)

0.295 (7.49)

0.415 (10.54)

Package Dimensions (Surface Mount)Package Dimensions (Through Hole)

Package Dimensions (0.4”Lead Spacing) Recommended Pad Layout for Surface Mount Leadform

(Black Package Only)

www.fairchildsemi.com 8 OF 11 6/06/01 DS300208

PHOTOTRANSISTOR OPTOCOUPLERS

CNY17-1 CNY17-3CNY17-2 CNY17-4White Package (-M Suffix)

0.070 (1.78)

0.060 (1.52)

0.030 (0.76)

0.100 (2.54)0.305 (7.75)

0.425 (10.79)

Recommended Pad Layout for Surface Mount Leadform

(White Package Only)

Package Dimensions (Surface Mount)0.350 (8.89)0.320 (8.13)

0.260 (6.60)0.240 (6.10)

0.390 (9.90)0.332 (8.43)

0.070 (1.77)0.040 (1.02)

0.014 (0.36)0.010 (0.25)

0.320 (8.13)

0.035 (0.88)0.006 (0.16)

0.012 (0.30)0.008 (0.20)

0.200 (5.08)0.115 (2.93)

0.025 (0.63)0.020 (0.51)

0.020 (0.50)0.016 (0.41)

0.100 [2.54]

Package Dimensions (Through Hole)0.350 (8.89)0.320 (8.13)

0.260 (6.60)0.240 (6.10)

0.320 (8.13)

0.070 (1.77)0.040 (1.02)

0.014 (0.36)0.010 (0.25)

0.200 (5.08)0.115 (2.93)

0.100 (2.54)0.015 (0.38)

0.020 (0.50)0.016 (0.41) 0.100 (2.54)

15°

0.012 (0.30)

Package Dimensions (0.4”Lead Spacing)0.350 (8.89)0.320 (8.13)

0.260 (6.60)0.240 (6.10)

0.070 (1.77)0.040 (1.02)

0.014 (0.36)0.010 (0.25)

0.200 (5.08)0.115 (2.93)

0.020 (0.50)0.016 (0.41)

0.100 [2.54]

0.100 (2.54)0.015 (0.38)

0.012 (0.30)0.008 (0.21)

0.425 (10.80)0.400 (10.16)

NOTEAll dimensions are in inches (millimeters)

DS300208 6/06/01 9 OF 11 www.fairchildsemi.com

PHOTOTRANSISTOR OPTOCOUPLERS

CNY17-1 CNY17-3CNY17-2 CNY17-4

ORDERING INFORMATION

Order Entry IdenifierS .S S Surface Mount Lead BendSD .SD SR2 Surface Mount; Tape and reelW .W T 0.4” Lead Spacing300 .300 V VDE 0884300W .300W TV VDE 0884, 0.4” Lead Spacing3S .3S SV VDE 0884, Surface Mount3SD .3SD SR2V VDE 0884, Surface Mount, Tape & Reel

Black Package White PackageOption(No Suffix) (-m Suffix)

Description

4.0 ± 0.1

Ø1.55 ± 0.05

User Direction of Feed

4.0 ± 0.1

1.75 ± 0.10

7.5 ± 0.116.0 ± 0.3

12.0 ± 0.1

0.30 ± 0.05

13.2 ± 0.2

4.85 ± 0.20

0.1 MAX 10.30 ± 0.20

9.55 ± 0.20

Ø1.6 ± 0.1

Carrier Tape Specifications (Black Package, No Suffix)

4.0 ± 0.1

Ø1.5 MIN

User Direction of Feed

2.0 ± 0.05

1.75 ± 0.10

11.5 ± 1.024.0 ± 0.3

12.0 ± 0.1

0.30 MAX

21.0 ± 0.1

4.5 ± 0.20

0.1 MAX 10.1 ± 0.20

9.1 ± 0.20

Ø1.5 ± 0.1/-0

Carrier Tape Specifications (White Package, -M Suffix)

NOTEAll dimensions are in inches (millimeters)

www.fairchildsemi.com 10 OF 11 6/06/01 DS300208

DISCLAIMERFAIRCHILD SEMICONDUCTOR RESERVES THE THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICETO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOTASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUITDESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THERIGHTS OF OTHERS.

LIFE SUPPORT POLICYFAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORTDEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILDSEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body,or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use providedin labeling, can be reasonably expected to result in asignificant injury of the user.

2. A critical component in any component of a life supportdevice or system whose failure to perform can bereasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PHOTOTRANSISTOR OPTOCOUPLERS

CNY17-1 CNY17-3CNY17-2 CNY17-4

DS300208 6/06/01 11 OF 11 www.fairchildsemi.com

4.7 CY37256

5V, 3.3V, ISR™ High-Performance CPLDs

Ultra37000™ CPLD Family

Cypress Semiconductor Corporation • 3901 North First Street • San Jose • CA 95134 • 408-943-2600Document #: 38-03007 Rev. ** Revised March 15, 2001

Features

• In-System Reprogrammable™ (ISR™) CMOS CPLDs— JTAG interface for reconfigurability

— Design changes don’t cause pinout changes

— Design changes don’t cause timing changes• High density

— 32 to 512 macrocells

— 32 to 264 I/O pins

— 5 dedicated inputs including 4 clock pins• Simple timing model

— No fanout delays

— No expander delays

— No dedicated vs. I/O pin delays

— No additional delay through PIM

— No penalty for using full 16 product terms

— No delay for steering or sharing product terms• 3.3V and 5V versions• PCI Compatible[1]

• Programmable Bus-Hold capabilities on all I/Os • Intelligent product term allocator provides:

— 0 to 16 product terms to any macrocell

— Product term steering on an individual basis

— Product term sharing among local macrocells• Flexible clocking

— 4 synchronous clocks per device

— Product Term clocking

— Clock polarity control per logic block• Consistent package/pinout offering across all densities

— Simplifies design migration

— Same pinout for 3.3V and 5.0V devices• Packages

— 44 to 400 Leads in PLCC, CLCC, PQFP, TQFP, CQFP, BGA, and Fine-Pitch BGA packages

General Description

The Ultra37000™ family of CMOS CPLDs provides a range ofhigh-density programmable logic solutions with unparalleledsystem performance. The Ultra37000 family is designed tobring the flexibility, ease of use, and performance of the 22V10to high-density CPLDs. The architecture is based on a numberof logic blocks that are connected by a Programmable Inter-connect Matrix (PIM). Each logic block features its own prod-uct term array, product term allocator, and 16 macrocells. ThePIM distributes signals from the logic block outputs and all in-put pins to the logic block inputs.

All of the Ultra37000 devices are electrically erasable and In-System Reprogrammable (ISR), which simplifies both designand manufacturing flows, thereby reducing costs. The ISR fea-ture provides the ability to reconfigure the devices without hav-ing design changes cause pinout or timing changes. TheCypress ISR function is implemented through a JTAG-compli-ant serial interface. Data is shifted in and out through the TDIand TDO pins, respectively. Because of the superior routabilityand simple timing model of the Ultra37000 devices, ISR allowsusers to change existing logic designs while simultaneouslyfixing pinout assignments and maintaining system perfor-mance.

The entire family features JTAG for ISR and boundary scan,and is compatible with the PCI Local Bus specification, meet-ing the electrical and timing requirements. The Ultra37000family features user programmable bus-hold capabilities on allI/Os.

Ultra37000 5.0V Devices

The Ultra37000 devices operate with a 5V supply and can sup-port 5V or 3.3V I/O levels. VCCO connections provide the ca-pability of interfacing to either a 5V or 3.3V bus. By connectingthe VCCO pins to 5V the user insures 5V TTL levels on theoutputs. If VCCO is connected to 3.3V the output levels meet3.3V JEDEC standard CMOS levels and are 5V tolerant.These devices require 5V ISR programming.

Ultra37000V 3.3V Devices

Devices operating with a 3.3V supply require 3.3V on all VCCOpins, reducing the device’s power consumption. These devicessupport 3.3V JEDEC standard CMOS output levels, and are5V tolerant. These devices allow 3.3V ISR programming.

Note:1. Due to the 5V-tolerant nature of 3.3V device I/Os, the I/Os are not clamped to VCC, PCI VIH=2V.

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 2 of 67

Selection Guide

5.0V Selection Guide

General Information

Device MacrocellsDedicated

Inputs I/O Pins Speed (tPD) Speed (fMAX)

CY37032 32 5 32 6 200

CY37064 64 5 32/64 6 200

CY37128 128 5 64/128 6.5 167

CY37192 192 5 120 7.5 154

CY37256 256 5 128/160/192 7.5 154

CY37384 384 5 160/192 10 118

CY37512 512 5 160/192/264 10 118

Speed Bins

Device 200 167 154 143 125 100 83 66

CY37032 X X X

CY37064 X X X

CY37128 X X X

CY37192 X X X

CY37256 X X X

CY37384 X X

CY37512 X X X

Device-Package Offering & I/O Count

Device44-

LeadTQFP

44-LeadPLCC

44-LeadCLCC

84-LeadPLCC

84-LeadCLCC

100-LeadTQFP

160-LeadTQFP

160-LeadCQFP

208-LeadPQFP

208-LeadCQFP

256-LeadBGA

352-LeadBGA

CY37032 37 37

CY37064 37 37 37 69 69

CY37128 69 69 69 133

CY37192 125

CY37256 133 133 165 197

CY37384 165 197

CY37512 165 165 197 269

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 3 of 67

3.3V Selection Guide

General Information

Device MacrocellsDedicated

Inputs I/O Pins Speed (tPD) Speed (fMAX)

CY37032V 32 5 32 8.5 143

CY37064V 64 5 32/64 8.5 143

CY37128V 128 5 64/80/128 10 125

CY37192V 192 5 120 12 100

CY37256V 256 5 128/160/192 12 100

CY37384V 384 5 160/192 15 83

CY37512V 512 5 160/192/264 15 83

Speed Bins

Device 200 167 154 143 125 100 83 66

CY37032V X X

CY37064V X X

CY37128V X X X

CY37192V X X

CY37256V X X X

CY37384V X X

CY37512V X X XShaded areas indicate preliminary speed bins.

Device-Package Offering & I/O Count

Device 44-

Lea

dT

QF

P44

-L

ead

PL

CC

44-

Lea

dC

LC

C48

-L

ead

FB

GA

84-

Lea

dP

LC

C84

-L

ead

CL

CC

100-

Lea

dT

QF

P10

0-L

ead

FB

GA

160-

Lea

dT

QF

P16

0-L

ead

CQ

FP

208-

Lea

dP

QF

P20

8-L

ead

CQ

FP

256-

Lea

dB

GA

256-

Lea

dF

BG

A35

2-L

ead

BG

A40

0-L

ead

FB

GA

CY37032V 37 37 37

CY37064V 37 37 37 37 69 69 69

CY37128V 69 69 69 85 133

CY37192V 125

CY37256V 133 133 165 197 197

CY37384V 165 197

CY37512V 165 165 197 269 269

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 4 of 67

Architecture Overview of Ultra37000 Family

Programmable Interconnect Matrix

The Programmable Interconnect Matrix (PIM) consists of acompletely global routing matrix for signals from I/O pins andfeedbacks from the logic blocks. The PIM provides extremelyrobust interconnection to avoid fitting and density limitations.

The inputs to the PIM consist of all I/O and dedicated input pinsand all macrocell feedbacks from within the logic blocks. Thenumber of PIM inputs increases with pin count and the numberof logic blocks. The outputs from the PIM are signals routed tothe appropriate logic blocks. Each logic block receives 36 in-puts from the PIM and their complements, allowing for 32-bitoperations to be implemented in a single pass through thedevice. The wide number of inputs to the logic block also im-proves the routing capacity of the Ultra37000 family.

An important feature of the PIM is its simple timing. The prop-agation delay through the PIM is accounted for in the timingspecifications for each device. There is no additional delay fortraveling through the PIM. In fact, all inputs travel through thePIM. As a result, there are no route-dependent timing param-eters on the Ultra37000 devices. The worst-case PIM delaysare incorporated in all appropriate Ultra37000 specifications.

Routing signals through the PIM is completely invisible to theuser. All routing is accomplished by software—no hand routingis necessary. Warp™ and third-party development packagesautomatically route designs for the Ultra37000 family in a mat-ter of minutes. Finally, the rich routing resources of theUltra37000 family accommodate last minute logic changeswhile maintaining fixed pin assignments.

Logic Block

The logic block is the basic building block of the Ultra37000architecture. It consists of a product term array, an intelligentproduct-term allocator, 16 macrocells, and a number of I/Ocells. The number of I/O cells varies depending on the deviceused. Refer to Figure 1 for the block diagram.

Product Term Array

Each logic block features a 72 x 87 programmable productterm array. This array accepts 36 inputs from the PIM, whichoriginate from macrocell feedbacks and device pins. ActiveLOW and active HIGH versions of each of these inputs aregenerated to create the full 72-input field. The 87 productterms in the array can be created from any of the 72 inputs.

Of the 87 product terms, 80 are for general-purpose use forthe 16 macrocells in the logic block. Four of the remainingseven product terms in the logic block are output enable (OE)product terms. Each of the OE product terms controls up toeight of the 16 macrocells and is selectable on an individualmacrocell basis. In other words, each I/O cell can select be-tween one of two OE product terms to control the output buffer.The first two of these four OE product terms are available tothe upper half of the I/O macrocells in a logic block. The othertwo OE product terms are available to the lower half of the I/Omacrocells in a logic block.

The next two product terms in each logic block are dedicatedasynchronous set and asynchronous reset product terms. Thefinal product term is the product term clock. The set, reset, OEand product term clock have polarity control to realize ORfunctions in a single pass through the array.

Figure 1. Logic Block with 50% Buried Macrocells

I/OCELL

0

PRODUCTTERM

ALLOCATOR

I/OCELL

14

MACRO-CELL

0

MACRO-CELL

1

MACRO-CELL

14

0−16

PRODUCTTERMS

72 x 87PRODUCT TERM

ARRAY

8036

8

16

TOPIM

FROMPIM

7

3 2

MACRO-CELL

15

2

to cells2, 4, 6 8, 10, 12

0−16

PRODUCTTERMS

0−16

PRODUCTTERMS

0−16

PRODUCTTERMS

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 5 of 67

Low-Power Option

Each logic block can operate in high-speed mode for criticalpath performance, or in low-power mode for power conserva-tion. The logic block mode is set by the user on a logic blockby logic block basis.

Product Term Allocator

Through the product term allocator, software automatically dis-tributes product terms among the 16 macrocells in the logicblock as needed. A total of 80 product terms are available fromthe local product term array. The product term allocator pro-vides two important capabilities without affecting performance:product term steering and product term sharing.

Product Term Steering

Product term steering is the process of assigning productterms to macrocells as needed. For example, if one macrocellrequires ten product terms while another needs just three, theproduct term allocator will “steer” ten product terms to onemacrocell and three to the other. On Ultra37000 devices, prod-uct terms are steered on an individual basis. Any number be-tween 0 and 16 product terms can be steered to any macrocell.Note that 0 product terms is useful in cases where a particularmacrocell is unused or used as an input register.

Product Term Sharing

Product term sharing is the process of using the same productterm among multiple macrocells. For example, if more thanone output has one or more product terms in its equation thatare common to other outputs, those product terms are onlyprogrammed once. The Ultra37000 product term allocator al-lows sharing across groups of four output macrocells in a vari-able fashion. The software automatically takes advantage ofthis capability—the user does not have to intervene.

Note that neither product term sharing nor product term steer-ing have any effect on the speed of the product. All worst-casesteering and sharing configurations have been incorporated inthe timing specifications for the Ultra37000 devices.

Ultra37000 Macrocell

Within each logic block there are 16 macrocells. Macrocellscan either be I/O Macrocells, which include an I/O Cell whichis associated with an I/O pin, or buried Macrocells, which donot connect to an I/O. The combination of I/O Macrocells andburied Macrocells varies from device to device.

Buried Macrocell

Figure 2 displays the architecture of buried macrocells. Theburied macrocell features a register that can be configured ascombinatorial, a D flip-flop, a T flip-flop, or a level-triggeredlatch.

The register can be asynchronously set or asynchronously re-set at the logic block level with the separate set and reset prod-uct terms. Each of these product terms features programma-ble polarity. This allows the registers to be set or reset basedon an AND expression or an OR expression.

Clocking of the register is very flexible. Four global synchro-nous clocks and a product term clock are available to clock theregister. Furthermore, each clock features programmable po-larity so that registers can be triggered on falling as well asrising edges (see the Clocking section). Clock polarity is cho-sen at the logic block level.

The buried macrocell also supports input register capability.The buried macrocell can be configured to act as an input reg-ister (D-type or latch) whose input comes from the I/O pin as-sociated with the neighboring macrocell. The output of all bur-ied macrocells is sent directly to the PIM regardless of itsconfiguration.

I/O Macrocell

Figure 2 illustrates the architecture of the I/O macrocell. TheI/O macrocell supports the same functions as the buried mac-rocell with the addition of I/O capability. At the output of themacrocell, a polarity control mux is available to select activeLOW or active HIGH signals. This has the added advantage ofallowing significant logic reduction to occur in many applica-tions.

The Ultra37000 macrocell features a feedback path to the PIMseparate from the I/O pin input path. This means that if themacrocell is buried (fed back internally only), the associatedI/O pin can still be used as an input.

Bus Hold Capabilities on all I/Os

Bus-hold, which is an improved version of the popular internalpull-up resistor, is a weak latch connected to the pin that doesnot degrade the device’s performance. As a latch, bus-holdmaintains the last state of a pin when the pin is placed in ahigh-impedance state, thus reducing system noise in bus-in-terface applications. Bus-hold additionally allows unused de-vice pins to remain unconnected on the board, which is partic-ularly useful during prototyping as designers can route newsignals to the device without cutting trace connections to VCCor GND. For more information, see the application note “Un-derstanding Bus-Hold − A Feature of Cypress CPLDs.”

Programmable Slew Rate Control

Each output has a programmable configuration bit, which setsthe output slew rate to fast or slow. For designs concerned withmeeting FCC emissions standards the slow edge provides forlower system noise. For designs requiring very high perfor-mance the fast edge rate provides maximum system perfor-mance.

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 6 of 67

f

Figure 2. I/O and Buried Macrocells

Figure 3. Input Macrocell

C2 C3

DECODE

C2 C3

DECODE

0123

O

C6 C5

“0” “1”

0

1O

D/T/L Q

R

P

0123

O

C0

0

1

O

C4

FEEDBACK TO PIM

FEEDBACK TO PIM

BLOCK RESET

0−16

TERMS

I/O MACROCELL

I/O CELL

FROM PTM

0

1

O

D/T/L Q

R

P

FROM PTM

1O

C7

FEEDBACK TO PIM

BURIED MACROCELL

0

ASYNCHRONOUS

PRODUCT

0−16

TERMSPRODUCT

C1

4

0123

Q

4

C24

C0 C1 C24

C25

C25

4 SYNCHRONOUS CLOCKS (CLK0,CLK1,CLK2,CLK3)1 ASYNCHRONOUS CLOCK(PTCLK)

BLOCK PRESETASYNCHRONOUS

FAST

SLOW

C26

SLEW

01

01

01

01

OE0 OE1

0123

O

C12 C13

TO PIM

DQ

DQ

D Q

LE

INPUT PIN

012

O

C10

FROM CLOCKPOLARITY MUXES

3

C11

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 7 of 67

Clocking

Each I/O and buried macrocell has access to four synchronousclocks (CLK0, CLK1, CLK2 and CLK3) as well as an asynchro-nous product term clock PTCLK. Each input macrocell hasaccess to all four synchronous clocks.

Dedicated Inputs/Clocks

Five pins on each member of the Ultra37000 family are desig-nated as input-only. There are two types of dedicated inputson Ultra37000 devices: input pins and input/clock pins.Figure 3 illustrates the architecture for input pins. Four inputoptions are available for the user: combinatorial, registered,double-registered, or latched. If a registered or latched optionis selected, any one of the input clocks can be selected forcontrol.

Figure 4 illustrates the architecture for the input/clock pins.Like the input pins, input/clock pins can be combinatorial, reg-istered, double-registered, or latched. In addition, these pinsfeed the clocking structures throughout the device. The clockpath at the input has user-configurable polarity.

Product Term Clocking

In addition to the four synchronous clocks, the Ultra37000 fam-ily also has a product term clock for asynchronous clocking.Each logic block has an independent product term clock whichis available to all 16 macrocells. Each product term clock alsosupports user configurable polarity selection.

Timing Model

One of the most important features of the Ultra37000 family isthe simplicity of its timing. All delays are worst case and sys-tem performance is unaffected by the features used. Figure 5illustrates the true timing model for the 167-MHz devices inhigh speed mode. For combinatorial paths, any input to anyoutput incurs a 6.5-ns worst-case delay regardless of theamount of logic used. For synchronous systems, the input set-up time to the output macrocells for any input is 3.5 ns and theclock to output time is also 4.0 ns. These measurements arefor any output and synchronous clock, regardless of the logicused.

The Ultra37000 features:• No fanout delays• No expander delays• No dedicated vs. I/O pin delays• No additional delay through PIM• No penalty for using 0–16 product terms• No added delay for steering product terms• No added delay for sharing product terms• No routing delays• No output bypass delays

The simple timing model of the Ultra37000 family eliminatesunexpected performance penalties.

JTAG and PCI Standards

PCI Compliance

5V operation of the Ultra37000 is fully compliant with the PCILocal Bus Specification published by the PCI Special InterestGroup. The 3.3V products meet all PCI requirements exceptfor the output 3.3V clamp, which is in direct conflict with 5Vtolerance. The Ultra37000 family’s simple and predictable tim-ing model ensures compliance with the PCI AC specificationsindependent of the design.

Figure 4. Input/Clock Macrocell

0123

O

C10C11

TO PIM

DQ

DQ

D Q

LE

INPUT/CLOCK PIN

012

OFROM CLOCK

CLOCK PINS

0

1O

C12

TO CLOCK MUX ONALL INPUT MACROCELLS

TO CLOCK MUX IN EACH

3

0

1

CLOCK POLARITY MUX ONE PER LOGIC BLOCKFOR EACH CLOCK INPUT

POLARITY INPUT

LOGIC BLOCK

C8 C9

C13, C14, C15 OR C16

O

Figure 5. Timing Model for CY37128

COMBINATORIAL SIGNAL

REGISTERED SIGNAL

D,T,L O

CLOCK

INPUT

INPUT

OUTPUT

OUTPUT

tS = 3.5 ns tCO = 4.5 ns

tPD = 6.5 ns

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 8 of 67

IEEE 1149.1 Compliant JTAG

The Ultra37000 family has an IEEE 1149.1 JTAG interface forboth Boundary Scan and ISR.

Boundary Scan

The Ultra37000 family supports Bypass, Sample/Preload, Ex-test, Idcode, and Usercode boundary scan instructions. TheJTAG interface is shown in Figure 6.

In-System Reprogramming (ISR)

In-System Reprogramming is the combination of the capabilityto program or reprogram a device on-board, and the ability tosupport design changes without changing the system timingor device pinout. This combination means design changesduring debug or field upgrades do not cause board respins.The Ultra37000 family implements ISR by providing a JTAGcompliant interface for on-board programming, robust routingresources for pinout flexibility, and a simple timing model forconsistent system performance.

Development Software Support

Warp™Warp is a state-of-the-art compiler and complete CPLD designtool. For design entry, Warp provides an IEEE-STD-1076/1164VHDL text editor, an IEEE-STD-1364 Verilog text editor, and agraphical finite state machine editor. It provides optimized syn-thesis and fitting by replacing basic circuits with ones pre-op-timized for the target device, by implementing logic in unusedmemory and by perfect communication between fitting andsynthesis. To facilitate design and debugging, Warp providesgraphical timing simulation and analysis.

Warp Professional™Warp Professional contains several additional features. It pro-vides an extra method of design entry with its graphical blockdiagram editor. It allows up to 5 ms timing simulation insteadof only 2 ms. It allows comparison of waveforms before andafter design changes.

Warp Enterprise™Warp Enterprise provides even more features. It provides un-limited timing simulation and source-level behavioral simula-

tion as well as a debugger. It has the ability to generate graph-ical HDL blocks from HDL text. It can even generatetestbenches.

Warp is available for PC and UNIX platforms. Some featuresare not available in the UNIX version. For further informationsee the Warp for PC, Warp for UNIX, Warp Professional andWarp Enterprise data sheets on Cypress’s web site(www.cypress.com).

Third-Party Software

Although Warp is a complete CPLD development tool on itsown, it interfaces with nearly every third party EDA tool. Allmajor third-party software vendors provide support for theUltra37000 family of devices. Refer to the third-party softwaredata sheet or contact your local sales office for a list of current-ly supported third-party vendors.

Programming

There are four programming options available for Ultra37000devices. The first method is to use a PC with the 37000UltraISR programming cable and software. With this method,the ISR pins of the Ultra37000 devices are routed to a connec-tor at the edge of the printed circuit board. The 37000 UltraISRprogramming cable is then connected between the parallelport of the PC and this connector. A simple configuration fileinstructs the ISR software of the programming operations tobe performed on each of the Ultra37000 devices in the system.The ISR software then automatically completes all of the nec-essary data manipulations required to accomplish the pro-gramming, reading, verifying, and other ISR functions. Formore information on the Cypress ISR Interface, see the ISRProgramming Kit data sheet (CY3700i).

The second method for programming Ultra37000 devices is onautomatic test equipment (ATE). This is accomplished througha file created by the ISR software. Check the Cypress websitefor the latest ISR software download information.

The third programming option for Ultra37000 devices is to uti-lize the embedded controller or processor that already existsin the system. The Ultra37000 ISR software assists in thismethod by converting the device JEDEC maps into the ISRserial stream that contains the ISR instruction information andthe addresses and data of locations to be programmed. Theembedded controller then simply directs this ISR stream to thechain of Ultra37000 devices to complete the desired reconfig-uring or diagnostic operations. Contact your local sales officefor information on availability of this option.

The fourth method for programming Ultra37000 devices is touse the same programmer that is currently being used to pro-gram FLASH370i devices.

For all pinout, electrical, and timing requirements, refer to de-vice data sheets. For ISR cable and software specifications,refer to the UltraISR kit data sheet (CY3700i).

Third-Party Programmers

As with development software, Cypress support is available ona wide variety of third-party programmers. All major third-partyprogrammers (including BP Micro, Data I/O, and SMS) supportthe Ultra37000 family.

Figure 6. JTAG Interface

Instruction Register

Boundary Scan

idcode

Usercode

ISR Prog.

Bypass Reg.

Data Registers

JTAGTAP

CONTROLLER

TDOTDI

TMS

TCK

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 9 of 67

Logic Block Diagrams

CY37032 / CY37032V

LOGICBLOCK

B

LOGICBLOCK

A

36

16

36

16

InputClock/Input

16 I/Os 16 I/OsI/O0−I/O15 I/O16−I/O31

4

44

1616

TDITCKTMS

TDOJTAG TapController

1

PIM

JTAGEN

LOGIC

BLOCK

D

LOGIC

BLOCK

C

LOGIC

BLOCK

A

LOGIC

BLOCK

B

36

16

36

16

36

16

36

16

Input

Clock/Input

16 I/Os

16 I/Os

16 I/Os

16 I/Os

I/O0-I/O15

I/O16-I/O31

I/O48-I/O63

I/O32-I/O47

4

44

3232

TDI

TCK

TMS

TDOJTAG Tap

Controller

1

PIM

CY37064 / CY37064V (100-Lead TQFP)

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 10 of 67

Logic Block Diagrams (continued)

TDI

TCK

TMS

TDOJTAG Tap

Controller

CY37128 / CY37128V (160-Lead TQFP)

PIM

INPUTMACROCELL

CLOCKINPUTS

4 4

36

16 16

36

LOGICBLOCK 36

16 16

3616 I/Os

36 36

36

16 16

36

16 16

64 64

41INPUT/CLOCKMACROCELLS

I/O0–I/O15A

INPUTS

LOGICBLOCK

C

LOGICBLOCK

B

LOGICBLOCK

D

LOGICBLOCK

H

LOGICBLOCK

G

LOGICBLOCK

F

LOGICBLOCK

E

I/O16–I/O31

I/O32–I/O47

I/O28–I/O63

I/O112–I/O127

I/O96–I/O111

I/O80–I/O95

I/O64–I/O79

16 I/Os

16 I/Os

16 I/Os

16 I/Os

16 I/Os

16 I/Os

16 I/Os

JTAGEN

LOGICBLOCK

H

LOGICBLOCK

L

LOGICBLOCK

I

LOGICBLOCK

J

LOGICBLOCK

K

LOGICBLOCK

A

LOGICBLOCK

B

LOGICBLOCK

C

LOGICBLOCK

D

LOGICBLOCK

E

LOGICBLOCK

G

LOGICBLOCK

F

36

16

36

16

36

16

36

16

36

16

36

16

36

16

36

16

36

16

36

16

36

16

36

16

PIM

InputClock/Input

10 I/Os

10 I/Os

10 I/Os

10 I/Os

10 I/Os

10 I/Os

10 I/Os

10 I/Os

10 I/Os

10 I/Os

10 I/Os

10 I/Os

I/O0–I/O9

I/O10–I/O19

I/O20–I/O29

I/O30–I/O39

I/O40–I/O49

I/O50–I/O59

I/O110–I/O119

I/O100–I/O109

I/O90–I/O99

I/O80–I/O89

I/O70–I/O79

I/O60–I/O69

4

44

6060TDITCKTMS

TDOJTAG TapController

1

CY37192 / CY37192V (160-Lead TQFP)

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 11 of 67

Logic Block Diagrams (continued)

CY37256 / CY37256V (256-Lead BGA)

LOGICBLOCK

G

LOGICBLOCK

H

LOGICBLOCK

I

LOGICBLOCK

J

LOGICBLOCK

L

LOGICBLOCK

P

LOGICBLOCK

M

LOGICBLOCK

N

LOGICBLOCK

O

LOGICBLOCK

A

LOGICBLOCK

B

LOGICBLOCK

C

LOGICBLOCK

D

LOGICBLOCK

E

LOGICBLOCK

K

LOGICBLOCK

F

36

16

36

16

36

16

36

16

36

16

36

16

36

16

36

16

36

16

36

16

36

16

36

16

36

16

36

16

36

16

36

16

PIM

InputClock/Input

12 I/Os

12 I/Os

12 I/Os

12 I/Os

12 I/Os

12 I/Os

12 I/Os

12 I/Os

12 I/Os

12 I/Os

12 I/Os

12 I/Os

12 I/Os

12 I/Os

12 I/Os

12 I/Os

I/O0−I/O11

I/O12−I/O23

I/O24−I/O35

I/O36−I/O47

I/O48−I/O59

I/O60−I/O71

I/O72−I/O83

I/O84−I/O95

I/O180−I/O191

I/O168−I/O179

I/O156−I/O167

I/O144−I/O155

I/O132−I/O143

I/O120−I/O131

I/O108−I/O119

I/O96−I/O107

4

44

9696TDITCKTMS

TDOJTAG TapController

1

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 12 of 67

Logic Block Diagrams (continued)

CY37384 / CY37384V (256-Lead BGA)

LOGICBLOCK

AH

LOGICBLOCK

AI

LOGICBLOCK

BD

LOGICBLOCK

BE

LOGICBLOCK

BG

LOGICBLOCK

BL

LOGICBLOCK

BI

LOGICBLOCK

BJ

LOGICBLOCK

BK

LOGICBLOCK

AA

LOGICBLOCK

AB

LOGICBLOCK

AC

LOGICBLOCK

AD

LOGICBLOCK

AF

LOGICBLOCK

BF

LOGICBLOCK

AG

36

16

36

16

36

16

36

16

36

16

36

16

36

16

36

16

36

16

36

16

36

16

36

16

36

16

36

16

36

16

36

16

PIM

InputClock/Input

12 I/Os

12 I/Os

12 I/Os

12 I/Os

12 I/Os

12 I/Os

12 I/Os

12 I/Os

12 I/Os

12 I/Os

12 I/Os

I/O0−I/O11

I/O12−I/O23

I/O24−I/O35

I/O48−I/O59

I/O60−I/O71

I/O72−I/O83

I/O168−I/O191

I/O156−I/O179

I/O144−I/O167

I/O120−I/O143

I/O108−I/O131

4

44

9696TDITCKTMS

TDOJTAG TapController

1

LOGICBLOCK

AJ

LOGICBLOCK

BC1616

12 I/OsI/O96−I/O119

LOGICBLOCK

AK

LOGICBLOCK

BB1616

12 I/OsI/O84−I/O95

LOGICBLOCK

AL

LOGICBLOCK

BA1616

12 I/OsI/O96−I/O107

LOGICBLOCK

AE

LOGICBLOCK

BH1616

12 I/Os

12 I/Os

I/O36−I/O47

I/O132−I/O155

36

36

36

36

36

36

36

36

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 13 of 67

Logic Block Diagrams (continued)

CY37512 / CY37512V (352-Lead BGA)

LOGICBLOCK

AG

LOGICBLOCK

AH

LOGICBLOCK

BI

LOGICBLOCK

BJ

LOGICBLOCK

BL

LOGICBLOCK

BP

LOGICBLOCK

BM

LOGICBLOCK

BN

LOGICBLOCK

BO

LOGICBLOCK

AA

LOGICBLOCK

AB

LOGICBLOCK

AC

LOGICBLOCK

AD

LOGICBLOCK

AE

LOGICBLOCK

BK

LOGICBLOCK

AF

36

16

36

16

36

16

36

16

36

16

36

16

36

16

3636

36

16

36

16

36

16

36

16

36

16

36

16

36

16

Input Clock/ Input

12 I/Os

12 I/Os

12 I/Os

12 I/Os

12 I/Os

12 I/Os

12 I/Os

12 I/Os

12 I/Os

12 I/Os

12 I/Os

12 I/Os

12 I/Os

I/O0−I/O11

I/O12−I/O23

I/O24−I/O35

I/O36−I/O47

I/O48−I/O59

I/O60−I/O71

I/O72−I/O83

I/O84−I/O95

I/O252−I/O263

I/O240−I/O251

I/O228−I/O239

I/O216−I/O227

I/O204−I/O215

4

44

TDITCKTMS

TDOJTAG TapController

1

PIM16

3636

16

LOGICBLOCK

AI

LOGICBLOCK

BH

12 I/OsI/O96−I/O107

16

3636

16

LOGICBLOCK

AJ

LOGICBLOCK

BG

12 I/Os

12 I/Os

I/O108−I/O119

I/O192−I/O20316

3636

16

LOGICBLOCK

AK

LOGICBLOCK

BF

12 I/OsI/O120−I/O131

16

3636

16

LOGICBLOCK

AL

LOGICBLOCK

BE

12 I/OsI/O180−I/O19116

3636

16

LOGICBLOCK

AM

LOGICBLOCK

BD

12 I/OsI/O168−I/O17916

3636

16

LOGICBLOCK

AN

LOGICBLOCK

BC

12 I/OsI/O156−I/O16716

3636

16

LOGICBLOCK

AO

LOGICBLOCK

BB

12 I/OsI/O144−I/O15516

3636

16

LOGICBLOCK

AP

LOGICBLOCK

BA

12 I/OsI/O132−I/O14316

132132

16

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 14 of 67

5.0V Device Characteristics

Maximum Ratings

(Above which the useful life may be impaired. For user guide-lines, not tested.)

Storage Temperature ................................. –65°C to +150°C

Ambient Temperature withPower Applied............................................. –55°C to +125°C

Supply Voltage to Ground Potential ............... –0.5V to +7.0V

DC Voltage Applied to Outputsin High Z State................................................–0.5V to +7.0V

DC Input Voltage ............................................–0.5V to +7.0V

DC Program Voltage ............................................ 4.5 to 5.5V

Current into Outputs .................................................... 16 mA

Static Discharge Voltage ........................................... >2001V(per MIL-STD-883, Method 3015)

Latch-Up Current..................................................... >200 mA

Operating Range[2]

RangeAmbient

Temperature[2]Junction

TemperatureOutput

Condition VCC VCCO

Commercial 0°C to +70°C 0°C to +90°C 5V 5V ± 0.25V 5V ± 0.25V

3.3V 5V ± 0.25V 3.3V ± 0.3V

Industrial –40°C to +85°C –40°C to +105°C 5V 5V ± 0.5V 5V ± 0.5V

3.3V 5V ± 0.5V 3.3V ± 0.3V

Military[3] –55°C to +125°C –55°C to +130°C 5V 5V ± 0.5V 5V ± 0.5V

3.3V 5V ± 0.5V 3.3V ± 0.3V

Notes:2. Normal Programming Conditions apply across Ambient Temperature Range for specified programming methods. For more information on programming the

Ultra37000 Family devices, please refer to the Application Note titled “An Introduction to In System Reprogramming with the Ultra37000.”3. TA is the “Instant On” case temperature.

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 15 of 67

5.0V Device Electrical Characteristics Over the Operating Range

Parameter Description Test Conditions Min. Typ. Max. Unit

VOH Output HIGH Voltage VCC = Min. IOH = –3.2 mA (Com’l/Ind)[4] 2.4 V

IOH = –2.0 mA (Mil)[4] 2.4 V

VOHZ Output HIGH Voltage with Output Disabled[5]

VCC = Max. IOH = 0 µA (Com’l)[6] 4.2 V

IOH = 0 µA (Ind/Mil)[6] 4.5 V

IOH = –100 µA (Com’l)[6] 3.6 V

IOH = –150 µA (Ind/Mil)[6] 3.6 V

VOL Output LOW Voltage VCC = Min. IOL = 16 mA (Com’l/Ind)[4] 0.5 V

IOL = 12 mA (Mil)[4] 0.5 V

VIH Input HIGH Voltage Guaranteed Input Logical HIGH Voltage for all Inputs[7]

2.0 VCCmax V

VIL Input LOW Voltage Guaranteed Input Logical LOW Voltage for all Inputs[7]

–0.5 0.8 V

IIX Input Load Current VI = GND OR VCC, Bus-Hold Disabled –10 10 µA

IOZ Output Leakage Current VO = GND or VCC, Output Disabled, Bus-Hold Disabled

–50 50 µA

IOS Output Short Circuit Current[8, 5]

VCC = Max., VOUT = 0.5V –30 –160 mA

IBHL Input Bus-Hold LOW Sustaining Current

VCC = Min., VIL = 0.8V +75 µA

IBHH Input Bus-Hold HIGH Sustaining Current

VCC = Min., VIH = 2.0V –75 µA

IBHLO Input Bus-Hold LOW Overdrive Current

VCC = Max. +500 µA

IBHHO Input Bus-Hold HIGH Overdrive Current

VCC = Max. –500 µA

Inductance[5]

Parameter DescriptionTest

Conditions

44-LeadTQFP

44-LeadPLCC

44-LeadCLCC

84-LeadPLCC

84-LeadCLCC

100-LeadTQFP

160-LeadTQFP

208-LeadPQFP Unit

L Maximum PinInductance

VIN = 5.0V at f = 1 MHz

2 5 2 8 5 8 9 11 nH

Capacitance[5]

Parameter Description Test Conditions Max. Unit

CI/O Input/Output Capacitance VIN = 5.0V at f = 1 MHz at TA = 25°C 10 pF

CCLK Clock Signal Capacitance VIN = 5.0V at f = 1 MHz at TA = 25°C 12 pF

CDP Dual Function Pins[9] VIN = 5.0V at f = 1 MHz at TA = 25°C 16 pF

Endurance Characteristics[5]

Parameter Description Test Conditions Min. Typ. Unit

N Minimum Reprogramming Cycles Normal Programming Conditions[2] 1,000 10,000 Cycles

Notes:4. IOH = –2 mA, IOL = 2 mA for TDO.5. Tested initially and after any design or process changes that may affect these parameters.6. When the I/O is output disabled, the bus-hold circuit can weakly pull the I/O to above 3.6V if no leakage current is allowed. Note that all I/Os are output disabled

during ISR programming. Refer to the application note “Understanding Bus-Hold” for additional information.7. These are absolute values with respect to device ground. All overshoots due to system or tester noise are included.8. Not more than one output should be tested at a time. Duration of the short circuit should not exceed 1 second. VOUT = 0.5V has been chosen to avoid test

problems caused by tester ground degradation.9. Dual pins are I/O with JTAG pins.

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 16 of 67

3.3V Device Characteristics

Maximum Ratings

(Above which the useful life may be impaired. For user guide-lines, not tested.)

Storage Temperature ................................. –65°C to +150°CAmbient Temperature withPower Applied............................................. –55°C to +125°CSupply Voltage to Ground Potential ............... –0.5V to +4.6V

DC Voltage Applied to Outputsin High Z State................................................–0.5V to +7.0V

DC Input Voltage ............................................–0.5V to +7.0V

DC Program Voltage ............................................ 3.0 to 3.6V

Current into Outputs ...................................................... 8 mA

Static Discharge Voltage ........................................... >2001V(per MIL-STD-883, Method 3015)

Latch-Up Current..................................................... >200 mA

Operating Range[2]

Range Ambient Temperature[2] Junction Temperature VCC

Commercial 0°C to +70°C 0°C to +90°C 3.3V ± 0.3V

Industrial –40°C to +85°C –40°C to +105°C 3.3V ± 0.3V

Military[3] –55°C to +125°C –55°C to +130°C 3.3V ± 0.3V

3.3V Device Electrical Characteristics Over the Operating Range

Parameter Description Test Conditions Min. Max. Unit

VOH Output HIGH Voltage VCC = Min. IOH = –4 mA (Com’l)[4] 2.4 V

IOH = –3 mA (Mil)[4]

VOL Output LOW Voltage VCC = Min. IOL = 8 mA (Com’l)[4] 0.5 V

IOL = 6 mA (Mil)[4]

VIH Input HIGH Voltage Guaranteed Input Logical HIGH Voltage for all Inputs[7]

2.0 5.5 V

VIL Input LOW Voltage Guaranteed Input Logical LOW Voltage for all Inputs[7]

–0.5 0.8 V

IIX Input Load Current VI = GND OR VCC, Bus-Hold Disabled –10 10 µA

IOZ Output Leakage Current VO = GND or VCC, Output Disabled, Bus-Hold Disabled

–50 50 µA

IOS Output Short Circuit Current[8, 5] VCC = Max., VOUT = 0.5V –30 –160 mA

IBHL Input Bus-Hold LOW Sustaining Current

VCC = Min., VIL = 0.8V +75 µA

IBHH Input Bus-Hold HIGH Sustaining Current

VCC = Min., VIH = 2.0V –75 µA

IBHLO Input Bus-Hold LOW Overdrive Current

VCC = Max. +500 µA

IBHHO Input Bus-Hold HIGH Overdrive Current

VCC = Max. –500 µA

Inductance[5]

Parameter DescriptionTest

Conditions

44-LeadTQFP

44-LeadPLCC

44-LeadCLCC

84-LeadPLCC

84-LeadCLCC

100-LeadTQFP

160-LeadTQFP

208-LeadPQFP Unit

L Maximum PinInductance

VIN = 3.3V at f = 1 MHz

2 5 2 8 5 8 9 11 nH

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 17 of 67

AC Characteristics.

Capacitance[5]

Parameter Description Test Conditions Max. Unit

CI/O Input/Output Capacitance VIN = 3.3V at f = 1 MHz at TA = 25°C 8 pF

CCLK Clock Signal Capacitance VIN = 3.3V at f = 1 MHz at TA = 25°C 12 pF

CDP Dual Functional Pins[9] VIN = 3.3V at f = 1 MHz at TA = 25°C 16 pF

Endurance Characteristics[5]

Parameter Description Test Conditions Min. Typ. Unit

N Minimum Reprogramming Cycles Normal Programming Conditions[2] 1,000 10,000 Cycles

5.0V AC Test Loads and Waveforms

3.3V AC Test Loads and Waveforms

90%

10%

3.0V

GND

90%

10%

ALL INPUT PULSES5V

OUTPUT

35 pF

INCLUDINGJIG ANDSCOPE

5V

OUTPUT

5 pF

INCLUDINGJIG ANDSCOPE

(a) (b)

<2 ns

OUTPUT

238Ω (COM’L)319Ω (MIL)

170Ω (COM’L)236Ω (MIL)

99Ω (COM’L)136Ω (MIL)

Equivalent to: THÉVENIN EQUIVALENT

2.08V (COM'L)2.13V (MIL)

238Ω (COM'L)319Ω (MIL)

170Ω (COM'L)236Ω (MIL)

<2 ns

(c)

5 OR 35 pF

90%

10%

3.0V

GND

90%

10%

ALL INPUT PULSES3.3V

OUTPUT

35 pF

INCLUDINGJIG ANDSCOPE

3.3V

OUTPUT

5 pF

INCLUDINGJIG ANDSCOPE

(a) (b)

<2 ns

OUTPUT

295Ω (COM’L)393Ω (MIL)

340Ω (COM’L)453Ω (MIL)

Equivalent to: THÉVENIN EQUIVALENT

1.77V (COM'L)1.77V (MIL)

295Ω (COM'L)393Ω (MIL)

340Ω (COM'L)453Ω (MIL)

<2 ns

(c)

270Ω (MIL)158Ω (COM’L)

5 OR 35 pF

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 18 of 67

Note:10. tER measured with 5-pF AC Test Load and tEA measured with 35-pF AC Test Load.

Parameter[10] VX Output Waveform—Measurement Level

tER(–) 1.5V

tER(+) 2.6V

tEA(+) 1.5V

tEA(–) Vthe

(d) Test Waveforms

VOHVX0.5V

VOL

VX0.5V

VX

VOH0.5V

VXVOL0.5V

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 19 of 67

Switching Characteristics Over the Operating Range[11]

Parameter Description Unit

Combinatorial Mode Parameters

tPD[12, 13, 14] Input to Combinatorial Output ns

tPDL[12, 13, 14] Input to Output Through Transparent Input or Output Latch ns

tPDLL[12, 13, 14] Input to Output Through Transparent Input and Output Latches ns

tEA[12, 13, 14] Input to Output Enable ns

tER[10, 12] Input to Output Disable ns

Input Register Parameters

tWL Clock or Latch Enable Input LOW Time[8] ns

tWH Clock or Latch Enable Input HIGH Time[8] ns

tIS Input Register or Latch Set-Up Time ns

tIH Input Register or Latch Hold Time ns

tICO[12, 13, 14] Input Register Clock or Latch Enable to Combinatorial Output ns

tICOL[12, 13, 14] Input Register Clock or Latch Enable to Output Through Transparent Output Latch ns

Synchronous Clocking Parameters

tCO[13, 14] Synchronous Clock (CLK0, CLK1, CLK2, or CLK3) or Latch Enable to Output ns

tS[12] Set-Up Time from Input to Sync. Clk (CLK0, CLK1, CLK2, or CLK3) or Latch Enable ns

tH Register or Latch Data Hold Time ns

tCO2[12, 13, 14] Output Synchronous Clock (CLK0, CLK1, CLK2, or CLK3) or Latch Enable to Combinatorial Output

Delay (Through Logic Array)ns

tSCS[12] Output Synchronous Clock (CLK0, CLK1, CLK2, or CLK3) or Latch Enable to Output Synchronous

Clock (CLK0, CLK1, CLK2, or CLK3) or Latch Enable (Through Logic Array)ns

tSL[12] Set-Up Time from Input Through Transparent Latch to Output Register Synchronous Clock (CLK0

CLK1, CLK2, or CLK3) or Latch Enablens

tHL Hold Time for Input Through Transparent Latch from Output Register Synchronous Clock (CLK0, CLK1, CLK2, or CLK3) or Latch Enable

ns

Product Term Clocking Parameters

tCOPT[12, 13, 14] Product Term Clock or Latch Enable (PTCLK) to Output ns

tSPT Set-Up Time from Input to Product Term Clock or Latch Enable (PTCLK) ns

tHPT Register or Latch Data Hold Time ns

tISPT[12] Set-Up Time for Buried Register used as an Input Register from Input to Product Term Clock or

Latch Enable (PTCLK)ns

tIHPT Buried Register Used as an Input Register or Latch Data Hold Time ns

tCO2PT[12, 13, 14] Product Term Clock or Latch Enable (PTCLK) to Output Delay (Through Logic Array) ns

Pipelined Mode Parameters

tICS[12] Input Register Synchronous Clock (CLK0, CLK1, CLK2, or CLK3) to Output Register Synchronous

Clock (CLK0, CLK1, CLK2, or CLK3)ns

Notes:11. All AC parameters are measured with two outputs switching and 35-pF AC Test Load.12. Logic Blocks operating in Low-Power Mode, add tLP to this spec.13. Outputs using Slow Output Slew Rate, add tSLEW to this spec.14. When VCCO= 3.3V, add t3.3IO to this spec.

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 20 of 67

Operating Frequency Parameters

fMAX1 Maximum Frequency with Internal Feedback (Lesser of 1/tSCS, 1/(tS + tH), or 1/tCO)[5] MHz

fMAX2 Maximum Frequency Data Path in Output Registered/Latched Mode (Lesser of 1/(tWL + tWH), 1/(tS + tH), or 1/tCO)[5]

MHz

fMAX3 Maximum Frequency with External Feedback (Lesser of 1/(tCO + tS) or 1/(tWL + tWH)[5] MHz

fMAX4 Maximum Frequency in Pipelined Mode (Lesser of 1/(tCO + tIS), 1/tICS, 1/(tWL + tWH), 1/(tIS + tIH), or 1/tSCS)[5]

MHz

Reset/Preset Parameters

tRW Asynchronous Reset Width[5] ns

tRR[12] Asynchronous Reset Recovery Time[5] ns

tRO[12, 13, 14] Asynchronous Reset to Output ns

tPW Asynchronous Preset Width[5] ns

tPR[12] Asynchronous Preset Recovery Time[5] ns

tPO[12, 13, 14] Asynchronous Preset to Output ns

User Option Parameters

tLP Low Power Adder ns

tSLEW Slow Output Slew Rate Adder ns

t3.3IO 3.3V I/O Mode Timing Adder[5] ns

JTAG Timing Parameters

tS JTAG Set-Up Time from TDI and TMS to TCK[5] ns

tH JTAG Hold Time on TDI and TMS[5] ns

tCO JTAG Falling Edge of TCK to TDO[5] ns

fJTAG Maximum JTAG Tap Controller Frequency[5] ns

Switching Characteristics Over the Operating Range[11] (continued)

Parameter Description Unit

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 21 of 67

Switching Characteristics Over the Operating Range[11]

200 MHz 167 MHz 154 MHz 143 MHz 125 MHz 100 MHz 83 MHz 66 MHz

Parameter Min

.

Max

.

Min

.

Max

.

Min

.

Max

.

Min

.

Max

.

Min

.

Max

.

Min

.

Max

.

Min

.

Max

.

Min

.

Max

.

Unit

Combinatorial Mode Parameters

tPD[12, 13, 14] 6 6.5 7.5 8.5 10 12 15 20 ns

tPDL[12, 13, 14] 11 12.5 14.5 16 16.5 17 19 22 ns

tPDLL[12, 13, 14] 12 13.5 15.5 17 17.5 18 20 24 ns

tEA[12, 13, 14] 8 8.5 11 13 14 16 19 24 ns

tER[10, 12] 8 8.5 11 13 14 16 19 24 ns

Input Register Parameters

tWL 2.5 2.5 2.5 2.5 3 3 4 5 ns

tWH 2.5 2.5 2.5 2.5 3 3 4 5 ns

tIS 2 2 2 2 2 2.5 3 4 ns

tIH 2 2 2 2 2 2.5 3 4 ns

tICO[12, 13, 14] 11 11 11 12.5 12.5 16 19 24 ns

tICOL[12, 13, 14] 12 12 12 14 16 18 21 26 ns

Synchronous Clocking Parameters

tCO [13, 14] 4 4 4.5 6 6.5[15] 6.5[16] 8[17] 10 ns

tS[12] 4 4 5 5 5.5[15] 6[16] 8[17] 10 ns

tH 0 0 0 0 0 0 0 0 ns

tCO2[12, 13, 14] 9.5 10 11 12 14 16 19 24 ns

tSCS[12] 5 6 6.5 7 8[15] 10 12 15 ns

tSL[12] 7.5 7.5 8.5 9 10 12 15 15 ns

tHL 0 0 0 0 0 0 0 0 ns

Product Term Clocking Parameters

tCOPT[12, 13, 14] 7 10 10 13 13 13 15 20 ns

tSPT 2.5 2.5 2.5 3 5 5.5 6 7 ns

tHPT 2.5 2.5 2.5 3 5 5.5 6 7 ns

tISPT[12] 0 0 0 0 0 0 0 0 ns

tIHPT 6 6.5 6.5 7.5 9 11 14 19 ns

tCO2PT[12, 13, 14] 12 14 15 19 19 21 24 30 ns

Pipelined Mode Parameters

tICS[12] 5 6 6 7 8[15] 10 12 15 ns

Operating Frequency Parameters

fMAX1 200 167 154 143 125[15] 100 83 66 MHz

fMAX2 200 200 200 167 154 153[16] 125[17] 100 MHz

fMAX3 125 125 105 91 83 80[16] 62.5 50 MHz

fMAX4 167 167 154 125 118 100 83 66 MHz

Notes:15. The following values correspond to the CY37512 and CY37384 devices: tCO = 5 ns, tS = 6.5 ns, tSCS = 8.5 ns, tICS = 8.5 ns, fMAX1 = 118 MHz.16. The following values correspond to the CY37192V and CY37256V devices: tCO = 6 ns, tS = 7 ns, fMAX2 = 143 MHz, fMAX3 = 77 MHz, and fMAX4 = 100 MHz; and

for the CY37512 devices: tS = 7 ns.17. The following values correspond to the CY37512V and CY37384V devices: tCO = 6.5 ns, tS = 9.5 ns, and fMAX2 = 105 MHz.

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 22 of 67

Reset/Preset Parameters

tRW 8 8 8 8 10 12 15 20 ns

tRR[12] 10 10 10 10 12 14 17 22 ns

tRO[12, 13, 14] 12 13 13 14 15 18 21 26 ns

tPW 8 8 8 8 10 12 15 20 ns

tPR[12] 10 10 10 10 12 14 17 22 ns

tPO[12, 13, 14] 12 13 13 14 15 18 21 26 ns

User Option Parameters

tLP 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 ns

tSLEW 3 3 3 3 3 3 3 3 ns

t3.3IO[18] 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 ns

JTAG Timing Parameters

tS JTAG 0 0 0 0 0 0 0 0 ns

tH JTAG 20 20 20 20 20 20 20 20 ns

tCO JTAG 20 20 20 20 20 20 20 20 ns

fJTAG 20 20 20 20 20 20 20 20 MHz

Note:18. Only applicable to the 5V devices.

Switching Characteristics Over the Operating Range[11] (continued)

200 MHz 167 MHz 154 MHz 143 MHz 125 MHz 100 MHz 83 MHz 66 MHz

Parameter Min

.

Max

.

Min

.

Max

.

Min

.

Max

.

Min

.

Max

.

Min

.

Max

.

Min

.

Max

.

Min

.

Max

.

Min

.

Max

.

Unit

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 23 of 67

Switching Waveforms

tPD

INPUT

COMBINATORIALOUTPUT

Combinatorial Output

Registered Output with Synchronous Clocking

tS

INPUT

SYNCHRONOUS

tCO

REGISTEREDOUTPUT

tH

SYNCHRONOUS

tWLtWH

tCO2

REGISTEREDOUTPUT

CLOCK

CLOCK

Registered Output with Product Term Clocking

tSPT

INPUT

PRODUCT TERM

tCOPT

REGISTEREDOUTPUT

tHPT

CLOCK

Input Going Through the Array

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 24 of 67

Switching Waveforms (continued)

Registered Output with Product Term Clocking

tISPT

INPUT

PRODUCT TERM

tCO2PT

REGISTEREDOUTPUT

tIHPT

CLOCK

Input Coming From Adjacent Buried Register

Latched Output

tSL

INPUT

LATCH ENABLE

tCO

LATCHEDOUTPUT

tHL

tPDL

Registered Input

tIS

REGISTEREDINPUT

INPUT REGISTERCLOCK

tICO

COMBINATORIALOUTPUT

tIH

CLOCK

tWLtWH

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 25 of 67

Switching Waveforms (continued)

Clock to Clock

INPUT REGISTERCLOCK

OUTPUTREGISTER CLOCK

tSCStICS

Latched Input

tIS

LATCHED INPUT

LATCH ENABLE

tICO

COMBINATORIALOUTPUT

tIH

tPDL

tWLtWH

LATCH ENABLE

Latched Input and Output

tICS

LATCHED INPUT

OUTPUT LATCHENABLE

LATCHEDOUTPUT

tPDLL

LATCH ENABLE

tWLtWH

tICOL

INPUT LATCHENABLE

tSLtHL

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 26 of 67

Switching Waveforms (continued)

Asynchronous Reset

INPUT

tRO

REGISTEREDOUTPUT

CLOCK

tRR

tRW

Asynchronous Preset

INPUT

tPO

REGISTEREDOUTPUT

CLOCK

tPR

tPW

Output Enable/Disable

INPUT

tER

OUTPUTS

tEA

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 27 of 67

Power Consumption

Typical 5.0V Power Consumption

CY37032

CY37064

0

10

20

30

40

50

60

0 50 100 150 200 250

Frequency (M H z)

Icc

(mA

)

H igh S peed

Low P ow er

The typical pattern is a 16-bit up counter, per logic block, with outputs disabled.VCC = 5.0V, TA = Room Temperature

The typical pattern is a 16-bit up counter, per logic block, with outputs disabled.VCC = 5.0V, TA = Room Temperature

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100 120 140 160 180

Frequency (M Hz)

Icc

(mA

)

Low P ower

H igh S peed

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 28 of 67

CY37128

CY37192

Typical 5.0V Power Consumption (continued)

0

2 0

4 0

6 0

8 0

100

120

140

160

0 20 40 60 80 100 120 140 160 180

F requ ency (M H z)

Icc

(mA

) Low P ow er

H igh S peed

The typical pattern is a 16-bit up counter, per logic block, with outputs disabled.VCC = 5.0V, TA = Room Temperature

0

5 0

100

150

200

250

300

0 20 40 60 80 100 120 140 160 180

F requ ency (M H z)

Icc

(mA

)

Low P ow er

H igh S peed

The typical pattern is a 16-bit up counter, per logic block, with outputs disabled.VCC = 5.0V, TA = Room Temperature

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 29 of 67

CY37256

CY37384

Typical 5.0V Power Consumption (continued)

0

5 0

100

150

200

250

300

0 20 40 60 80 100 120 140 160 180

F requ ency (M H z)

Icc

(mA

)

Low P ow er

H igh S peed

The typical pattern is a 16-bit up counter, per logic block, with outputs disabled.VCC = 5.0V, TA = Room Temperature

0

50

100

150

200

250

300

350

400

450

500

0 20 40 60 80 100 120 140 160

Frequency (M H z)

Icc

(mA

)

Low Power

H igh Speed

The typical pattern is a 16-bit up counter, per logic block, with outputs disabled.VCC = 5.0V, TA = Room Temperature

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 30 of 67

CY37512

Typical 5.0V Power Consumption (continued)

0

100

200

300

400

500

600

0 20 40 60 80 100 120 140 160

F requ ency (M H z)

Icc

(mA

)

Low P ow er

H igh S peed

The typical pattern is a 16-bit up counter, per logic block, with outputs disabled.VCC = 5.0V, TA = Room Temperature

Typical 3.3V Power Consumption

CY37032V

0

5

10

15

20

25

30

0 20 40 60 80 100 120 140 160

Frequency (M Hz)

Icc

(mA

)

Low Power

High Speed

The typical pattern is a 16-bit up counter, per logic block, with outputs disabled.VCC = 3.3V, TA = Room Temperature

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 31 of 67

CY37064V

CY37128V

Typical 3.3V Power Consumption (continued)

0

5

10

15

20

25

30

35

40

45

0 20 40 60 80 100 120 140

Frequency (M H z)

Icc

(mA

)

Low Power

H igh Speed

The typical pattern is a 16-bit up counter, per logic block, with outputs disabled.VCC = 3.3V, TA = Room Temperature

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0

F re q u e n c y (M H z )

Icc

(mA

)

L o w P o w e r

H ig h S p e e d

The typical pattern is a 16-bit up counter, per logic block, with outputs disabled.VCC = 3.3V, TA = Room Temperature

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 32 of 67

CY37192V

CY37256V

Typical 3.3V Power Consumption (continued)

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0

F re q u e n c y (M H z )

Icc

(mA

)

L o w P o w e r

H ig h S p e e d

The typical pattern is a 16-bit up counter, per logic block, with outputs disabled.VCC = 3.3V, TA = Room Temperature

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0

F re q u e n c y (M H z )

Icc

(mA

)

L o w P o w e r

H ig h S p e e d

The typical pattern is a 16-bit up counter, per logic block, with outputs disabled.VCC = 3.3V, TA = Room Temperature

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 33 of 67

CY37384V

CY37512V

Typical 3.3V Power Consumption (continued)

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 0

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0

F re q u e n c y (M H z)

Icc

(mA

)

L o w P o w e r

H ig h S p e e d

The typical pattern is a 16-bit up counter, per logic block, with outputs disabled.VCC = 3.3V, TA = Room Temperature

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0

F r e q u e n c y (M H z )

Icc

(mA

)

L o w P o w e r

H ig h S p e e d

The typical pattern is a 16-bit up counter, per logic block, with outputs disabled.VCC = 3.3V, TA = Room Temperature

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 34 of 67

Pin Configurations[19]

Note:19. For 3.3V versions (Ultra37000V), VCCO = VCC.

44-Pin TQFP (A44)

Top View

I/O2

GN

DV

CC

O

I/O3

I/O4

I/O1

I/O0

I/O29

I/O30

I/O31

I/O28

I/O27/TDI

I/O26

I/O25I/O24

CLK1/I4GNDI3CLK3/I2I/O23I/O22

I/O21G

ND

I/O20

VC

C

I/O18

I/O17

I/O16

I/O15

I/O14

I/O12

I/O5/TCKI/O6

I/O7

CLK2/I0

GNDCLK0/I1

I/O8

I/O9I/O10

I/O11

89

7

1011

34

2

56

1

18 19 20 222113 14 15 171612

31

3029

32

33

26

2524

2728

23

44 43 42 4041 39 38 37 3536 34

I/O13

/TM

S

I/O19

/TD

O

JTAGEN

44-Pin PLCC (J67) / CLCC (Y67)

Top View

I/O27/TDII/O26I/O25I/O24

CLK1/I4GNDI3CLK3/I2I/O23I/O22

I/O21

I/O5/TCKI/O6I/O7

CLK2/I0JTAGEN

GNDCLK0/I1

I/O8

I/O9I/O10I/O11

GN

D

I/O20

I/O2

GN

DV

CC

O

VC

C

I/O3

I/O4

I/O1

I/O0

I/O29

I/O30

I/O31

I/O28

I/O19

I/O18

I/O17

I/O16

I/O15

I/O14

I/O13

I/O12

6 5 34 2

89

7

1011

44

18

1516

1413

12

1719 20 2221 23 24 2726 2825

313029

323334

39

3738

3635

43 42 4041

/TM

S

/TD

O

1

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 35 of 67

Pin Configurations[19] (continued)

48-Ball Fine-Pitch BGA (BA50)Top View

1 2 3 4 5 6 7 8

A I/O5 TCK

VCC I/O3 I/O1 I/O31 I/O30 VCC I/O27 TDI

B VCC I/O4 I/O2 I/O0 I/O29 I/O28 I/O26 CLK1/ I4

C CLK2/ I0

I/O7 I/O6 GND GND I/O25 I/O24 I3

D JTAGEN I/O8 I/O9 GND GND I/O22 I/O23 CLK3/ I2

E CLK0/ I1

I/O12 I/O11 I/O10 I/O16 I/O20 I/O21 VCC

F I/O13 TMS

VCC I/O14 I/O15 I/O17 I/O18 VCC I/O19 TDO

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 36 of 67

Note:20. This pin is a N/C, but Cypress recommends that you connect it to VCC to ensure future compatibility.

Pin Configurations[19] (continued)

I/O

I/O14

I/O15I/O 48

Top View

84-Lead PLCC (J83) / CLCC (Y84)

9 8 67 5

13

14

12

11

4948

58

59

60

23

24

26

25

27

15

16

4746

4 3

28

33

20

21

19

18

17

22

34 3736 38 4241 4340

66

65

63

64

62

61

67

68

69

74

72

73

71

70

84 8182 80 79

GND

I/O GN

D

I/O I/OI/O I/O I/O I/O I/OGN

D

I/O 55

I/O 54 /TDI

I/O 53

I/O 52

I/O 51

GND

I/O 49

CLK3/I 4

VCCO

CLK2/I 3

I/O 45

I/O 44

GN

D

I/O

I/O 8

I/O 9

I/O10 /TCK

I/O11

I/O12

I/O13

CLK0/I 0

VCCO

CLK1/I 1

I/O16

I/O17

I/O18

I/O19

I/O20

53525150

30

29

31

32

I/O I/O I/O I/O54

55

56

57 I/O 43

I/O 42

I/O 41

I/O 40

7778 76 75

I/O21

I/O22

I/O23

GND

I/O

I/O 50

I/O 47

I/O 46

GND

24

I/O25

/TM

S

I/O27

I/O28

I/O29

I/O30

I/O31

VC

CO

VC

C I/O32

I/O33

I/O34

I/O35

I/O36

I/O37

I/O38

I/O39

GN

D

I 2

7 6 5 4 3 2 1

VC

CO

I/O0

VC

C

63

I/O62 61 60 59 58 57 56

JTA

GE

N

I/O26

/TD

O

10

35 39 44 45

832 1

[20]

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 37 of 67

Pin Configurations[19] (continued)

Top View100-Lead TQFP (A100)

100 9798 96

2

3

1

4241

59

60

61

12

13

15

14

16

4

5

4039

95 94

17

26

9

10

8

7

6

11

27 28 3029 31 32 3534 36 3833

67

66

64

65

63

62

68

69

70

75

73

74

72

71

89 88 8687 8593 92 84

TDI

NC

VCCO

I/O 55

I/O 54

I/O 53

I/O 52

CLK 3 /I 4

I/O 50

I/O 48

GND

NC

I/O47

I/O 46

I/O 49

GN

D

TM

S

TCK

GND

I/O 8

I/O 9

I/O10

I/O11

I/O15

VCCO

GND

CLK1 /I 1

I/O16

I/O17

CLK0 /I 0

9091

I/O 51

VCCO

CLK 2 /I 3

I/O14

N/C

I/O12

I/O13

I/O 45

I/O 44

I/O 43

I/O 42

I/O 41

I/O 40

GND

NC

GN

D

NC

I/O18

I/O19

I/O20

I/O21

I/O22

I/O23

VCCO

NC

18

19

20

21

22

23

24

25

83 82 81 80 79 78 77 76

58

57

56

55

54

53

52

51

43 44 45 46 48 49 50

GN

D

I/O24

I/O25

I/O26

I/O27

I/O28

I/O29

I/O30

I/O31

VC

CO

VC

CI/O

32I/O

33

I/O34

I/O35

I/O36

I/O37

I/O38

I/O39I 2

NC

VC

CO

TD

O

I/OI/O GN

D

I/O I/OI/O I/O I/O I/O I/O I/O I/O I/O I/OI/O

7 6 5 4 3 2 1

VC

CO

I/O0

VC

C

NC

63

I/O62 61 60 59 58 57 56

VC

CO

N/C

99

37 47

[20]

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 38 of 67

Pin Configurations[19] (continued)

100-Ball Fine-Pitch BGA (BB100)for CY37064V

Top View

100-Ball Fine-Pitch BGA (BB100)for CY37128V

Top View

1 2 3 4 5 6 7 8 9 10

A NC NC I/O7 I/O5 I/O2 I/O62 I/O60 I/O58 I/O57 I/O56

B I/O9 I/O8 I/O6 I/O4 I/O1 I/O63 VCC I/O59 I/O55 NC

C I/O10 TCK VCC I/O3 NC NC I/O61 VCC TDI I/O54

D I/O11 NC I/O12 I/O13 I/O0 NC I/O51 I/O52 CLK3/ I4

I/O53

E I/O14 CLK0/ I0

I/O15 NC GND GND I/O48 I/O49 CLK2/ I3

I/O50

F I/O17 NC NC I/O16 GND GND NC NC I2 I/O47

G I/O22 CLK1/ I1

I/O21 I/O19 I/O18 I/O46 I/O45 I/O44 NC I/O43

H I/O23 TMS VCC I/O20 NC I/O32 I/O42 VCC TDO I/O41

J NC I/O26 I/O28 NC I/O31 I/O33 I/O35 I/O37 I/O39 I/O40

K I/O24 I/O25 I/O27 I/O29 I/O30 I/O34 I/O36 I/O38 NC NC

1 2 3 4 5 6 7 8 9 10

A NC I/O9 I/O8 I/O6 I/O3 I/O76 I/O74 I/O72 I/O71 I/O70

B I/O11 I/O10 I/O7 I/O5 I/O2 I/O77 VCC I/O73 I/O68 I/O69

C I/O12 I/O13TCK

VCC I/O4 I/O1 I/O78 I/O75 VCC I/O67TDI

I/O66

D I/O14 VCC I/O15 I/O16 I/O0 I/O79 I/O63 I/O64 CLK3/ I4

I/O65

E I/O17 CLK0/ I0

I/O18 I/O19 GND GND I/O60 I/O61 CLK2/ I3

I/O62

F I/O22 JTAGEN I/O21 I/O20 GND GND I/O59 I/O58 I2 I/O57

G I/O27 CLK1/ I1

I/O26 I/O24 I/O23 I/O56 I/O55 I/O54 VCC I/O53

H I/O28 I/O33TMS

VCC I/O25 I/O39 I/O40 I/O52 VCC I/O47TDO

I/O51

J I/O29 I/O32 I/O35 VCC I/O38 I/O41 I/O43 I/O45 I/O48 I/O50

K I/O30 I/O31 I/O34 I/O36 I/O37 I/O42 I/O44 I/O46 I/O49 NC

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 39 of 67

Pin Configurations[19] (continued)

I/O77

124

123

122

121

120119118117116115114113112111110109108107106105104103102101100

999897969594939291908988878685

43 44

160

45

159

46

158

47

157

48

156

49

155

50

154

51

153

52

152

53

151

54

150

55

149

56

148

57

147

58

146

59

145

60

144

61

143

62

142

63

141

64 65 66 67 68

140

69

139

70

138

71

137

72

136

73

135

74

134

75

133

76

132

77

131

78

130

79

129

80

128

81

127

82

126

160-Lead TQFP (A160) / CQFP (U162)

125

84

83

42

GNDI/O16

I/O17

I/O18I/O19

I/O20/TCKI/O21

I/O22

I/O23

I/O24

I/O25

I/O26

I/O27

I/O28

I/O29

I/O30

I/O31

I/O32

I/O33

I/O34

I/O35

I/O36

I/O37

I/O38

I/O39

I/O40

I/O41

I/O42

I/O43

I/O44

I/O45

I/O46

I/O47

GND

CLK0/I0VCCO

GNDCLK1/I1

GND

GN

D

GN

D

GN

D

GN

D

VCCO

I/O48

I/O49

I/O50

I/O51

I/O53

I/O54

I/O55

I/O56

I/O57

I/O58

I/O59

I/O60

I/O61

I/O62

I/O63 I 2

VC

CO

VC

C

I/O64

I/O65

I/O66

I/O67

I/O68

I/O69

I/O70

I/O71

I/O72

I/O73

I/O74

I/O75

I/O78

I/O79

VC

CO

GNDI/O80

I/O81

I/O82

I/O83

I/O84

I/O85

I/O86

I/O87

GNDI/O88

I/O89

I/O90

I/O91

I/O92

I/O93

I/O94

I/O95

I/O96

I/O97

I/O98

I/O99

I/O100

I/O101

I/O102

I/O103

GND

GND

CLK2/I3

VCCO

CLK3/I4

I/O104

I/O105

I/O106

I/O107

I/O108/TDII/O109

I/O110

I/O111

VCCOG

ND

GN

DV

CC

GN

D

I/O11

2

GN

D

VC

CO

VC

CO

I/O11

3

I/O11

4

I/O11

5

I/O11

6

I/O11

7

I/O11

8

I/O11

9

I/O12

0

I/O12

1

I/O12

2

I/O12

3

I/O12

4

I/O12

5

I/O12

6

I/O12

7

I/O0

I/O1

I/O2

I/O3

I/O4

I/O5

I/O6

I/O7

I/O8

I/O9

I/O10

I/O11

I/O12

I/O13

I/O14

I/O15

JTA

GE

N

I/O52

/TM

S

I/O76

/TD

O

23456789

10111213141516171819202122232425262728293031323334353637383940

1

41

for CY37128(V) and CY37256(V)Top View

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 40 of 67

Pin Configurations[19] (continued)

I/O72

124

123

122

121

120119118117116115114113112111110109108107106105104103102101100

999897969594939291908988878685

43 44

160

45

159

46

158

47

157

48

156

49

155

50

154

51

153

52

152

53

151

54

150

55

149

56

148

57

147

58

146

59

145

60

144

61

143

62

142

63

141

64 65 66 67 68

140

69

139

70

138

71

137

72

136

73

135

74

134

75

133

76

132

77

131

78

130

79

129

80

128

81

127

82

126

160-Lead TQFP (A160) for CY37192(V)

125

84

83

42

GNDNC

I/O16

I/O17I/O18

TCKI/O19

I/O20

I/O21

I/O22

I/O23

I/O24

I/O25

I/O26

I/O27

I/O28

I/O29

I/O30

I/O31

I/O32

I/O33

I/O34

I/O35

I/O36

I/O37

I/O38

I/O39

I/O40

I/O41

I/O42

I/O43

I/O44

I/O45

GND

CLK0/I0VCCO

GNDCLK1/I1

GND

GN

D

GN

D

GN

D

GN

D

VCCO

NC

I/O46

I/O47

I/O48

I/O49

I/O50

I/O51

I/O52

I/O53

I/O54

I/O55

I/O56

I/O57

I/O58

I/O59 I 2

VC

CO

VC

C

I/O60

I/O61

I/O62

I/O63

I/O64

I/O65

I/O66

I/O67

I/O68

I/O69

I/O70

I/O71

I/O73

I/O74

VC

CO

GNDNCI/O75

I/O76

I/O77

I/O78

I/O79

I/O80

I/O81

GNDI/O82

I/O83

I/O84

I/O85

I/O86

I/O87

I/O88

I/O89

I/O90

I/O91

I/O92

I/O93

I/O94

I/O95

I/O96

I/O97

GND

GND

CLK2/I3

VCCO

CLK3/I4

I/O98

I/O99

I/O100

I/O101

TDII/O102

I/O103

I/O104

VCCOG

ND

GN

DV

CC

GN

D

NC

GN

D

VC

CO

VC

CO

I/O10

5

I/O10

6

I/O10

7

I/O10

8

I/O10

9

I/O11

0

I/O11

1

I/O11

2

I/O11

3

I/O11

4

I/O11

5

I/O11

6

I/O11

7

I/O11

8

I/O11

9

I/O0

I/O1

I/O2

I/O3

I/O4

I/O5

I/O6

I/O7

I/O8

I/O9

I/O10

I/O11

I/O12

I/O13

I/O14

I/O15

NC

TM

S

TD

O

23456789

10111213141516171819202122232425262728293031323334353637383940

1

41

Top View

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 41 of 67

Pin Configurations[19] (continued)

I/O15

2

I/O15

4I/O

153

2345678910111213141516171819202122232425262728293031323334353637383940

1

414243444546474849505152

206

205

204

203

202

201

200

199

198

197

196

195

194

193

192

191

190

189

188

187

186

185

184

183

182

181

180

179

178

177

176

175

174

173

172

171

170

169

168

208

167

166

165

164

163

162

161

160

159

158

157

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 9153 92 93 94 95 96 97 98 99 100

101

102

103

154153152151150149148147146145144143142141140139138137136135134133132131130129128127126125124123122121120119118117116

155

115114113112111110109108107106105

156

104

207

208-Lead PQFP (N208) / CQFP (U208) Top View

I/O139I/O138I/O137I/O136I/O135TDII/O134I/O133I/O132I/O131I/O130GNDI/O129I/O128I/O127I/O126I/O125I/O124I/O123I/O122I/O121I/O120CLK3/I4VCCGNDVCCOGNDCLK2/I3I/O119I/O118I/O117I/O116I/O115NCI/O114I/O113I/O112I/O111I/O110

VCCO

GNDI/O109

I/O108I/O107

I/O106

I/O105I/O104I/O103I/O102

I/O101I/O100GND

I/O61

I/O62

I/O63

I/O64

TM

SI/O

65I/O

66I/O

67I/O

68I/O

69

GN

DI/O

70I/O

71I/O

72I/O

73I/O

74 NC

I/O75

I/O76

I/O77

I/O78

I/O79 I 2

VC

C0

GN

DV

CC

I/O80

I/O81

I/O82

I/O83

I/O84

I/O85

I/O86

I/O87

I/O88

I/O89

GN

DI/O

90I/O

91

GN

D

I/O92

I/O93

I/O94

GN

DT

DO

I/O95

I/O96

I/O97

I/O98

I/O99

VC

C0

I/O60

I/O21I/O22I/O23I/O24TCKI/O25I/O26I/O27I/O28I/O29GNDI/O30I/O31I/O32I/O33I/O34

NCI/O35I/O36I/O37I/O38I/O39

CLK0/I0VCCOGND

NCCLK1/I1

I/O40I/O41I/O42I/O43I/O44I/O45I/O46I/O47I/O48I/O49GNDI/O50

I/O20

I/O51I/O52I/O53I/O54

NCI/O55I/O56I/O57I/O58I/O59VCC0

GND

VC

C0

I/O19

I/O18

I/O17

I/O16

I/O15

NC

I/O14

I/O13

I/O12

I/O11

I/O10

GN

DI/O

9I/O

8I/O

7I/O

6I/O

5I/O

4I/O

3I/O

2I/O

1I/O

0V

CC

0G

ND

VC

CN

CI/O

159

I/O15

8I/O

157

I/O15

6I/O

155

NC

I/O15

1I/O

150

VC

C

GN

DI/O

149

I/O14

8I/O

147

I/O14

6I/O

145

I/O14

4I/O

143

I/O14

2I/O

141

I/O14

0N

CG

ND

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 42 of 67

Pin Configurations[19] (continued)

256-Ball PBGA (BG256)Top View

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A GND I/O21 NC I/O16 I/O12 I/O9 I/O7 I/O4 I/O0 I/O190 I/O189 I/O186 I/O182 NC I/O178 I/O175 NC NC I/O169 I/O168 A

B I/O23 I/O20 I/O19 I/O18 I/O15 I/O11 I/O8 I/O5 I/O1 I/O191 I/O187 I/O185 I/O181 NC NC I/O174 I/O171 I/O170 NC I/O166 B

C NC NC I/O22 NC I/O17 I/O14 I/O10 I/O6 I/O2 NC I/O188 I/O184 I/O180 I/O179 I/O176 I/O173 I/O172 I/O167 I/O165 I/O162 C

D I/O24 NC NC GND NC VCCO I/O13 GND I/O3 NC VCC I/O183 GND I/O177 VCCO NC GND I/O164 TDI I/O160 D

E I/O27 I/O26 I/O25 NC I/O163 I/O161 I/O159 I/O156 E

F I/O30 TCK I/O28 VCCO VCCO I/O158 NC I/O154 F

G I/O33 I/O32 I/O31 I/O29 I/O157 I/O155 I/O153 I/O152 G

H I/O35 NC I/O34 GND GND GND GND GND GND GND GND I/O151 I/O150 I/O149 H

J I/O39 I/O38 I/O37 I/O36 GND GND GND GND GND GND I/O148 I/O147 I/O146 I/O145 J

K I/O42 I/O40 I/O41 VCC GND GND GND GND GND GND I/O144 CLK3/I4 NC NC K

L I/O43 I/O44 I/O45 I/O46 GND GND GND GND GND GND VCC CLK2/I3 I/O143 NC L

M I/O47 CLK0/I0 CLK1/I1 I/O48 GND GND GND GND GND GND I/O139 I/O140 I/O141 I/O142 M

N I/O49 I/O50 I/O51 GND GND GND GND GND GND GND GND I/O136 I/O137 I/O138 N

P I/O52 I/O53 I/O55 I/O58 I/O131 I/O133 I/O134 I/O135 P

R I/O54 I/O56 I/O59 VCCO VCCO I/O130 NC I/O132 R

T I/O57 I/O60 I/O62 I/O65 I/O124 I/O127 I/O128 I/O129 T

U I/O61 I/O63 I/O66 GND I/O76 VCCO I/O82 GND I/O91 VCC I/O98 I/O102 GND I/O112 VCCO NC GND I/O123 I/O122 I/O126 U

V I/O64 I/O67 I/O69 I/O75 I/O78 I/O81 I/O85 I/O88 I/O92 I2 I/O97 I/O101 I/O105 I/O109 I/O113 TDO I/O114 I/O117 I/O121 I/O125 V

W I/O68 I/O70 I/O72 I/O74 I/O79 I/O83 I/O86 I/O89 I/O93 I/O95 I/O96 I/O100 I/O104 I/O107 I/O110 NC NC I/O115 I/O118 I/O120 W

Y I/O71 I/O73 I/O77 TMS I/O80 I/O84 I/O87 I/O90 I/O94 NC NC I/O99 I/O103 I/O106 I/O108 I/O111 NC NC I/O116 I/O119 Y

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 43 of 67

Pin Configurations[19] (continued)

256-Ball Fine-Pitch BGA (BB256)Top View

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A GND GND I/O26 I/O24 I/O20 VCC I/O11 GND GND I/O186 VCC I/O177 I/O172 I/O167 GND GND

B GND I/O27 I/O25 I/O23 I/O19 I/O15 I/O10 GND GND I/O185 I/O181 I/O176 I/O171 I/O166 I/O165 GND

C I/O29 I/O28 NC I/O22 I/O18 I/O14 I/O9 I/O4 I/O191 I/O184 I/O180 I/O175 I/O170 NC I/O163 I/O164

D I/O32 I/O31 I/O30 NC I/O17 I/O13 I/O8 I/O3 I/O190 I/O183 I/O179 I/O174 I/O169 I/O160 I/O161 I/O162

E I/O35 I/O34 I/O33 I/O21 I/O16 I/O12 I/O7 I/O2 I/O189 VCC I/O178 I/O173 I/O168 I/O157 I/O158 I/O159

F VCC I/O38 I/O37 I/O36 TCK VCC I/O6 I/O1 I/O188 I/O182 VCC TDI I/O154 I/O155 I/O156 VCC

G I/O43 I/O42 I/O41 I/O40 VCC I/O39 I/O5 I/O0 I/O187 I/O148 I/O149 CLK3 /I4

I/O150 I/O151 I/O152 I/O153

H GND GND I/O47 I/O46 CLK0 /I0

I/O45 I/O44 GND GND I/O144 I/O145 CLK2 /I3

I/O146 I/O147 GND GND

J GND GND I/O51 I/O50 NC I/O49 I/O48 GND GND I/O140 I/O141 I2 I/O142 I/O143 GND GND

K I/O57 I/O56 I/O55 I/O54 CLK1 /I1

I/O53 I/O52 I/O91 I/O96 I/O101 I/O135 VCC I/O136 I/O137 I/O138 I/O139

L VCC I/O60 I/O59 I/O58 TMS VCC I/O86 I/O92 I/O97 I/O102 VCC TDO I/O132 I/O133 I/O134 VCC

M I/O63 I/O62 I/O61 I/O72 I/O77 I/O82 VCC I/O93 I/O98 I/O103 I/O108 I/O112 I/O117 I/O129 I/O130 I/O131

N I/O66 I/O65 I/O64 I/O73 I/O78 I/O83 I/O87 I/O94 I/O99 I/O104 I/O109 I/O113 NC I/O126 I/O127 I/O128

P I/O68 I/O67 NC I/O74 I/O79 I/O84 I/O88 I/O95 I/O100 I/O105 I/O110 I/O114 I/O118 NC I/O124 I/O125

R GND I/O69 I/O70 I/O75 I/O80 I/O85 I/O89 GND GND I/O106 I/O111 I/O115 I/O119 I/O121 I/O123 GND

T GND GND I/O71 I/O76 I/O81 VCC I/O90 GND GND I/O107 VCC I/O116 I/O120 I/O122 GND GND

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 44 of 67

Pin Configurations[19] (continued)

352-Lead BGA (BG352)

Top View

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

A GND GND I/O19 I/O15 I/O13 I/O34 I/O31 I/O28 I/O25 I/O10 I/O7 I/O4 I/O1 I/O263 I/O260 I/O257 I/O254 I/O239 I/O237 I/O232 I/O229 I/O250 I/O248 I/O244 GND GND

B GND NC I/O18 I/O17 I/O14 I/O35 I/O32 I/O29 I/O26 I/O11 I/O8 I/O5 I/O2 VCC I/O261 I/O258 I/O255 I/O252 I/O234 I/O231 I/O228 I/O249 I/O246 I/O245 I/O240 GND

C I/O23 I/O38 I/O37 I/O16 I/O12 I/O33 I/O30 I/O27 I/O24 I/O9 I/O6 I/O3 I/O0 I/O262 I/O259 I/O256 I/O253 I/O238 I/O235 I/O233 I/O230 I/O251 I/O247 I/O225 I/O224 I/O227

D I/O39 I/O40 I/O36 NC NC I/O21 I/O20 VCCO VCCO NC GND GND VCCO VCCO GND GND NC VCCO VCCO I/O236 I/O243 NC NC I/O226 I/O222 I/O223

E I/O42 TCK I/O41 NC NC TDI I/O221 I/O220

F I/O45 I/O44 I/O43 I/O22 I/O242 I/O219 I/O218 I/O217

G I/O48 I/O47 I/O46 I/O63 I/O241 I/O216 I/O215 I/O214

H I/O49 I/O50 I/O51 VCCO VCCO I/O211 I/O212 I/O213

J I/O52 I/O53 I/O54 VCCO VCCO I/O208 I/O209 I/O210

K I/O55 I/O56 I/O57 NC NC I/O205 I/O206 I/O207

L I0 I/O59 I/O58 GND GND GND GND GND GND GND GND I/O204 I4 I/O197

M I/O61 I/O60 I1 GND GND GND GND GND GND GND GND I3 I/O203 I/O202

N I/O64 VCC I/O62 VCCO GND GND GND GND GND GND VCCO I/O201 I/O200 I/O199

P I/O65 I/O66 I/O67 VCCO GND GND GND GND GND GND VCCO I/O196 VCC I/O198

R I/O68 I/O69 I/O70 GND GND GND GND GND GND GND GND I/O193 I/O194 I/O195

T I/O71 I/O84 I/O85 GND GND GND GND GND GND GND GND I/O178 I/O179 I/O192

U I/O88 I/O87 I/O86 NC NC I/O177 I/O176 I/O175

V I/O91 I/O90 I/O89 VCCO VCCO I/O174 I/O173 I/O172

W I/O94 I/O93 I/O92 VCCO VCCO I/O171 I/O170 I/O169

Y I/O95 I/O72 I/O73 I/O110 I/O153 I/O190 I/O191 I/O168

AA I/O74 I/O75 I/O76 I/O111 I/O152 I/O187 I/O188 I/O189

AB I/O77 I/O78 I/O79 N/C NC I/O184 I/O185 I/O186

AC I/O81 I/O80 I/O108 N/C NC I/O112 I/O113 VCCO VCCO NC GND GND VCCO VCCO GND GND NC VCCO VCCO I/O150 I/O151 NC NC I/O155 I/O183 I/O182

AD I/O109 I/O82 I/O83 I/O117 I/O97 I/O100 I/O102 I/O105 I/O120 I/O123 I/O126 I/O129 I2 I/O133 I/O136 I/O139 I/O142 I/O157 I/O159 I/O161 I/O163 I/O166 I/O146 I/O180 I/O181 I/O154

AE GND NC I/O115 I/O116 I/O119 I/O98 I/O101 I/O103 I/O106 I/O121 I/O124 I/O127 VCC I/O130 I/O134 I/O137 I/O140 I/O143 I/O160 I/O162 I/O165 I/O144 I/O147 I/O148 NC GND

AF GND GND I/O114 I/O118 I/O96 I/O99 TMS I/O104 I/O107 I/O122 I/O125 I/O128 I/O131 I/O132 I/O135 I/O138 I/O141 I/O156 I/O158 TDO I/O164 I/O167 I/O145 I/O149 GND GND

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 45 of 67

Pin Configurations[19] (continued)

400-Ball Fine-Pitch BGA (BB400)Top View

A GND GND NC I/O17 I/O16 I/O14 I/O29 VCC I/O11 GND GND I/O257 VCC I/O239 I/O233 I/O232 I/O230 NC GND GND

B GND GND GND NC I/O15 I/O13 I/O28 VCC I/O10 GND GND I/O256 VCC I/O238 I/O231 I/O229 NC GND GND GND

C NC GND GND GND I/O20 I/O12 I/O27 VCC I/O9 GND GND I/O255 VCC I/O237 I/O228 I/O245 GND GND GND NC

D I/O44 NC GND I/O21 I/O19 I/O18 I/O26 I/O25 I/O8 GND GND I/O254 I/O235 I/O236 I/O251 I/O244 I/O243 GND NC I/O227

E I/O46 I/O43 I/O23 I/O22 NC I/O35 I/O34 I/O24 I/O7 I/O4 I/O263 I/O253 I/O234 I/O250 I/O248 NC I/O241 I/O242 I/O225 I/O226

F I/O47 I/O45 I/O42 I/O41 I/O40 NC I/O33 I/O32 I/O6 I/O3 I/O262 I/O252 I/O249 I/O247 I/O220 I/O221 I/O240 I/O222 I/O223 I/O224

G I/O53 I/O52 I/O51 I/O50 I/O39 I/O38 I/O37 I/O31 I/O5 I/O2 I/O261 VCC I/O246 I/O217 I/O218 I/O219 I/O212 I/O213 I/O214 I/O215

H VCC VCC VCC I/O49 I/O48 I/O36 TCK VCC I/O30 I/O1 I/O259 I/O260 VCC TDI I/O216 I/O210 I/O211 VCC VCC VCC

J I/O59 I/O58 I/O57 I/O56 I/O55 I/O54 VCC I/O62 I/O60 I/O0 I/O258 I/O202 I/O203 CLK3 /I4

I/O204 I/O205 I/O206 I/O207 I/O208 I/O209

K GND GND GND GND I/O65 I/O64 CLK0 /I0

I/O63 I/O61 GND GND I/O198 I/O199 CLK2 /I3

I/O200 I/O201 GND GND GND GND

L GND GND GND GND I/O69 I/O68 NC I/O67 I/O66 GND GND I/O193 I/O195 I2 I/O196 I/O197 GND GND GND GND

M I/O89 I/O88 I/O87 I/O86 I/O85 I/O84 CLK1 /I1

I/O71 I/O70 I/O126 I/O132 I/O192 I/O194 VCC I/O174 I/O175 I/O176 I/O177 I/O178 I/O179

N VCC VCC VCC I/O91 I/O90 I/O72 TMS VCC I/O128 I/O127 I/O133 I/O162 VCC TDO I/O180 I/O168 I/O169 VCC VCC VCC

P I/O95 I/O94 I/O93 I/O92 I/O75 I/O74 I/O73 I/O114 VCC I/O129 I/O134 I/O137 I/O163 I/O181 I/O182 I/O183 I/O170 I/O171 I/O172 I/O173

R I/O80 I/O79 I/O78 I/O108 I/O77 I/O76 I/O115 I/O117 I/O120 I/O130 I/O135 I/O138 I/O164 I/O165 NC I/O184 I/O185 I/O186 I/O189 I/O191

T I/O82 I/O81 I/O110 I/O109 NC I/O116 I/O118 I/O102 I/O121 I/O131 I/O136 I/O139 I/O156 I/O166 I/O167 NC I/O154 I/O155 I/O187 I/O190

U I/O83 NC GND I/O111 I/O112 I/O119 I/O104 I/O103 I/O122 GND GND I/O140 I/O157 I/O158 I/O150 I/O151 I/O153 GND NC I/O188

V NC GND GND GND I/O113 I/O96 I/O105 VCC I/O123 GND GND I/O141 VCC I/O159 I/O144 I/O152 GND GND GND NC

W GND GND GND NC I/O97 I/O99 I/O106 VCC I/O124 GND GND I/O142 VCC I/O160 I/O145 I/O147 NC GND GND GND

Y GND GND NC I/O98 I/O100 I/O101 I/O107 VCC I/O125 GND GND I/O143 VCC I/O161 I/O146 I/O148 I/O149 NC GND GND

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 46 of 67

Ordering Information

5.0V Ordering Information

Macro-cells

Speed(MHz) Ordering Code

PackageName Package Type

OperatingRange

32 200 CY37032P44-200AC A44 44-Lead Thin Quad Flat Pack Commercial

CY37032P44-200JC J67 44-Lead Plastic Leaded Chip Carrier

154 CY37032P44-154AC A44 44-Lead Thin Quad Flat Pack Commercial

CY37032P44-154JC J67 44-Lead Plastic Leaded Chip Carrier

CY37032P44-154AI A44 44-Lead Thin Quad Flat Pack Industrial

CY37032P44-154JI J67 44-Lead Plastic Leaded Chip Carrier

125 CY37032P44-125AC A44 44-Lead Thin Quad Flat Pack Commercial

CY37032P44-125JC J67 44-Lead Plastic Leaded Chip Carrier

CY37032P44-125AI A44 44-Lead Thin Quad Flat Pack Industrial

CY37032P44-125JI J67 44-Lead Plastic Leaded Chip Carrier

C Y 3 7 5 1 2 V P 4 0 0 - 8 3 B B C

Cypress Semiconductor ID

Family Type37 = Ultra37000 Family

Macrocell Density 32 = 32 Macrocells 256 = 256 Macrocells 64 = 64 Macrocells 384 = 384 Macrocells128 = 128 Macrocells 512 = 512 Macrocells192 = 192 Macrocells

Speed125 = 125 MHz

200 = 200 MHz 100 = 100 MHz167 = 167 MHz 83 = 83 MHz154 = 154 MHz 66 = 66 MHz143 = 143 MHz

Package TypeA = Thin Quad Flat Pack (TQFP)U = Ceramic Quad Flat Pack (CQFP)N = Plastic Quad Flat Pack (PQFP)NT = Thermally Enhanced Plastic Quad Flat Pack (EQFP)J = Plastic Leaded Chip Carrier (PLCC)Y = Ceramic Leaded Chip Carrier (CLCC)BG = Ball Grid Array (BGA)BA = Fine-Pitch Ball Grid Array (FBGA) 0.8mm Lead PitchBB = Fine-Pitch Ball Grid Array (FBGA) 1.0mm Lead Pitch

Operating ConditionsCommercial 0°C to +70°CIndustrial -40°C to +85°CMilitary -55°C to +125°C

Operating Reference VoltageV = 3.3V Supply Voltage(5.0V if not specified)

Pin CountP44 = 44 LeadsP48 = 48 LeadsP84 = 84 LeadsP100 = 100 LeadsP160 = 160 LeadsP208 = 208 LeadsP256 = 256 LeadsP352 = 352 LeadsP400 = 400 Leads

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 47 of 67

64 200 CY37064P44-200AC A44 44-Lead Thin Quad Flat Pack Commercial

CY37064P44-200JC J67 44-Lead Plastic Leaded Chip Carrier

CY37064P84-200JC J83 84-Lead Plastic Leaded Chip Carrier

CY37064P100-200AC A100 100-Lead Thin Quad Flat Pack

154 CY37064P44-154AC A44 44-Lead Thin Quad Flat Pack Commercial

CY37064P44-154JC J67 44-Lead Plastic Leaded Chip Carrier

CY37064P84-154JC J83 84-Lead Plastic Leaded Chip Carrier

CY37064P100-154AC A100 100-Lead Thin Quad Flat Pack

CY37064P44-154AI A44 44-Lead Thin Quad Flat Pack Industrial

CY37064P44-154JI J67 44-Lead Plastic Leaded Chip Carrier

CY37064P84-154JI J83 84-Lead Plastic Leaded Chip Carrier

CY37064P100-154AI A100 100-Lead Thin Quad Flat Pack

5962-9951902QYA Y67 44-Lead Ceramic Leadless Chip Carrier Military

125 CY37064P44-125AC A44 44-Lead Thin Quad Flat Pack Commercial

CY37064P44-125JC J67 44-Lead Plastic Leaded Chip Carrier

CY37064P84-125JC J83 84-Lead Plastic Leaded Chip Carrier

CY37064P100-125AC A100 100-Lead Thin Quad Flat Pack

CY37064P44-125AI A44 44-Lead Thin Quad Flat Pack Industrial

CY37064P44-125JI J67 44-Lead Plastic Leaded Chip Carrier

CY37064P84-125JI J83 84-Lead Plastic Leaded Chip Carrier

CY37064P100-125AI A100 100-Lead Thin Quad Flat Pack

5962-9951901QYA Y67 44-Lead Ceramic Leadless Chip Carrier Military

128 167 CY37128P84-167JC J83 84-Lead Plastic Leaded Chip Carrier Commercial

CY37128P100-167AC A100 100-Lead Thin Quad Flat Pack

CY37128P160-167AC A160 160-Lead Thin Quad Flat Pack

125 CY37128P84-125JC J83 84-Lead Plastic Leaded Chip Carrier Commercial

CY37128P100-125AC A100 100-Lead Thin Quad Flat Pack

CY37128P160-125AC A160 160-Lead Thin Quad Flat Pack

CY37128P84-125JI J83 84-Lead Plastic Leaded Chip Carrier Industrial

CY37128P100-125AI A100 100-Lead Thin Quad Flat Pack

CY37128P160-125AI A160 160-Lead Thin Quad Flat Pack

5962-9952102QYA Y84 84-Lead Ceramic Leaded Chip Carrier Military

100 CY37128P84-100JC J83 84-Lead Plastic Leaded Chip Carrier Commercial

CY37128P100-100AC A100 100-Lead Thin Quad Flat Pack

CY37128P160-100AC A160 160-Lead Thin Quad Flat Pack

CY37128P84-100JI J83 84-Lead Plastic Leaded Chip Carrier Industrial

CY37128P100-100AI A100 100-Lead Thin Quad Flat Pack

CY37128P160-100AI A160 160-Lead Thin Quad Flat Pack

5962-9952101QYA Y84 84-Lead Ceramic Leaded Chip Carrier Military

5.0V Ordering Information (continued)

Macro-cells

Speed(MHz) Ordering Code

PackageName Package Type

OperatingRange

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 48 of 67

192 154 CY37192P160-154AC A160 160-Lead Thin Quad Flat Pack Commercial

125 CY37192P160-125AC A160 160-Lead Thin Quad Flat Pack Commercial

CY37192P160-125AI A160 160-Lead Thin Quad Flat Pack Industrial

83 CY37192P160-83AC A160 160-Lead Thin Quad Flat Pack Commercial

CY37192P160-83AI A160 160-Lead Thin Quad Flat Pack Industrial

256 154 CY37256P160-154AC A160 160-Lead Thin Quad Flat Pack Commercial

CY37256P208-154NC N208 208-Lead Plastic Quad Flat Pack

CY37256P256-154BGC BG256 256-Lead Ball Grid Array

125 CY37256P160-125AC A160 160-Lead Thin Quad Flat Pack Commercial

CY37256P208-125NC N208 208-Lead Plastic Quad Flat Pack

CY37256P256-125BGC BG256 256-Lead Ball Grid Array

CY37256P160-125AI A160 160-Lead Thin Quad Flat Pack Industrial

CY37256P208-125NI N208 208-Lead Plastic Quad Flat Pack

CY37256P256-125BGI BG256 256-Lead Ball Grid Array

5962-9952302QZC U162 160-Lead Ceramic Quad Flat Pack Military

83 CY37256P160-83AC A160 160-Lead Thin Quad Flat Pack Commercial

CY37256P208-83NC N208 208-Lead Plastic Quad Flat Pack

CY37256P256-83BGC BG256 256-Lead Ball Grid Array

CY37256P160-83AI A160 160-Lead Thin Quad Flat Pack Industrial

CY37256P208-83NI N208 208-Lead Plastic Quad Flat Pack

CY37256P256-83BGI BG256 256-Lead Ball Grid Array

5962-9952301QZC U162 160-Lead Ceramic Quad Flat Pack Military

384 125 CY37384P208-125NC N208 208-Lead Plastic Quad Flat Pack Commercial

CY37384P256-125BGC BG256 256-Lead Ball Grid Array

83 CY37384P208-83NC N208 208-Lead Plastic Quad Flat Pack Commercial

CY37384P256-83BGC BG256 256-Lead Ball Grid Array

CY37384P208-83NI N208 208-Lead Plastic Quad Flat Pack Industrial

CY37384P256-83BGI BG256 256-Lead Ball Grid Array

5.0V Ordering Information (continued)

Macro-cells

Speed(MHz) Ordering Code

PackageName Package Type

OperatingRange

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 49 of 67

512 125 CY37512P208-125NC N208 208-Lead Plastic Quad Flat Pack Commercial

CY37512P256-125BGC BG256 256-Lead Ball Grid Array

CY37512P352-125BGC BG352 352-Lead Ball Grid Array

100 CY37512P208-100NC N208 208-Lead Plastic Quad Flat Pack Commercial

CY37512P256-100BGC BG256 256-Lead Ball Grid Array

CY37512P352-100BGC BG352 352-Lead Ball Grid Array

CY37512P208-100NI N208 208-Lead Plastic Quad Flat Pack Industrial

CY37512P256-100BGI BG256 256-Lead Ball Grid Array

CY37512P352-100BGI BG352 352-Lead Ball Grid Array

5962-9952502QZC U208 208-Lead Ceramic Quad Flat Pack Military

83 CY37512P208-83NC N208 208-Lead Plastic Quad Flat Pack Commercial

CY37512P256-83BGC BG256 256-Lead Ball Grid Array

CY37512P352-83BGC BG352 352-Lead Ball Grid Array

CY37512P208-83NI N208 208-Lead Plastic Quad Flat Pack Industrial

CY37512P256-83BGI BG256 256-Lead Ball Grid Array

CY37512P352-83BGI BG352 352-Lead Ball Grid Array

5962-9952501QZC U208 208-Lead Ceramic Quad Flat Pack Military

5.0V Ordering Information (continued)

Macro-cells

Speed(MHz) Ordering Code

PackageName Package Type

OperatingRange

3.3V Ordering Information

Macro-cells

Speed(MHz) Ordering Code

PackageName Package Type

OperatingRange

32 143 CY37032VP44-143AC A44 44-Lead Thin Quad Flat Pack Commercial

CY37032VP44-143JC J67 44-Lead Plastic Leaded Chip Carrier

CY37032VP48-143BAC BA50 48-Lead Fine Pitch Ball Grid Array

100 CY37032VP44-100AC A44 44-Lead Thin Quad Flat Pack Commercial

CY37032VP44-100JC J67 44-Lead Plastic Leaded Chip Carrier

CY37032VP48-100BAC BA50 48-Lead Fine Pitch Ball Grid Array

CY37032VP44-100AI A44 44-Lead Thin Quad Flat Pack Industrial

CY37032VP44-100JI J67 44-Lead Plastic Leaded Chip Carrier

CY37032VP48-100BAI BA50 48-Lead Fine Pitch Ball Grid Array

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 50 of 67

64 143 CY37064VP44-143AC A44 44-Lead Thin Quad Flatpack Commercial

CY37064VP44-143JC J67 44-Lead Plastic Leaded Chip Carrier

CY37064VP48-143BAC BA50 48-Lead Fine-Pitch Ball Grid Array

CY37064VP84-143JC J83 84-Lead Plastic Leaded Chip Carrier

CY37064VP100-143AC A100 100-Lead Thin Quad Flatpack

CY37064VP100-143BBC BB100 100-Lead Fine-Pitch Ball Grid Array

100 CY37064VP44-100AC A44 44-Lead Thin Quad Flatpack Commercial

CY37064VP44-100JC J67 44-Lead Plastic Leaded Chip Carrier

CY37064VP48-100BAC BA50 48-Lead Fine-Pitch Ball Grid Array

CY37064VP84-100JC J83 84-Lead Plastic Leaded Chip Carrier

CY37064VP100-100AC A100 100-Lead Thin Quad Flatpack

CY37064VP100-100BBC BB100 100-Lead Fine-Pitch Ball Grid Array

CY37064VP44-100AI A44 44-Lead Thin Quad Flatpack Industrial

CY37064VP44-100JI J67 44-Lead Plastic Leaded Chip Carrier

CY37064VP48-100BAI BA50 48-Lead Fine-Pitch Ball Grid Array

CY37064VP84-100JI J83 84-Lead Plastic Leaded Chip Carrier

CY37064VP100-100BBI BB100 100-Lead Fine-Pitch Ball Grid Array

CY37064VP100-100AI A100 100-Lead Thin Quad Flatpack

5962-9952001QYA Y67 44-Lead Ceramic Leaded Chip Carrier Military

128 125 CY37128VP84-125JC J83 84-Lead Plastic Leaded Chip Carrier Commercial

CY37128VP100-125AC A100 100-Lead Thin Quad Flat Pack

CY37128VP100-125BBC BB100 100-Lead Fine-Pitch Ball Grid Array

CY37128VP160-125AC A160 160-Lead Thin Quad Flat Pack

83 CY37128VP84-83JC J83 84-Lead Plastic Leaded Chip Carrier Commercial

CY37128VP100-83AC A100 100-Lead Thin Quad Flat Pack

CY37128VP100-83BBC BB100 100-Lead Fine-Pitch Ball Grid Array

CY37128VP160-83AC A160 160-Lead Thin Quad Flat Pack

CY37128VP84-83JI J83 84-Lead Plastic Leaded Chip Carrier Industrial

CY37128VP100-83AI A100 100-Lead Thin Quad Flat Pack

CY37128VP100-83BBI BB100 100-Lead Fine-Pitch Ball Grid Array

CY37128VP160-83AI A160 160-Lead Thin Quad Flat Pack

5962-9952201QYA Y84 84-Lead Ceramic Leaded Chip Carrier Military

192 100 CY37192VP160-100AC A160 160-Lead Thin Quad Flat Pack Commercial

66 CY37192VP160-66AC A160 160-Lead Thin Quad Flat Pack Commercial

CY37192VP160-66AI A160 160-Lead Thin Quad Flat Pack Industrial

3.3V Ordering Information (continued)

Macro-cells

Speed(MHz) Ordering Code

PackageName Package Type

OperatingRange

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 51 of 67

In-System Reprogrammable, ISR, Ultra37000, Warp, Warp Professional, and Warp Enterprise are trademarks of Cypress Semiconductor Corporation.ViewDraw and SpeedWave are trademarks of ViewLogic.Windows is a registered trademark of Microsoft Corporation.

256 100 CY37256VP160-100AC A160 160-Lead Thin Quad Flat Pack Commercial

CY37256VP208-100NC N208 208-Lead Plastic Quad Flat Pack

CY37256VP256-100BGC BG256 256-Lead Ball Grid Array

CY37256VP256-100BBC BB256 256-Lead Fine-Pitch Ball Grid Array

66 CY37256VP160-66AC A160 160-Lead Thin Quad Flat Pack Commercial

CY37256VP208-66NC N208 208-Lead Plastic Quad Flat Pack

CY37256VP256-66BGC BG256 256-Lead Ball Grid Array

CY37256VP256-66BBC BB256 256-Lead Fine-Pitch Ball Grid Array

CY37256VP160-66AI A160 160-Lead Thin Quad Flat Pack Industrial

CY37256VP256-66BGI BG256 256-Lead Ball Grid Array

CY37256VP256-66BBI BB256 256-Lead Fine-Pitch Ball Grid Array

5962-9952401QZC U162 160-Lead Ceramic Quad Flat Pack Military

384 83 CY37384VP208-83NC N208 208-Lead Plastic Quad Flat Pack Commercial

CY37384VP256-83BGC BG256 256-Lead Ball Grid Array

66 CY37384VP208-66NC N208 208-Lead Plastic Quad Flat Pack Commercial

CY37384VP256-66BGC BG256 256-Lead Ball Grid Array

CY37384VP208-66NI N208 208-Lead Plastic Quad Flat Pack Industrial

CY37384VP256-66BGI BG256 256-Lead Ball Grid Array

512 83 CY37512VP208-83NC N208 208-Lead Plastic Quad Flat Pack Commercial

CY37512VP256-83BGC BG256 256-Lead Ball Grid Array

CY37512VP352-83BGC BG352 352-Lead Ball Grid Array

CY37512VP400-83BBC BB400 400-Lead Fine-Pitch Ball Grid Array

66 CY37512VP208-66NC N208 208-Lead Plastic Quad Flat Pack Commercial

CY37512VP256-66BGC BG256 256-Lead Ball Grid Array

CY37512VP352-66BGC BG352 352-Lead Ball Grid Array

CY37512VP400-66BBC BB400 400-Lead Fine-Pitch Ball Grid Array

CY37512VP208-66NI N208 208-Lead Plastic Quad Flat Pack Industrial

CY37512VP256-66BGI BG256 256-Lead Ball Grid Array

CY37512VP352-66BGI BG352 352-Lead Ball Grid Array

CY37512VP400-66BBI BB400 400-Lead Fine-Pitch Ball Grid Array

5962-9952601QZC U208 208-Lead Ceramic Quad Flat Pack Military

3.3V Ordering Information (continued)

Macro-cells

Speed(MHz) Ordering Code

PackageName Package Type

OperatingRange

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 52 of 67

Package Diagrams

44-Lead Thin Plastic Quad Flat Pack A44

51-85064-B

44-Lead Plastic Leaded Chip Carrier J67

51-85003-A

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 53 of 67

Package Diagrams (continued)

44-Pin Ceramic Leaded Chip Carrier Y67

51-80014

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 54 of 67

Package Diagrams (continued)

48-Ball (7.0 mm x 7.0 mm x 1.1 mm, 0.80 pitch) Thin BGA BA50

51-85109-A

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 55 of 67

Package Diagrams (continued)

84-Lead Plastic Leaded Chip Carrier J83

51-85006-A

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 56 of 67

Package Diagrams (continued)

84-Pin Ceramic Leaded Chip Carrier Y84

51-80095-A

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 57 of 67

Package Diagrams (continued)

100-Pin Thin Plastic Quad Flat Pack (TQFP) A100

51-85048-B

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 58 of 67

Package Diagrams (continued)

100-Ball Thin Ball Grid Array (11 x 11 x 1.4 mm) BB100

51-85107

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 59 of 67

Package Diagrams (continued)

160-Pin Thin Plastic Quad Flat Pack (TQFP) A160

51-85049-A

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 60 of 67

Package Diagrams (continued)

160-Lead Ceramic Quad Flatpack (Cavity Up) U162

51-80106

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 61 of 67

Package Diagrams (continued)

208-Lead Plastic Quad Flatpack N208

51-85069-B

Ultra37000™ CPLD Family

Document #: 38-03007 Rev. ** Page 62 of 67

Package Diagrams (continued)

208-Lead Ceramic Quad Flatpack (Cavity Up) U208

51-80105

51-85097

51-85108-A

51-85103

51-85111-A

** 106272 04/18/01 SZV Change from Spec number: 38-00475 to 38-03007

4.8 MAX4131

_______________General DescriptionThe MAX4130–MAX4134 family of operational amplifierscombines 10MHz gain-bandwidth product and excellentDC accuracy with rail-to-rail operation at the inputs andoutputs. These devices require only 900µA per amplifier,and operate from either a single supply (+2.7V to +6.5V)or dual supplies (±1.35V to ±3.25V) with a common-mode voltage range that extends 250mV beyond VEEand VCC. They are capable of driving 250Ω loads andare unity-gain stable. In addition, the MAX4131/MAX4133 feature a shutdown mode in which the outputsare placed in a high-impedance state and the supplycurrent is reduced to only 25µA per amplifier.

With their rail-to-rail input common-mode range andoutput swing, the MAX4130–MAX4134 are ideal for low-voltage, single-supply operation. Although the minimumoperating voltage is specified at 2.7V, the devicestypically operate down to 1.8V. In addition, low offsetvoltage and high speed make them the ideal signal-conditioning stages for precision, low-voltage data-acquisition systems. The MAX4130 comes in thespace-saving SOT23-5 package.

________________________Applications

Battery-Powered Instruments

Portable Equipment

Data-Acquisition Systems

Signal Conditioning

Low-Power, Low-Voltage Applications

____________________________Features♦ 5-Pin SOT23-5 Package (MAX4130)

♦ +2.7V to +6.5V Single-Supply Operation

♦ Rail-to-Rail Input Common-Mode Voltage Range

♦ Rail-to-Rail Output Voltage Swing

♦ 10MHz Gain-Bandwidth Product

♦ 900µA Quiescent Current per Amplifier

♦ 25µA Shutdown Function (MAX4131/MAX4133)

♦ 200µV Offset Voltage

♦ No Phase Reversal for Overdriven Inputs

♦ Drive 250Ω Loads

♦ Stable with 160pF Capacitive Loads

♦ Unity-Gain Stable

MA

X4

13

0–M

AX

41

34

Single/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply, Rail-to-Rail I/O Op Amps

________________________________________________________________ Maxim Integrated Products 1

MAX147

MAX4131

SHDN3 1

2

4

5

6

8

7

VDD

+3V

AIN

VREF

GND

DOUTSERIAL

INTERFACE SCLK

CS

__________Typical Operating Circuit

19-1089; Rev 2; 8/97

______________Ordering Information

AMPS PERPACKAGE

MAX4130 1

MAX4131 1

PART

MAX4132 2

MAX4133 2

MAX4134 4

SHUTDOWNMODE

Yes

Yes

PIN-PACKAGE

5 SOT23-5

8 SO/µMAX

8 SO/µMAX

14 SO

14 SO

PART

MAX4130EUK

MAX4131C/D

MAX4131ESA -40°C to +85°C

0°C to +70°C

-40°C to +85°C

TEMP. RANGEPIN-

PACKAGE

5 SOT23-5

Dice*

8 SO

SOT TOP MARK

AABB

—MAX4131EUA -40°C to +85°C 8 µMAX —

____________________Selection Table

Ordering Information continued at end of data sheet.*Dice are specified at TA = +25°C, DC parameters only.

Pin Configurations appear at end of data sheet.

For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.For small orders, phone 408-737-7600 ext. 3468.

MA

X4

13

0–M

AX

41

34

Single/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply Rail-to-Rail I/O Op Amps

2 _______________________________________________________________________________________

ABSOLUTE MAXIMUM RATINGS

DC ELECTRICAL CHARACTERISTICS (VCC = +2.7V to +6.5V, VEE = 0V, VCM = 0V, VOUT = VCC / 2, RL tied to VCC / 2, SHDN ≥ 2V (or open), TA = +25°C, unless otherwise noted.)

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functionaloperation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure toabsolute maximum rating conditions for extended periods may affect device reliability.

Supply Voltage (VCC-VEE).....................................................7.5VIN+, IN-, SHDN Voltage ...................(VCC + 0.3V) to (VEE - 0.3V)Output Short-Circuit Duration (Note 1).......................Continuous

(short to either supply)Continuous Power Dissipation (TA = +70°C)

5-pin SOT23-5 (derate 7.1mW/°C above +70°C) .........571mW8-pin SO (derate 5.88mW/°C above +70°C).................471mW8-pin µMAX (derate 4.10mW/°C above +70°C) ............330mW14-pin SO (derate 8.00mW/°C above +70°C)...............640mW

Operating Temperature RangeMAX413_E__ ....................................................-40°C to +85°C

Maximum Junction Temperature .....................................+150°CStorage Temperature Range .............................-65°C to +160°CLead Temperature (soldering, 10sec) .............................+300°C

VCM = VEE to VCC

CONDITIONS

nA±1 ±12Input Offset Current

nA±50 ±150Input Bias Current

72 82

Ω0.1Output Resistance

kΩ500Differential Input Resistance

67 90

dB78 100Power-Supply Rejection Ratio

UNITSMIN TYP MAXPARAMETER

VOUT = 0.4V to 4.6V, RL = 250Ω 75 86

dBLarge-Signal Voltage Gain

VVEE - VCC +0.25 0.25

Common-Mode Input Voltage Range

Note 1: Provided that the maximum package power-dissipation rating is met.

±0.20 ±0.60

±0.35 ±1.20

±0.35 ±1.50

±0.40 ±1.50

±0.35 ±1.50

Input Offset Voltage±0.25 ±0.75

VCM = VEE to VCC mV

VCM = VEE to VCC

-1.5V < VDIFF < 1.5V

VCC = 2.7V to 6.5V

AV = 1

SHDN < 0.8V, VOUT = 0V to VCC µA±0.1 ±1Off-Leakage Current

(VEE - 0.25V) < VCM < (VCC + 0.25V)

78 98

Common-Mode Rejection Ratio

64 84

dB

66 86

74 94

68 88

VCC = 5V

VOUT = 0.4V to 2.3V, RL = 250ΩVOUT = 0.25V to 2.45V, RL = 100kΩ

VOUT = 0.25V to 4.75V, RL = 100kΩ

VCC = 2.7V92 108

94 108

MAX4130EUK

MAX4131ESA

MAX4131EUA

MAX4132ESA/MAX4133ESD

MAX4132EUA

MAX4134ESD

MAX4134ESD

MAX4132EUA

MAX4132ESA/MAX4133ESD

MAX4131EUA

MAX4131ESA

MAX4130EUK

MA

X4

13

0–M

AX

41

34

Single/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply Rail-to-Rail I/O Op Amps

_______________________________________________________________________________________ 3

DC ELECTRICAL CHARACTERISTICS (VCC = +2.7V to +6.5V, VEE = 0V, VCM = 0V, VOUT = VCC / 2, RL tied to VCC / 2, SHDN ≥ 2V (or open), TA = -40°C to +85°C, unless otherwise noted.)

DC ELECTRICAL CHARACTERISTICS (continued)(VCC = +2.7V to +6.5V, VEE = 0V, VCM = 0V, VOUT = VCC / 2, RL tied to VCC / 2, SHDN ≥ 2V (or open), TA = +25°C, unless otherwise noted.)

RL = 100kΩ

CONDITIONS

20 35

Low

V2.7 6.5Operating Supply-Voltage Range

SHDN > 0.8V, MAX4131–MAX4134

240 290

12 20

VOL - VEE 125 170

MAX4130/MAX4131

V0.8

mA50Output Short-Circuit Current

µA40 60

Shutdown Supply Current per Amplifier

UNITSMIN TYP MAXPARAMETER

VCC - VOH

VOL - VEE

VCC - VOHRL = 250Ω

VCC - VOH

VOL - VEE

VCC - VOHRL = 250Ω

RL = 100kΩ25 40

mV

280 330

15 30

VOL - VEE

Output Voltage Swing

180 230

MAX4132/MAX4133/MAX4134

High 2.0SHDN Logic Threshold MAX4131–MAX4134

VCC = 5V

MAX4131–MAX4134 µA±1 ±3SHDN Input Current

VCC = 2.7VVCM = VOUT = VCC / 2 µA

900 1050

VCC = 5V 1000 1150Supply Current per Amplifier

VCC = 2.7V 25 40

(VEE - 0.2V) < VCM <(VCC + 0.2V)

CONDITIONS

±0.75

76

VCM = VEE to VCC

VVEE - VCC +0.20 0.20

Common-Mode Input Voltage Range

mV±4.40

±3.50

±4.70

Common-Mode Rejection Ratio

±4.00

Input Offset Voltage±0.95

VCM = VEE to VCC

nA±18Input Offset Current

µV/°C±2

60

dB

58

Input Offset Voltage Tempco

MAX4132ESA/MAX4133ESD

60

62

UNITSMIN TYP MAXPARAMETER

VCM = VEE to VCC nA±160Input Bias Current

MAX4130EUK

MAX4131ESA

MAX4132ESA/MAX4133ESD

MAX4134ESD

MAX4130EUK

MAX4131ESA

MAX4131EUA

MAX4132EUA

MAX4134ESD

MAX4131EUA

MAX4132EUA

74

MA

X4

13

0–M

AX

41

34

Single/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply Rail-to-Rail I/O Op Amps

4 _______________________________________________________________________________________

DC ELECTRICAL CHARACTERISTICS (continued)(VCC = +2.7V to +6.5V, VEE = 0V, VCM = 0V, VOUT = VCC / 2, RL tied to VCC / 2, SHDN ≥ 2V (or open), TA = -40°C to +85°C, unless otherwise noted.)

AC ELECTRICAL CHARACTERISTICS(VCC = +2.7V to +6.5V, VEE = 0V, SHDN ≥ 2V (or open), TA = +25°C, unless otherwise noted.)

f = 10kHz, VOUT = 2Vp-p (AV = 1)

VCC = 0V to 3V step, VOUT = VCC / 2 µs

AV = 1, VOUT = 2V step

1

pF

Turn-On Time

3Input Capacitance

f = 1kHz pA/√Hz

f = 1kHz

0.4Input Noise Current Density

%

nV/√Hz

0.003

22Input Noise Voltage Density

CONDITIONS

AV = 1 pF160Capacitive Load Stability

Disable

EnableMAX4131–MAX4134, VCC = 3V,VOUT = VCC / 2

µs0.2

SHDN Delay

Total Harmonic Distortion

V/µs4Slew Rate

µs2.0Settling Time to 0.01%

1

MHz10Gain-Bandwidth Product

degrees62Phase Margin

dB12Gain Margin

UNITSMIN TYP MAXPARAMETER

86Large-Signal Voltage Gain

68

VOUT = 0.25V to 4.75V, RL = 100kΩVOUT = 0.4V to 4.6V, RL = 250Ω

VCC = 5V

84

dB66

VOUT = 0.25V to 2.45V, RL = 100kΩVOUT = 0.4V to 2.3V, RL = 250Ω

VCC = 2.7V

Off-Leakage Current ±12 µASHDN < 0.8V, VOUT = 0V to VCC

MAX4130/MAX4131

190VOL - VEE

25

300

MAX4132/MAX4133/MAX4134

250

Output Voltage Swing

VOL - VEE

35

350

mV

50RL = 100kΩ

RL = 250ΩVCC - VOH

VOL - VEE

VCC - VOH

40RL = 100kΩ

RL = 250ΩVCC - VOH

VOL - VEE

VCC - VOH

PARAMETER MIN TYP MAX UNITS

Shutdown Supply Current per Amplifier 70

µA

Power-Supply Rejection Ratio 74 dB

0.8V

SHDN < 0.8V, MAX4131–MAX4134

Operating Supply-Voltage Range 2.7 6.5 V

1100µAVCM = VOUT = VCC / 2

VCC = 2.7V

SHDN Input Current

Low

±3

CONDITIONS

µA

50

MAX4131—MAX4134

VCC = 2.7V to 6.5V

VCC = 2.7V

VCC = 5V

MAX4131–MAX4134

Supply Current per Amplifier

SHDN Logic Threshold

1200

2.0High

VCC = 5V

MAX4131–MAX4134

MA

X4

13

0–M

AX

41

34

Single/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply, Rail-to-Rail I/O Op Amps

_______________________________________________________________________________________ 5

60

-40100 1k 10k 1M 10M100k 100M

GAIN AND PHASE vs. FREQUENCY

-20

FREQUENCY (Hz)

GAIN

(dB)

0

20

40

PHASE

GAINAV = +1000NO LOAD

PHAS

E (D

EGRE

ES)

180

144

72

0

-72

-144

-180

-108

-36

36

108

MAX4130/34-01 60

-40100 1k 10k 1M 10M100k 100M

GAIN AND PHASE vs. FREQUENCY (WITH CLOAD)

-20

MAX4130/34-02

FREQUENCY (Hz)

GAIN

(dB)

0

20

40

PHASE

GAINAV = +1000RL = ∞CL = 160pF

PHAS

E (D

EGRE

ES)

180

144

72

0

-72

-144

-180

-108

-36

36

108

0

-100

10 100 1k 100k 1M 10M10k 100M

POWER-SUPPLY REJECTION vs. FREQUENCY

-80

MAX

4130

/34-

03

FREQUENCY (Hz)

PSR

(dB)

-60

-40

-20

AV = +1

0

10

5

15

20

25

35

30

45

40

50

-40 -25 -10 5 20 35 50 65 80 95

SHUTDOWN SUPPLY CURRENTvs. TEMPERATURE

MAX

4130

/34-

07

TEMPERATURE (°C)

SUPP

LY C

URRE

NT (µ

A)VCC = +6.5V

VCC = +2.7V

100

0.10

0.01100 1k 100k 1M 10M10k 100M

OUTPUT IMPEDANCE vs. FREQUENCY

MAX

4130

/34-

05

FREQUENCY (Hz)

OUTP

UT IM

PEDA

NCE

(Ω)

1

10

AV = +11150

800

850

900

950

1050

1000

1100

-40 -25 -10 5 20 35 50 65 80 95

SUPPLY CURRENT PER AMPLIFIERvs. TEMPERATURE

MAX

4130

/34-

06

TEMPERATURE (°C)

SUPP

LY C

URRE

NT (µ

A)

VCC = +6.5V

VCC = +2.7V

-10

-5

0

5

10

15

20

-40 -25 -10 5 20 35 50 65 80 95

OUTPUT LEAKAGE CURRENTvs. TEMPERATURE

MAX

4130

/34-

08

TEMPERATURE (°C)

LEAK

AGE

CURR

ENT

(µA)

VCC = +6.5VVOUT SHORTTO VCC VCC = +2.7V

VCC = +6.5VVOUT SHORT

TO VEE VCC = +2.7V

AV = +1SHDN = 0V

__________________________________________Typical Operating Characteristics(VCC = +5V, VEE = 0V, VCM = VCC / 2, TA = +25°C, unless otherwise noted.)

-600 1 2 3 4 5 6

INPUT BIAS CURRENTvs. COMMON-MODE VOLTAGE

MAX

4130

/34-

10

COMMON-MODE VOLTAGE (V)

INPU

T BI

AS C

URRE

NT (n

A)

-50

-40

-30

-20

-10

0

10

20

30

40VCC = +2.7V

VCC = +6.5V

-60

-40

-40 -25 -10 5 20 35 50 65 80 95

INPUT BIAS CURRENTvs. TEMPERATURE

MAX

4130

/34-

11

TEMPERATURE (°C)

INPU

T BI

AS C

URRE

NT (n

A)

-20

0

20

40

60

VCC = +6.5V, VCM = VCC

VCC = +2.7V, VCM = VEE

VCC = +2.7V, VCM = VCC

VCC = +6.5V, VCM = VEE

MA

X4

13

0–M

AX

41

34

Single/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply, Rail-to-Rail I/O Op Amps

6 _______________________________________________________________________________________

120

70

75

0 600

110

115

OUTPUT VOLTAGE: EITHER SUPPLY (mV)

GAIN

(dB)

300

95

85

90

80

100 200 500

105

100

400

MAX

4130

/34-

19

LARGE-SIGNAL GAINvs. OUTPUT VOLTAGE

RL = 500Ω

RL = 100kΩ

RL = 10kΩ

RL = 2kΩ

VCC = +6.5VRL TO VCC

130

-40 -25 -10 5 20 35 50 65 80 95

LARGE-SIGNAL GAINvs. TEMPERATURE

90

120

MAX

4130

/34-

20

TEMPERATURE (°C)

GAIN

(dB) 110

100

80

95

125

115

105

VCC = +6.5V, RL TO VCC OR VEE

VCC = +2.7V, RL TO VCC OR VEE

RL = 100kΩVOUT(p-p) = VCC - 0.6V

1.2

1.3

1.5

1.4

1.6

1.7

1.8

1.9

-40 -25 -10 5 20 35 50 65 80 95

MINIMUM OPERATING VOLTAGEvs. TEMPERATURE

MAX

4130

/34-

21

TEMPERATURE (°C)

MIN

IMUM

OPE

RATI

NG V

OLTA

GE (V

)

____________________________ Typical Operating Characteristics (continued)(VCC = +5V, VEE = 0V, VCM = VCC / 2, TA = +25°C, unless otherwise noted.)

120

80

85

90

95

100

105

110

115

-40 -25 -10 5 20 35 50 65 80 95

COMMON-MODE REJECTIONvs. TEMPERATURE

MAX

4130

/34-

12

TEMPERATURE (°C)

COM

MON

-MOD

E RE

JECT

ION

(dB)

VCM = 0V TO 5.0V

VCM = 0.2V TO 5.2V

VCM = 0.3V TO 5.3V

130

700 600

120

OUTPUT VOLTAGE: EITHER SUPPLY (mV)

GAIN

(dB)

300

100

90

80

100 200 500

110

400

MAX

4130

/34-

16

LARGE-SIGNAL GAINvs. OUTPUT VOLTAGE

VCC = +6.5VRL TO VEE

RL = 500Ω

RL = 100kΩ

RL = 10kΩ

RL = 2kΩ

120

600 600

110

OUTPUT VOLTAGE: EITHER SUPPLY (mV)

GAIN

(dB)

300

90

80

70

100 200 500

100

400

MAX

4130

/34-

15

LARGE-SIGNAL GAINvs. OUTPUT VOLTAGE

VCC = +2.7VRL TO VEE

RL = 500ΩRL = 100kΩ

RL = 10kΩ

RL = 2kΩ

120

80-40 -25 -10 5 20 35 50 65 80 95

LARGE-SIGNAL GAINvs. TEMPERATURE

90

MAX

4130

/34-

17

TEMPERATURE (°C)

GAIN

(dB) 105

85

95

115

110

100 VCC = +2.7V,RL TO VEE

VCC = +6.5V, RL TO VCC

VCC = +2.7V, RL TO VCC

VOUT(p-p) = VCC -1VRL = 500Ω

VCC = +6.5V, RL TO VEE

120

70

75

0 600

110

115

OUTPUT VOLTAGE: EITHER SUPPLY (mV)

GAIN

(dB)

300

95

85

90

80

100 200 500

105

100

400

MAX

4130

/34-

18

LARGE-SIGNAL GAINvs. OUTPUT VOLTAGE

RL = 500Ω

RL = 100kΩ

RL = 10kΩ

RL = 2kΩ

VCC = +2.7VRL TO VCC

-3.00

-2.25

-0.75

-1.50

0

1.50

0.75

2.25

3.00

-40 -25 -10 5 20 35 50 65 80 95

INPUT OFFSET VOLTAGEvs. TEMPERATURE

MAX

4130

/34-

09

TEMPERATURE (°C)

VOLT

AGE

(mV)

SOT23-5PACKAGE

SO PACKAGE

MA

X4

13

0–M

AX

41

34

Single/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply, Rail-to-Rail I/O Op Amps

_______________________________________________________________________________________ 7

140

8010k1k 100k 10M1M

CHANNEL SEPARATIONvs. FREQUENCY

MAX

4130

/34-

25a

FREQUENCY (Hz)

CHAN

NEL

SEPA

RATI

ON (d

B)

100

90

130

110

120

VS = +5V

10 100k10kFREQUENCY (Hz)

100 1k

0.030

0

0.005

0.010

0.015

0.020

0.025

TOTAL HARMONIC DISTORTION AND NOISE vs. FREQUENCY

MAX

4130

/34-

22A

THD

AND

NOIS

E (%

)

2Vp-p SIGNAL500kHz LOWPASS FILTERRL = 10kΩ TO VCC / 2

0.1

0.0014.0 4.44.2 5.04.84.6

TOTAL HARMONIC DISTORTION AND NOISEvs. PEAK-TO-PEAK SIGNAL AMPLITUDE

MAX

4130

/34-

23

PEAK-TO-PEAK SIGNAL AMPLITUDE (V)

THD

+ NO

ISE

(%)

0.01

RL = 100kΩ

RL = 10kΩRL = 2kΩ

RL = 250Ω

AV = +110kHz SINE WAVERL TO VCC / 2500kHz LOWPASS FILTER IN

TIME (200ns/div)

VOLT

AGE

(50m

V/di

v)

OUT

MAX4131SMALL-SIGNAL TRANSIENTRESPONSE (NONINVERTING)

MAX

4130

/34-

24

AV = +1

IN

TIME (200ns/div)

VOLT

AGE

(50m

V/di

v)

OUT

MAX4131SMALL-SIGNAL TRANSIENT

RESPONSE (INVERTING)

MAX

4130

/34-

25

AV = -1

IN

TIME (2µs/div)

VOLT

AGE

(2V/

div)

OUT

MAX4131LARGE-SIGNAL TRANSIENTRESPONSE (NONINVERTING)

MAX

4130

/34-

26

AV = +1

IN

TIME (2µs/div)

VOLT

AGE

(2V/

div)

OUT

MAX4131LARGE-SIGNAL TRANSIENT

RESPONSE (INVERTING)

MAX

4130

/34-

27

AV = -1

____________________________Typical Operating Characteristics (continued)(VCC = +5V, VEE = 0V, VCM = VCC / 2, TA = +25°C, unless otherwise noted.)

160

0-40 -25 -10 5 20 35 50 65 80 95

MINIMUM OUTPUT VOLTAGEvs. TEMPERATURE

20

140

120

MAX

4130

/34-

13

TEMPERATURE (°C)

V OUT

- V E

E (m

V)

100

80

60

40

RL TO VCC

VCC = +6.5V, RL = 500Ω

VCC = +2.7V, RL = 100kΩ

VCC = +2.7V, RL = 500Ω

VCC = +6.5V, RL = 100kΩ

0

50

100

150

200

250

300

-40 -25 -10 5 20 35 50 65 80 95

MAXIMUM OUTPUT VOLTAGEvs. TEMPERATURE

MAX

4130

/34-

14

TEMPERATURE (°C)

V CC

- VOU

T (m

V)

RL TO VEE VCC = +6.5V, RL = 500Ω

VCC = +2.7V, RL = 100kΩ (BOTTOM)

VCC = +2.7V, RL = 500Ω

VCC = +6.5V, RL = 100kΩ (TOP)

MA

X4

13

0–M

AX

41

34

Single/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply, Rail-to-Rail I/O Op Amps

8 _______________________________________________________________________________________

______________________________________________________________Pin Description

Inverting Inputs for amps 1 and 2IN1-, IN2-—

Noninverting Inputs for amps 1 and 2IN1+, IN2+—

Shutdown Control, independent for amps 1and 2. Tie high or leave floating to enableamplifier.

SHDN1,SHDN2

Outputs for amps 3 and 4OUT3,OUT4

Inverting Inputs for amps 3 and 4IN3-, IN4-—

Positive SupplyVCC5

No Connect. Not internally connected.N.C.—

Shutdown Control. Tie high or leave floatingto enable amplifier.SHDN—

Outputs for amps 1 and 2OUT1,OUT2

Inverting InputIN-4

Noninverting Input IN+3

MAX4130

Negative Supply. Ground for single-supplyoperation.

VEE2

OutputOUT1

FUNCTIONNAME

7

1, 5

8

2

3

MAX4131

4

6

2, 6

3, 5

8

1, 7

MAX4132

4

2, 12

3, 11

6, 9

14

5, 7, 8, 10

1, 13

MAX4133

4

2, 6

3, 5

8, 14

9, 13

4

1, 7

MAX4134

11

Noninverting Inputs for amps 3 and 4IN3+, IN4+— — — — 10, 12

R3

R3 = R1 R2

R1 R2

MAX4130MAX4131MAX4132MAX4133MAX4134

Figure 1a. Reducing Offset Error Due to Bias Current(Noninverting)

R3

R3 = R1 R2

R1 R2

MAX4130MAX4131MAX4132MAX4133MAX4134

Figure 1b. Reducing Offset Error Due to Bias Current(Inverting)

MA

X4

13

0–M

AX

41

34

Single/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply, Rail-to-Rail I/O Op Amps

_______________________________________________________________________________________ 9

__________Applications InformationRail-to-Rail Input Stage

Devices in the MAX4130–MAX4134 family of high-speed amplifiers have rail-to-rail input and outputstages designed for low-voltage, single-supply opera-tion. The input stage consists of separate NPN andPNP differential stages that combine to provide aninput common-mode range that extends 0.2V beyondthe supply rails. The PNP stage is active for input volt-ages close to the negative rail, and the NPN stage isactive for input voltages near the positive rail. The inputoffset voltage is typically below 200µV. The switchovertransition region, which occurs near VCC / 2, has beenextended to minimize the slight degradation in com-mon-mode rejection ratio caused by the mismatch ofthe input pairs. Their low offset voltage, high band-width, and rail-to-rail common-mode range make theseop amps excellent choices for precision, low-voltagedata-acquisition systems.

Since the input stage switches between the NPN andPNP pairs, the input bias current changes polarity asthe input voltage passes through the transition region.

Reduce the offset error caused by input bias currentsflowing through external source impedances by match-ing the effective impedance seen by each input(Figures 1a, 1b). High source impedances, togetherwith input capacitance, can create a parasitic pole thatproduces an underdamped signal response. Reducingthe input impedance or placing a small (2pF to 10pF)capacitor across the feedback resistor improvesresponse.

The MAX4130–MAX4134’s inputs are protected fromlarge differential input voltages by 1kΩ series resistorsand back-to-back triple diodes across the inputs(Figure 2). For differential input voltages less than 1.8V,input resistance is typically 500kΩ. For differential inputvoltages greater than 1.8V, input resistance is approxi-mately 2kΩ. The input bias current is given by the fol-lowing equation:

I = V - 1.8V

2kBIASDIFF

Ω

1k

1k

Figure 2. Input Protection Circuit

MA

X4

13

0–M

AX

41

34

Single/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply, Rail-to-Rail I/O Op Amps

10 ______________________________________________________________________________________

Rail-to-Rail Output StageThe minimum output voltage is within millivolts ofground for single-supply operation where the load isreferenced to ground (VEE). Figure 3 shows the inputvoltage range and output voltage swing of a MAX4131connected as a voltage follower. With a +3V supplyand the load tied to ground, the output swings from0.00V to 2.90V. The maximum output voltage swingdepends on the load, but will be within 150mV of a +3Vsupply, even with the maximum load (500Ω to ground).

Driving a capacitive load can cause instability in mosthigh-speed op amps, especially those with low quies-cent current. The MAX4130–MAX4134 have a high tol-erance for capacitive loads. They are stable withcapacitive loads up to 160pF. Figure 4 gives the stableoperating region for capacitive loads. Figures 5 and 6show the response with capacitive loads and theresults of adding an isolation resistor in series with theoutput (Figure 7). The resistor improves the circuit’sphase margin by isolating the load capacitor from theop amp’s output.

IN

TIME (1µs/div)

VOLT

AGE

(1V/

div)

OUT

VCC = 3V, RL = 10kΩ to VEE

Figure 3. Rail-to-Rail Input/Output Voltage Range

500

0

50

100

150

200

300

350

400

450

0.1 1 10010LOAD RESISTANCE (kΩ)

LOAD

CAP

ACIT

ANCE

(pF)

250

UNSTABLE OPERATING

REGION

STABLE OPERATING

REGIONRL to VEEVOUT = VCC/2

Figure 4. Capacitive-Load Stability

IN

TIME (200ns/div)

VOLT

AGE

(50m

V/di

v)

OUT

VCC = 5VRL = 10kΩ CL = 130pF

Figure 5. MAX4131 Small-Signal Transient Response withCapacitive Load

Figure 6. MAX4131 Transient Response to Capacitive Loadwith Isolation Resistor

IN

TIME (500ns/div)

VOLT

AGE

(50m

V/di

v)

OUT

VCC = 5VCL = 1000pF RS = 39Ω

MA

X4

13

0–M

AX

41

34

Single/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply, Rail-to-Rail I/O Op Amps

______________________________________________________________________________________ 11

Power-Up and Shutdown ModeThe MAX4130–MAX4134 amplifiers typically settle with-in 1µs after power-up. Figures 9 and 10 show the out-put voltage and supply current on power-up, using thetest circuit of Figure 8.

The MAX4131 and MAX4133 have a shutdown option.When the shutdown pin (SHDN) is pulled low, the sup-ply current drops below 25µA per amplifier and the

amplifiers are disabled with the outputs in a high-impedance state. Pulling SHDN high or leaving it float-ing enables the amplif ier. In the dual-amplif ierMAX4133, the shutdown functions operate indepen-dently. Figures 11 and 12 show the output voltage andsupply current responses of the MAX4131 to a shut-down pulse, using the test circuit of Figure 8.

RS

CL

Figure 7. Capacitive-Load Driving Circuit

SHDN

OUT

0V TO 2.7V STEP FOR SHUTDOWN TEST

0V TO 2.7V STEP FOR POWER-UPTEST; 2.7V FOR

SHUTDOWN ENABLE TEST.

SUPPLY-CURRENTMONITORING POINT

VCC

*0.1µF

10Ω2k

*FOR SHUTDOWN TEST ONLY.

10k

2k

Figure 8. Power-Up/Shutdown Test Circuit

VCC

TIME (5µs/div)

VOLT

AGE

(1V/

div)

OUT

Figure 9. Power-Up Output Voltage

VCC(1V/div)

TIME (5µs/div)

IEE(500µA/div)

Figure 10. Power-Up Supply Current

MA

X4

13

0–M

AX

41

34

Single/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply, Rail-to-Rail I/O Op Amps

12 ______________________________________________________________________________________

Power Supplies and LayoutThe MAX4130–MAX4134 operate from a single +2.7Vto +6.5V power supply, or from dual supplies of ±1.35Vto ±3.25V. For single-supply operation, bypass thepower supply with a 0.1µF ceramic capacitor in parallelwith at least 1µF. For dual supplies, bypass each sup-ply to ground.

Good layout improves performance by decreasing theamount of stray capacitance at the op amp’s inputsand outputs. Decrease stray capacitance by placingexternal components close to the op amp’s pins, mini-mizing trace lengths and resistor leads.

SHDN

TIME (1µs/div)

VOLT

AGE

(1V/

div)

OUT

Figure 11. Shutdown Output Voltage

SHDN1V/div

TIME (1µs/div)

SUPPLYCURRENT500µA/div

Figure 12. Shutdown Enable/Disable Supply Current

MA

X4

13

0–M

AX

41

34

Single/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply, Rail-to-Rail I/O Op Amps

______________________________________________________________________________________ 13

__________________________________________________________Pin Configurations

VEE

IN-IN+

1 5 VCCOUT

MAX4130

SOT23-5

TOP VIEW

2

3 4

14

13

12

11

10

9

8

1

2

3

4

5

6

7

VCC

OUT2

IN2-

IN2+VEE

IN1+

IN1-

OUT1

MAX4133

N.C.

SHDN2

N.C.N.C.

SHDN1

N.C.

SO

14

13

12

11

10

9

8

1

2

3

4

5

6

7

OUT4

IN4-

IN4+

VEEVCC

IN1+

IN1-

OUT1

MAX4134

IN3+

IN3-

OUT3OUT2

IN2-

IN2+

SO

IN2-IN1+

IN2+VEE

1

2

8

7

VCC

OUT2IN1-

OUT1

MAX4132

SO/µMAX

3

4

6

5

OUTIN1+

N.C.VEE

1

2

8

7

SHDN

VCCIN1-

N.C.

MAX4131

SO/µMAX

3

4

6

5

MA

X4

13

0–M

AX

41

34

Single/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply, Rail-to-Rail I/O Op Amps

14 ______________________________________________________________________________________

__________________________________________________________Chip Topographies

___________________Chip Information_Ordering Information (continued)

SHDN

VCC

0.055"(1.397mm)

0.036"(0.914mm)

OUT

VEE IN-

iN+

VEE

TRANSISTOR COUNT: 170

SUBSTRATE CONNECTED TO VEE

OUT2

IN2-

IN2+

0.066"(1.676mm)

0.053"(1.346mm)

VCC SHDN1SHDN2

VEE VCC

OUT1 VCC

IN1-

IN1+

VEE

TRANSISTOR COUNT: 340

SUBSTRATE CONNECTED TO VEE

MAX4131 MAX4133

MAX4130 TRANSISTOR COUNT: 170

MAX4132 TRANSISTOR COUNT: 340

MAX4134 TRANSISTOR COUNT: 680

PART

MAX4132ESA

MAX4132EUA

MAX4133C/D 0°C to +70°C

-40°C to +85°C

-40°C to +85°C

TEMP. RANGEPIN-

PACKAGE

8 SO

8 µMAX

Dice*

SOT TOP MARK

—MAX4133ESD -40°C to +85°C 14 SO —

*Dice are specified at TA = +25°C, DC parameters only.

MAX4134ESD -40°C to +85°C 14 SO —

MA

X4

13

0–M

AX

41

34

Single/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply, Rail-to-Rail I/O Op Amps

______________________________________________________________________________________ 15

________________________________________________________Package Information

L

DIM

AA1A2bCDE

E1Le

e1α

MIN0.900.000.900.350.082.802.601.500.35

MAX1.450.151.300.500.203.003.001.750.55

10°

MILLIMETERS

α

5-PIN SOT23-5SMALL-OUTLINE

TRANSISTOR PACKAGE

De1

A A2

A1

C

b e

E1

21-0057B

E

0.95ref1.90ref

L

αC

A1B

DIM

AA1BCDEeHLα

MIN0.0360.0040.0100.0050.1160.116

0.1880.016

MAX0.0440.0080.0140.0070.1200.120

0.1980.026

MIN0.910.100.250.132.952.95

4.780.410°

MAX1.110.200.360.183.053.05

5.030.666°

INCHES MILLIMETERS

8-PIN µMAXMICROMAX SMALL-OUTLINE

PACKAGE

0.650.0256

A

e

E H

D

0.101mm0.004 in

21-0036D

MA

X4

13

0–M

AX

41

34

Single/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply, Rail-to-Rail I/O Op Amps___________________________________________Package Information (continued)

DIM

AA1BCEeHL

MIN0.0530.0040.0140.0070.150

0.2280.016

MAX0.0690.0100.0190.0100.157

0.2440.050

MIN1.350.100.350.193.80

5.800.40

MAX1.750.250.490.254.00

6.201.27

INCHES MILLIMETERS

21-0041A

Narrow SOSMALL-OUTLINE

PACKAGE(0.150 in.)

DIM

DDD

MIN0.1890.3370.386

MAX0.1970.3440.394

MIN4.808.559.80

MAX5.008.75

10.00

INCHES MILLIMETERSPINS

81416

1.270.050

L

0°-8°

HE

D

e

A

A1 C

0.101mm0.004in.

B

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses areimplied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

16 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 1997 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.

4.9 MAX427

4.10 MAX547

For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800

MA

X5

47

Octal, 13-Bit Voltage-Output DAC with Parallel Interface

________________________________________________________________ Maxim Integrated Products 1

441234 404142435

21 24 2625 27 2822 2319 20

8

9

10

11

12

13

14

15

16

17 29

30

31

32

33

34

35

36

37

38

A1

D11

VOUT

D

V SS

REFC

D

AGND

CD

AGND

EF

REFE

F

V SS

VOUT

E

VOUT

F

D12 D9D10 D7D8 D5D6 D3D4

VOUTH

VDD

REFGH

AGNDGH

GND

LDGH

LDEF

D0

D1

D2

A2

WR

CS

LDCD

LDAB

AGNDAB

REFAB

VDD

VOUTA

7 39 VOUTGVOUTB

6

18

VOUT

CA0

CLR

MAX547

PLCC

TOP VIEW

VOUTHVDDREFGHAGNDGHGND

D0D1D2

VOUTG

LDEFLDGH

VOUTAVDD

REFABAGNDAB

LDAB

WRA2A1

VOUTB

CSLDCD

VOUT

DV S

S

AGND

EF

REFC

DAG

NDCD

CLR

VOUT

C

REFE

FV S

S

VOUT

FVO

UTE

D12

D11

D7D10

D9 D8A0 D6 D5 D3D4

PLASTIC FP

2221201918171615141312

23

2425

2627

2829

30

31

32

33

3435363738394041424344

1110

98

76

5

4

3

21

MAX547

19-0257; Rev 3; 12/95

_________________General DescriptionThe MAX547 contains eight 13-bit, voltage-output digital-to-analog converters (DACs). On-chip precision output ampli-fiers provide the voltage outputs. The MAX547 operatesfrom a ±5V supply. Bipolar output voltages with up to ±4.5Vvoltage swing can be achieved with no external compo-nents. The MAX547 has four separate reference inputs;each is connected to two DACs, providing different full-scale output voltages for every DAC pair.

The MAX547 features double-buffered interface logic with a13-bit parallel data bus. Each DAC has an input latch and aDAC latch. Data in the DAC latch sets the output voltage. Theeight input latches are addressed with three address lines.Data is loaded to the input latch with a single write instruction.An asynchronous load (–L—D—_–) input transfers data from theinput latch to the DAC latch. The four –L—D—_– inputs each controltwo DACs, and all DAC latches can be updated simultane-ously by asserting all –L—D—_– pins. An asynchronous clear (–C—L—R–)input resets the output of all eight DACs to AGND_. Asserting–C—L—R– resets both the DAC and the input latch to bipolar zero(1000hex). On power-up, reset circuitry performs the samefunction as –C—L—R–. All logic inputs are TTL/CMOS compatible.

The MAX547 is available in 44-pin plastic quad flat packand 44-pin PLCC packages.________________________Applications

Automatic Test EquipmentMinimum Component-Count Analog SystemsDigital Offset/Gain AdjustmentArbitrary Function GeneratorsIndustrial Process ControlsAvionics Equipment

_____________________________Features♦ Full 13-Bit Performance without Adjustments♦ 8 DACs in One Package♦ Buffered Voltage Outputs♦ Calibrated Linearity♦ Guaranteed Monotonic to 13 Bits♦ ±5V Supply Operation♦ Unipolar or Bipolar Outputs Swing to ±4.5V♦ Fast Output Settling (5µs to ±1⁄2LSB)♦ Double-Buffered Digital Inputs♦ Asynchronous Load Inputs Load Pairs of DAC Latches♦ Asynchronous

–C—L—R–

Input Resets DACs to AnalogGround

♦ Power-On Reset Circuit Resets DACs to Analog Ground♦ Microprocessor and TTL/CMOS Compatible

________________Ordering Information

Ordering Information continued at end of data sheet.*Contact factory for dice specifications.

MAX547ACQH

MAX547BCQH

MAX547ACMH 0°C to +70°C

0°C to +70°C

0°C to +70°C 44 PLCC

44 PLCC

44 Plastic FPMAX547BCMH 0°C to +70°C 44 Plastic FPMAX547BC/D 0°C to +70°C Dice*

_______________________________________________________________Pin Configurations

±2

±4

±2±4±4

PART TEMP. RANGE PIN-PACKAGEINL

(LSBs)

MA

X5

47

Octal, 13-Bit Voltage-OutputDAC with Parallel Interface

2 _______________________________________________________________________________________

ABSOLUTE MAXIMUM RATINGS

ELECTRICAL CHARACTERISTICS(VDD = +5V, VSS = -5V, REF_ = 4.096V, AGND_ = GND = 0V, RL = 10kΩ, CL = 50pF, TA = TMIN to TMAX, unless otherwise noted.Typical values are at TA = +25°C.)

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress rat-ings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections ofthe specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

VDD to GND ..............................................................-0.3V to +6VVSS to GND...............................................................-6V to +0.3VDigital Input Voltage to GND ......................-0.3V to (VDD + 0.3V)REF_ ..........................................(AGND_ - 0.3V) to (VDD + 0.3V)AGND_ .............................................(VSS - 0.3V) to (VDD + 0.3V)VOUT_ ........................................................................VDD to VSSMaximum Current into REF_ Pin .......................................±10mAMaximum Current into Any Other Signal Pin ....................±50mA

Continuous Power Dissipation (TA = +70°C)PLCC (derate 13.33mW/°C above +70°C)...................1067mWPlastic FP (derate 11.11mW/°C above +70°C )..............889mW

Operating Temperature RangesMAX547–C–H.........................................................0°C to +70°CMAX547–E–H......................................................-40°C to +85°C

Storage Temperature Range .............................-65°C to +150°CLead Temperature (soldering, 10sec) .............................+300°C

CONDITIONS

nV-s5Digital Crosstalk

nV-s5Digital Feedthrough

µs5Output Settling Time

V/µs3Voltage-Output Slew Rate

kΩ5RREFReference Input Resistance

VAGND– VDDREFReference Input Range

%/%±0.0025

PSRRPower-Supply Rejection Ratio±0.0025

Bits13NResolution

LSBBipolar Zero-Code Error ±5 ±20

±0.5 ±2LSB

±0.5 ±4INLRelative Accuracy

LSB±1DNLDifferential Nonlinearity

UNITSMIN TYP MAXSYMBOLPARAMETER

To ±1⁄2 LSB of full scale (Note 4)

Each REF– pin (Note 3)

(Notes 2, 3)

MAX547A

MAX547B

∆Gain/∆VSS (Note 1)

Guaranteed monotonic

∆Gain/∆VDD (Note 1)

LSB0.3Load Regulation RL = ∞ to 10kΩ

LSBGain Error ±1 ±8

STATIC PERFORMANCE—ANALOG SECTION

VVSS + 0.5Minimum Output Voltage

VVDD - 0.5Maximum Output Voltage

pF10CINInput Capacitance

µA1.0IINInput Current

V0.8VILInput Voltage Low

V2.4VIHInput Voltage High

(Note 5)

VIN = 0V or VDD

ANALOG OUTPUT

REFERENCE INPUT (Note 2)

DYNAMIC PERFORMANCE—ANALOG SECTION

DIGITAL INPUTS (VDD = 5V ±5%)

MA

X5

47

Octal, 13-Bit Voltage-OutputDAC with Parallel Interface

_______________________________________________________________________________________ 3

Note 1: PSRR is tested by changing the respective supply voltage by ±5%.Note 2: For best performance, REF_ should be greater than AGND_ + 2V and less than VDD - 0.6V. The device operates with

reference inputs outside this range, but performance may degrade. For further information on the reference, see the Reference and Analog-Ground Inputs section in the Detailed Description.

Note 3: Reference input resistance is code dependent. See Reference and Analog-Ground Inputs section in the DetailedDescription.

Note 4: Typical settling time with 1000pF capacitive load is 10µs.Note 5: Guaranteed by design. Not production tested.Note 6: Guaranteed by supply-rejection test.

TIMING CHARACTERISTICS(VDD = +5V, VSS = -5V, REF_ = 4.096V, AGND_ = GND = 0V, TA = TMIN to TMAX, unless otherwise noted.)

14 44

11 40TA = TMIN to TMAX mAISSNegative Supply Current

CONDITIONS

mAIDDPositive Supply Current

V-5.25 -4.75VSSNegative Supply Range

V4.75 5.25VDDPositive Supply Range

UNITSMIN TYP MAXSYMBOLPARAMETER

(Note 6)

(Note 6)

CONDITIONS

ns0t6–C—S– High to –W—R– High

ns0t5–C—S– Low to –W—R– Low

ns100t4–C—L—R– Pulse Width Low

ns50t3–L—D—–– Pulse Width Low

ns50t2–W—R– Pulse Width Low

ns50t1–C—S– Pulse Width Low

UNITSMIN TYP MAXSYMBOLPARAMETER

ns50t7Data Valid to –W—R– Setup

ns0t8Data Valid to –W—R– Hold

ns10t9Address Valid to –W—R– Setup

ns0t10Address Valid to –W—R– Hold

ELECTRICAL CHARACTERISTICS (continued)(VDD = +5V, VSS = -5V, REF_ = 4.096V, AGND_ = GND = 0V, RL = 10kΩ, CL = 50pF, TA = TMIN to TMAX, unless otherwise noted.Typical values are at TA = +25°C.)

TA = TMIN to TMAX

POWER SUPPLIES

MA

X5

47

Octal, 13-Bit Voltage-OutputDAC with Parallel Interface

4 _______________________________________________________________________________________

__________________________________________Typical Operating Characteristics(VDD = 5V, VSS = -5V, REF_ = 4.096V, AGND_ = GND = 0V, TA = +25°C, unless otherwise noted.)

-36

-30

-24

-18

-12

-6

0

6

0.1 1 10 100 1000 10,000

REFERENCE INPUT SMALL-SIGNAL FREQUENCY RESPONSE

MAX

547-

Fg T

OC-1

FREQUENCY (kHz)

RELA

TIVE

OUT

PUT

(dB) SINE WAVE AT REF–

2V ±100mV CODE ALL 1s

-20

-15

-10

-5

0

5

10

15

20

-60 -40 -20 0 20 40 60 80 100 120 140

SUPPLY CURRENT vs. TEMPERATURE

MAX

547-

Fg T

OC-2

TEMPERATURE (°C)

SUPP

LY C

URRE

NT (m

A) IDD

ISS

0

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0.090

0.100

1 10 100 1000

TOTAL HARMONIC DISTORTION + NOISE AT DAC OUTPUT

vs. REFERENCE FREQUENCYM

AX54

7-Fg

TOC

-3

FREQUENCY (kHz)

THD

+ NO

ISE

(%)

REF– = 4Vp-p INPUT CODE = ALL 1s

0

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0.090

0.100

1 10 100 1000

TOTAL HARMONIC DISTORTION + NOISE AT DAC OUTPUT

vs. REFERENCE FREQUENCY

MAX

547-

Fg T

OC-4

FREQUENCY (kHz)

THD

+ NO

ISE

(%)

REF– = 2Vp-p INPUT CODE = ALL 1s

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

0.1 1 10 100 1000

REFERENCE FEEDTHROUGHM

AX54

7-Fg

TOC

-7

FREQUENCY (kHz)

RELA

TIVE

OUT

PUT

(dB)

SINE WAVE AT REF_ 2V ±2V

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0

1024

2048

3072

4096

5120

6144

7168

8191

RELATIVE ACCURACY vs. DIGITAL INPUT CODE

MAX

547-

Fg T

OC-5

DIGITAL INPUT CODE (DECIMAL)

RELA

TIVE

ACC

URAC

Y (L

SB)

-22

-18

-14

-10

-6

-2

02

0.1 1 10 100 1000 10,000

REFERENCE INPUT LARGE-SIGNAL FREQUENCY RESPONSE

MAX

547-

Fg T

OC-6

FREQUENCY (kHz)

RELA

TIVE

OUT

PUT

(dB) SINE WAVE AT REF_

2V ±2V CODE ALL 1s

1

10

100

1000

0.01 0.1 1 10 100

SETTLING TIME vs. LOAD CAPACITANCE

MAX

547-

Fg T

OC-9

LOAD CAPACITANCE (nF)

SETT

LING

TIM

E (µ

s)

-2

-1

0

1

2

3

0 1 2 3 4 5

RELATIVE ACCURACY vs. REFERENCE VOLTAGE

MAX

547-

Fg T

OC-1

1

REFERENCE VOLTAGE (V)

RELA

TIVE

ACC

URAC

Y (L

SB)

-2.0

-1.5

-1.0

-0.5

0

0.5

1.0

1.5

2.0

1 10 100 1000

FULL-SCALE ERROR vs. LOAD RESISTANCE

MAX

547-

Fg T

OC-8

LOAD RESISTANCE (kΩ)ER

ROR

(LSB

)

NEGATIVE FULL-SCALE

POSITIVE FULL-SCALE

REF_ = 4.096V

MA

X5

47

Octal, 13-Bit Voltage-OutputDAC with Parallel Interface

_______________________________________________________________________________________ 5

POSITIVE SETTLING TIME TO FULL-SCALE STEP (ALL BITS OFF TO ALL BITS ON)

DIGITAL INPUTS (5V/div)

OUTPUT (1mV/div)

2µs/divREF– = 4.096V, CL = 100pF, RL = 5kΩ

NEGATIVE SETTLING TIME TO FULL-SCALE STEP (ALL BITS ON TO ALL BITS OFF)

DIGITAL INPUTS (5V/div)

OUTPUT (1mV/div)

2µs/divREF– = 4.096V, CL = 100pF, RL = 5kΩ

DYNAMIC RESPONSE (ALL BITS OFF, ON, OFF)

DIGITAL INPUTS (5V/div)

OUTPUT (2V/div)

2µs/divREF– = 4.096V, CL = 100pF, RL = 5kΩ

DIGITAL FEEDTHROUGH (GLITCH IMPULSE)

200ns/div

+5V

0V

10mV

0V

-10mV

TOP: DIGITAL TRANSITION ON ALL DATA BITS BOTTOM: DAC OUTPUT WITH WR HIGH 10mV/div

____________________________Typical Operating Characteristics (continued)(VDD = 5V, VSS = -5V, REF_ = 4.096V, AGND_ = GND = 0V, TA = +25°C, unless otherwise noted.)

-80

-70

-60

-50

-40

-30

-20

-10

0

0.01 0.1 1 10 100 1000

POWER-SUPPLY REJECTION RATIO vs. FREQUENCY

MAX

547-

Fg T

OC-1

0

FREQUENCY (kHz)

PSRR

(dB) VSS VDD

VDD = VSS = 5V ±200mV NO LOAD

MA

X5

47

Octal, 13-Bit Voltage-OutputDAC with Parallel Interface

6 _______________________________________________________________________________________

PLCCNAME

1 –C—L—R–Clear Input (active low). Driving this asynchronous input low sets the content of all latches to1000hex. All DAC outputs are reset to AGND_.

3 REFCD Reference Voltage Input for DAC C and DAC D. Bypass to AGNDCD with a 0.1µF to 1µF capacitor.

2 AGNDCD Analog Ground for DAC C and DAC D

7 VOUTB DAC B Output Voltage

6 VOUTC DAC C Output Voltage

5 VOUTD DAC D Output Voltage

4, 42 VSSNegative Power Supply, -5V (2 pins). Connect both pins to the supply voltage. Bypass each pinto the system analog ground with a 0.1µF to 1µF capacitor.

FLATPACK

PIN

39

41

40

1

44

43

42, 36

FUNCTION

8 VOUTA DAC A Output Voltage2

9, 37 VDDPositive Power Supply, 5V (2 pins). Connect both pins to the supply voltage. Bypass each pin tothe system analog ground with a 0.1µF to 1µF capacitor.

3, 31

10 REFAB Reference Voltage Input for DAC A and DAC B. Bypass to AGNDAB with a 0.1µF to 1µF capacitor.4

11 AGNDAB Analog Ground for DAC A and DAC B5

12 –L—D—A—B–Load Input (active low). Driving this asynchronous input low transfers the contents of input latchesA and B to the respective DAC latches.

6

13 –L—D—C—D–Load Input (active low). Driving this asynchronous input low transfers the contents of input latchesC and D to the respective DAC latches.

7

14 –C—S– Chip Select (active low)8

15 –W—R– Write Input (active low). –W—R–, along with –C—S–, loads data into the DAC input latch selected by A0–A2.9

ADJACENT-CHANNEL CROSSTALK

A: DIGITAL INPUTS, DAC A, DATA BITS from ALL Os to OAAAhex B: OUTPUT, DAC B

500ns/div REF– = 4.096V, CL = 50pF, RL = 10kΩ

A 5V/div

B 5mV/div

ADJACENT-CHANNEL CROSSTALK

A: DIGITAL INPUTS, DAC A, DATA BITS from OAAAhex to ALL Os B: OUTPUT, DAC B

500ns/div REF– = 4.096V, CL = 50pF, RL = 10kΩ

A: 5V/div

B: 5mV/div

______________________________________________________________Pin Description

____________________________Typical Operating Characteristics (continued)(VDD = 5V, VSS = -5V, REF_ = 4.096V, AGND_ = GND = 0V, TA = +25°C, unless otherwise noted.)

Analog Ground for DAC E and DAC F

_______________Detailed DescriptionAnalog Section

The MAX547 contains eight 13-bit, voltage-outputDACs. These DACs are “inverted” R-2R ladder net-works that convert 13-bit digital inputs into equivalentanalog output voltages, in proportion to the applied ref-erence voltages. The MAX547 has one reference input(REF_) and one analog-ground input (AGND_) for eachpair of DACs. The four REF_ inputs allow different full-scale output voltages for each DAC pair, and the fourAGND_ inputs allow different offset voltages for eachDAC pair.

The DAC ladder outputs are buffered with op amps thatoperate with a gain of two. The inverting node of theamplifier is connected to the respective referenceinput, resulting in bipolar output voltages from -REF_ to4095/4096 REF_. Figure 1 shows the simplified DACcircuit.

MA

X5

47

Octal, 13-Bit Voltage-OutputDAC with Parallel Interface

_______________________________________________________________________________________ 7

_________________________________________________Pin Description (continued)

FLATPACK

PLCCNAME FUNCTION

36 REFGH Reference Voltage Input for DAC G and DAC H. Bypass to AGNDGH with a 0.1µF to 1µF capacitor.30

16 A2 Address Bit 2

38 VOUTH DAC H Output Voltage

33–L—D—G—H– Load Input (active low). Driving this asynchronous input low transfers the contents of input latches

G and H to the respective DAC latches.

32

35 AGNDGH Analog Ground for DAC G and DAC H

34 GND Digital Ground

PIN

10

27

29

28

41 VOUTE DAC E Output Voltage35

39 VOUTG DAC G Output Voltage33

40 VOUTF DAC F Output Voltage34

44 AGNDEF38

Figure 1. DAC Simplified Circuit Diagram

2R 2R

R

D0 D10 D11 D12

R R

R R

OUT

REF–

AGND–

2R 2R 2R

VDAC

43 REFEF Reference Voltage Input for DAC E and DAC F. Bypass to AGNDEF with a 0.1µF to 1µF capaci-37

32–L—D—E—F– Load Input (active low). Driving this asynchronous input low transfers the contents of input latches

E and F to the respective DAC latches.26

17 A1 Address Bit 111

18 A0 Address Bit 0

19–31 D12–D0 Data Bits 12–013–25

12

Reference and Analog-Ground InputsThe REF_ inputs can range between AGND_ and VDD.However, the DAC outputs will operate to VDD - 0.6Vand VSS + 0.6V, due to the output amplifiers’ voltage-swing limitations. The AGND_ inputs can be offset byany voltage within the supply rails. The offset-voltagepotential must be lower than the reference-voltagepotential. For more information, refer to the Digital Codeand Analog Output Voltage section in the ApplicationsInformation.The input impedance of the REF_ inputs is code depen-dent. It is at its lowest value (5kΩ min) when the inputcode of the referring DAC pair is 0 1010 1010 1010(0AAAhex). Its maximum value, typically 50kΩ, occurswhen the code is 0000hex. When all reference inputs aredriven from the same source, the minimum load imped-ance is 1.25kΩ. Since the input impedance at REF_ iscode dependent, load regulation of the reference used isimportant. For more information, see ReferenceSelection in the Applications Information section.

The input capacitance at REF_ is also code dependent,and typically varies from 125pF to 300pF. Its minimumvalue occurs when the code of the referring DAC pair isset to all 0s. It is at its maximum value with all 1s on bothDACs.

Output Buffer AmplifiersThe MAX547’s voltage outputs are internally bufferedby precision gain-of-two amplifiers with a typical slewrate of 3V/µs. With a full-scale transition at its output,the typical settling time to ±1⁄2LSB is 5µs when loadedwith 10kΩ in parallel with 50pF, or 6µs when loadedwith 10kΩ in parallel with 100pF.

Digital Inputs and Interface LogicAll digital inputs are compatible with both TTL andCMOS logic. The MAX547 interfaces with microproces-sors using a data bus at least 13 bits wide. The inter-face is double buffered, allowing simultaneous updateof all DACs. There are two latches for each DAC (seeFunctional Diagram): an input latch that receives datafrom the data bus, and a DAC latch that receives datafrom the input latch. Address lines A0, A1, and A2select which DAC’s input latch receives data from thedata bus, as shown in Table 1. Transfer data from theinput latches to the DAC latches by asserting the asyn-chronous LD_ signal. Each DAC’s analog outputreflects the data held in its DAC latch. All control inputsare level triggered.

Data can be latched or transferred directly to the DAC.CS and WR control the input latch and LD_ transfersinformation from the input latch to the DAC latch. Theinput latch is transparent when CS and WR are low, and

the DAC latch is transparent when LD_ is low. Theaddress lines (A0, A1, A2) must be valid throughout thetime CS and WR are low (Figure 3). Otherwise, the datacan be inadvertently written to the wrong DAC. Data islatched within the input latch when either CS or WR ishigh. Taking LD_ high latches data into the DAC latches.

If LD_ is brought low when WR and CS are low, it mustbe held low for t3 or longer after WR and CS are high(Figure 3).

Pulling the asynchronous CLR input low sets all DACoutputs to a nominal 0V, regardless of the state of CS,WR, and LD_. Taking CLR high latches 1000hex intoall input latches and DAC latches.

Table 1. MAX547 DAC Addressing

MA

X5

47

Octal, 13-Bit Voltage-OutputDAC with Parallel Interface

8 _______________________________________________________________________________________

TO INPUT LATCH OF DAC H

TO INPUT LATCH OF DAC G

TO INPUT LATCH OF DAC F

TO INPUT LATCH OF DAC E

TO INPUT LATCH OF DAC D

TO INPUT LATCH OF DAC C

TO INPUT LATCH OF DAC B

TO INPUT LATCH OF DAC A

TO DAC LATCHES OF DAC G AND DAC H

TO DAC LATCHES OF DAC E AND DAC G

TO DAC LATCHES OF DAC C AND DAC D

TO DAC LATCHES OF DAC C AND DAC B

TO ALL INPUT AND DAC LATCHES

A2

A1

A0

LDGH

LDEF

LDCD

LDAB

CLR

WR

CS

Figure 2. Input Control Logic

A0A2 FUNCTION

00 DAC A input latch

10 DAC D input latch

10 DAC B input latch

00 DAC C input latch

0

A1

0

1

0

1

DAC E input latch

11 DAC F input latch

1

0

0

01 DAC G input latch1

11 DAC H input latch1

_______________________________________________________________________________________ 9

__________Applications InformationMultiplying Operation

The MAX547 can be used for multiplying applications.Its reference accepts both DC and AC signals. The volt-age at each REF_ input sets the full-scale output voltagefor its respective DACs. Since the reference inputsaccept only positive voltages, multiplying operation islimited to two quadrants. Do not bypass the referenceinputs when applying AC signals to them. Refer to thegraphs in the Typical Operating Characteristics fordynamic performance of the DACs and output buffers.

Digital Code and Analog Output VoltageThe MAX547 uses offset binary coding. A 13-bit twos-complement code can be converted to a 13-bit offsetbinary code by adding 212 = 4096.

Bipolar Output Voltage Range (AGND_ = 0V)For symmetrical bipolar operation, tie AGND_ to thesystem ground. Table 3 shows the relationship betweendigital code and output voltage. The following para-graphs give a detailed explanation of this mode.

The DAC ladder output voltage (VDAC) is multiplied by2 and level shifted by the reference voltage, which isinternally connected to the output amplifiers (Figure 1).Since the feedback resistors are the same size, theamplifier’s output voltage is 2 times the voltage at itsnoninverting input, minus the reference voltage.

where VDAC is the voltage at the amplifier’s noninvert-ing input (DAC ladder output voltage), and REF_ is thevoltage applied to the reference input of the DAC.

With AGND_ connected to the system ground, the DACladder output voltage is:

where D is the numeric value of the DAC’s binary inputcode and n is the DAC’s resolution (13 bits). ReplaceVDAC in the equation and calculate the output voltage.

D ranges from 0 (20) to 8191 (213 - 1).

1LSB REF–1

4096=

VOUT_ 2 D

2 REF– REF–

= REF– D

2–1 REF–

D4096

–1

13

12

=

( ) −

=

VD

2 (REF–)

D

2 (REF–)DAC n 13

= =

VOUT 2(V ) REF–DAC= −

Table 2. Interface Truth Table

MA

X5

47

Octal, 13-Bit Voltage-OutputDAC with Parallel Interface

–C—L—R– FUNCTION1 Both latches transparent

1 Both latches latched

1 Both latches latched

–L—D—––

0

1

1

1 Input latch transparent

1 Input latch latched

1 Input latch latched

X

X

X

–W—R–

0

0

1

X

–C—S–

0

1

X

1

X

0

X

1

X0All input and DAC latches at1000hex, outputs at AGND–

XX

X1 DAC latch transparentX0

CS

WR

A0–A2

D0–D12

LD–

NOTES:

1. ALL INPUT RISE AND FALL TIMES MEASURED FROM 10% TO 90% OF +5V. tr = tf = 5ns.

2. MEASUREMENT REFERENCE LEVEL IS (VINH + VINL)/2.

3. IF LD– IS ACTIVATED WHILE WR IS LOW THEN LD– MUST STAY LOW FOR t3 OR LONGER AFTER WR GOES HIGH.

t1

t2

t9t10

t7 t8

t5 t6

t3t3

Figure 3. Write-Cycle Timing

10 ______________________________________________________________________________________

MA

X5

47

Positive Unipolar Output Voltage Range (AGND_ = REF_/2)

For positive unipolar output operation, set AGND_ to(REF_/2). For example, if you use Figure 4’s circuit with,a 4.096V reference and offset AGND_ by 2.048V withmatched resistors (R1 = R2) and an op amp, it results ina 0V to 4.0955V (nominal) unipolar output voltage,where 1LSB = 500µV. In general, the maximum currentflowing out of any AGND_ pin is given by:

Customizing the Output Voltage RangeThe AGND_ inputs can be offset by any voltage within thesupply rails if the voltage at the referring REF_ input ishigher than the voltage at the AGND_ input. Select thereference voltage and the voltage at AGND_ so theresulting output voltages do not come within ±0.6V of thesupply rails. Figure 4’s circuit shows one way to add posi-tive offset to AGND_; make sure that the op amp usedhas sufficient current-sink capability to take up theremaining AGND_ current:

Another way is to digitally offset AGND_ by connectingthe output of one DAC to one or more AGND_ inputs. Donot connect a DAC output to its own AGND_ input.

Table 5 summarizes the relationship between the refer-ence and AGND_ potentials and the output voltage inthe different modes of operation.

Power-Supply SequencingThe sequence in which the supply voltages come up isnot critical. However, we recommend that on power-up,VSS comes up first, VDD next, followed by the referencevoltages. If you use other sequences, limit the currentinto any reference pin to 10mA. Also, make sure thatVSS is never more than 300mV above ground. If there isa risk that this can occur at power-up, connect aSchottky diode between VSS and GND, as shown inFigure 5. We recommend that you not power up thelogic input pins before establishing the supply volt-ages. If this is not possible and the digital lines candrive more than 10mA, you should place current-limit-ing resistors (e.g., 470Ω) in series with the logic pins.

Reference SelectionIf you want a ±2.5V full-scale output voltage swing, youcan use the MAX873 reference. It operates from a sin-gle 5V supply and is specified to drive up to 10mA.Therefore, it can drive all four reference inputs simulta-neously. Because the maximum load impedance canvary from 1.25kΩ to 12.5kΩ (four reference inputs inparallel), the reference load current ranges from 2mA to0.2mA (1.8mA maximum load step). The MAX873’s

I REF_ AGND_5k

AGND_ =

−Ω

I REF_ AGND_5k

AGND_ =

−Ω

Octal, 13-Bit Voltage-OutputDAC with Parallel Interface

OUTPUTINPUT

4095 +REF_ (———)4096 1 1111 1111 1111

0V1 0000 0000 0000

1 +REF_ (———)4096 1 0000 0000 0001

1 -REF_ (———)4096 0 1111 1111 1111

4095 -REF_ (———)4096 0 0000 0000 0001

-REF_0 0000 0000 0000

+5V1µF

REFAB

AGNDAB

1µF

R1

REF

R2

VDD VDD

DIGITAL INPUTS NOT SHOWN. NOT ALL DACS SHOWN.

1µF

VOUTA

VOUTB

DAC B

DAC A

MAX547

-5V

VSS VSS

1µF 1µF

+REF– /21 0000 0000 0000

OUTPUT

0V0 0000 0000 0000

INPUT

8191 +REF_ (———)8192 1 1111 1111 1111

Table 4. MAX547 Positive Unipolar Code Table(AGND_ = REF _)

2

Table 3. MAX547 Bipolar Code Table(AGND_ = 0V)

Figure 4. Offsetting AGND–

load regulation is specified to 20ppm/mA max overtemperature, resulting in a maximum error of 36ppm(90µV). This corresponds to a maximum error causedby reference load regulation of only 0.147LSB[0.147LSB = 90µV/(5V/8192)LSB] over temperature.

If you want a ±4.096V full-scale output swing (1LSB =1mV), you can use the calibrated, low-drift, low-dropoutMAX676. Operating from a 5V supply, it is fully speci-fied to drive two REF_ inputs with less than 60.4µV error(0.0604LSB) over temperature, caused by the maxi-mum load step.

Reference BufferingAnother way to obtain high accuracy is to buffer a refer-ence with an op amp. When driving all reference inputssimultaneously, keep the closed-loop output imped-ance of the op amp below 0.03Ω to ensure an error ofless than 0.1LSB. The op amp must also drive thecapacitive load (typically 500pF to 1200pF).

Each reference input can also be buffered separatelyby using the circuit in Figure 6. A reference load stepcaused by a digital transition only affects the DAC pairwhere the code transition occurs. It also allows the useof references with little drive capability. Keep theclosed-loop output impedance of each op amp below0.12Ω, to ensure an error of less than 0.1LSB. Figure 6shows the op amp’s inverting input directly connectedto the MAX547’s reference terminal. This eliminates the

influence of board lead resistance by sensing the volt-age with a low-current path sense line directly at thereference input.

Adding feedback resistors to individual referencebuffer amplifiers enables different reference voltages tobe generated from a single reference.

MA

X5

47

Octal, 13-Bit Voltage-OutputDAC with Parallel Interface

______________________________________________________________________________________ 11

Figure 5. Optional Schottky Diode between VSS and GND

GND

VSS

SYSTEM GND

1N5817

MAX547

VSS

BIPOLAR OPERATION(AGND_ = 0V)

CUSTOM OPERATIONPOSITIVE UNIPOLAR

OPERATION(AGND_ = REF_/2)

PARAMETER

AGND_ (=0V) AGND–Bipolar Zero Level, or Unipolar Mid-scale, (Code = 1000000000000)

REF– REF– - AGND–REF–/2Differential Reference Voltage(VDR)

REF_AGND– (= ———)2

-REF– AGND– - VDR0VNegative Full-scale Output(Code = All 0s)

4095(———) (REF_)4096 4095

AGND _ + (———) (VDR)4096 8191(———) (REF_)8192

Positive Full-Scale Output(Code = All 1s)

REF_———4096

VDR———4096

REF_(———)8192 LSB Weight

D(——— - 1) (REF_)4096 D

AGND _ + (—--—- - 1) (VDR)4096 D(———) (REF_)8192

VOUT– as a Function of Digital Code (D, 0 to 8191)

Table 5. Reference, AGND– and Output Relationships

MA

X5

47

Octal, 13-Bit Voltage-OutputDAC with Parallel Interface

12 ______________________________________________________________________________________

Power-Supply Bypassing andGround Management

For optimum performance, use a multilayer PC boardwith an unbroken analog ground. For normal opera-tion, when all AGND_ pins are at the same potential,connect the four AGND_ pins directly to the groundplane or connect them together in a “star” configura-tion. The center of this star point is a good location toconnect the digital system ground with the analogground.

If you are using a single common reference voltage,you can connect the reference inputs together using a“star” configuration. If you are using DC reference volt-ages, bypass each reference input with a 0.1µF to 1µFcapacitor to AGND_.

MAX547

MAX494

+

-

REFAB

REFCD

REFEF

REFGH

Figure 6. Reference Buffering

MAX547AEQH -40°C to +85°C 44 PLCCMAX547BEQH -40°C to +85°C 44 PLCCMAX547AEMH -40°C to +85°C 44 Plastic FPMAX547BEMH -40°C to +85°C 44 Plastic FP

±2±4±2±4

PART TEMP. RANGE PIN-PACKAGEINL

(LSBs)

_Ordering Information (continued)

MA

X5

47

Octal, 13-Bit Voltage-OutputDAC with Parallel Interface

______________________________________________________________________________________ 13

VDD REFCDREFAB REFEF REFGH

9, 37 10 3 43 36

VSS GND

DAC LATCH A

8

11

7

VOUTA

AGNDAB

VOUTBDAC B

INPUT LATCH A

DAC LATCH B

DAC A

INPUT LATCH B

DAC LATCH C

6

2

5

VOUTC

AGNDCD

VOUTDDAC D

D12–D0

INPUT LATCH C

DAC LATCH D

DAC C

INPUT LATCH D

DAC LATCH E

41

44

40

VOUTE

AGNDEF

VOUTFDAC F

INPUT LATCH E

DAC LATCH F

DAC E

INPUT LATCH F

DAC LATCH G

39

35

38

VOUTG

AGNDGH

VOUTHDAC H

Pin numbers shown for PLCC package.

4, 42 3412, 1316, 18 32, 33 1

INPUT LATCH G

DAC LATCH H

DAC G

INPUT LATCH H

A0–A2 CLRLDAB LDCD LDEF LDGH

CSWR

1415

MAX547CONTROL LOGIC

DATA BUS

_________________________________________________________Functional Diagram

MA

X5

47

Octal, 13-Bit Voltage-OutputDAC with Parallel Interface

14 ______________________________________________________________________________________

VOUTA

VO

UTC

0.242" (6.147mm)

0.199" (5.055mm)

A0

D12

D11

D10 D

9

D8

D7

D6

D5

D4

D3

AGNDAB

LDAB

LDCD

CS

A1

A2

WR

VDD

REFAB

VOUTB

VOUTH

AGNDGH

GND

LDGH

LDEF

D2

D1

D0

VDD

VOUTG

REFGH

VO

UTD

REF

CD

AG

ND

CD

CLR

VO

UTE

VO

UTF

VS

S

VS

S

AG

ND

EF

REF

EF

____________________________________________________________Chip Topography

TRANSISTOR COUNT: 8987

SUBSTRATE CONNECTED TO VDD

MA

X5

47

Octal, 13-Bit Voltage-OutputDAC with Parallel Interface

______________________________________________________________________________________ 15

________________________________________________________Package Information

DIM

A A1 A2 A3 B

B1 C D D1 D2 D3 e

MIN 0.165 0.100 0.145 0.020 0.013 0.026 0.009 0.685 0.650 0.590

MAX 0.180 0.110 0.156

– 0.021 0.032 0.011 0.695 0.655 0.630

MIN 4.19 2.54 3.68 0.51 0.33 0.66 0.23

17.40 16.51 14.99

MAX 4.57 2.79 3.96

– 0.53 0.81 0.28

17.65 16.64 16.00

INCHES MILLIMETERS

44-PIN PLASTIC LEADED CHIP

CARRIER PACKAGE

21-350A

DD1

D

D1

D3

D2

e

B1B

A3

A

A1

A2

12.70 REF0.500 REF1.27 REF0.050 REF

C

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses areimplied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

16 __________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600

© 1995 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.

MA

X5

47

Octal, 13-Bit Voltage-OutputDAC with Parallel Interface

4.11 MAX764

_______________General DescriptionThe MAX764/MAX765/MAX766 inverting switching regu-lators are highly efficient over a wide range of load cur-rents, delivering up to 1.5W. A unique, current-limited,pulse-frequency-modulated (PFM) control scheme com-bines the benefits of traditional PFM converters with thebenefits of pulse-width-modulated (PWM) converters.Like PWM converters, the MAX764/MAX765/MAX766 arehighly efficient at heavy loads. Yet because they are PFMdevices, they use less than 120µA of supply current (vs.2mA to 10mA for a PWM device).

The input voltage range is 3V to 16V. The output volt-age is preset at -5V (MAX764), -12V (MAX765), or -15V(MAX766); it can also be adjusted from -1V to -16Vusing two external resistors (Dual ModeTM). The maxi-mum operating VIN - VOUT differential is 20V.

These devices use miniature external components; theirhigh switching frequencies (up to 300kHz) allow for lessthan 5mm diameter surface-mount magnetics. A stan-dard 47µH inductor is ideal for most applications, so nomagnetics design is necessary.

An internal power MOSFET makes the MAX764/MAX765/MAX766 ideal for minimum component count, low- andmedium-power applications. For increased output drivecapabil i ty or higher output voltages, use theMAX774/MAX775/MAX776 or MAX1774, which drive anexternal power P-channel MOSFET for loads up to 5W.

________________________ApplicationsLCD-Bias GeneratorsPortable InstrumentsLAN AdaptersRemote Data-Acquisition SystemsBattery-Powered Applications

____________________________Features♦ High Efficiency for a Wide Range of Load Currents

♦ 250mA Output Current

♦ 120µA Max Supply Current

♦ 5µA Max Shutdown Current

♦ 3V to 16V Input Voltage Range

♦ -5V (MAX764), -12V (MAX765), -15V (MAX766), or Adjustable Output from -1V to -16V

♦ Current-Limited PFM Control Scheme

♦ 300kHz Switching Frequency

♦ Internal, P-Channel Power MOSFET

______________Ordering Information

Ordering Information continued on last page.* Dice are tested at TA = +25°C, DC parameters only.**Contact factory for availability and processing to MIL-STD-883.

MA

X7

64

/MA

X7

65

/MA

X7

66

-5V/-12V/-15V or Adjustable,High-Efficiency, Low IQ DC-DC Inverters

________________________________________________________________ Maxim Integrated Products 1

1

2

3

4

8

7

6

5

LX

V+

V+

GNDREF

SHDN

FB

OUT

MAX764 MAX765 MAX766

DIP/SO

TOP VIEW

__________________Pin Configuration

GND

MAX764SHDN

LX

OUT

ON/OFF

REF

47µH

OUTPUT -5V

INPUT 3V TO 15V

V+

FB

__________Typical Operating Circuit

Call toll free 1-800-998-8800 for free samples or literature.

19-0176; Rev 0; 6/94

PART

MAX764CPA

MAX764CSA

MAX764C/D 0°C to +70°C

0°C to +70°C

0°C to +70°C

TEMP. RANGE PIN-PACKAGE

8 Plastic DIP

8 SO

Dice*

MAX764EPA

MAX764ESA -40°C to +85°C

-40°C to +85°C 8 Plastic DIP

8 SO

MAX764MJA -55°C to +125°C 8 CERDIP**

MAX765CPA

MAX765CSA

MAX765C/D 0°C to +70°C

0°C to +70°C

0°C to +70°C 8 Plastic DIP

8 SO

Dice*

MAX765EPA

MAX765ESA -40°C to +85°C

-40°C to +85°C 8 Plastic DIP

8 SO

MAX765MJA -55°C to +125°C 8 CERDIP**

Evaluation Kit

Available

MA

X7

64

/MA

X7

65

/MA

X7

66

-5V/-12V/-15V or Adjustable,High-Efficiency, Low IQ DC-DC Inverters

2 _______________________________________________________________________________________

ABSOLUTE MAXIMUM RATINGS

ELECTRICAL CHARACTERISTICS(V+ = 5V, ILOAD = 0mA, CREF = 0.1µF, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.)

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functionaloperation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure toabsolute maximum rating conditions for extended periods may affect device reliability.

V+ to GND..............................................................-0.3V to +17VOUT to GND ...........................................................+0.5V to -17VMaximum Differential (V+ to OUT) ......................................+21VREF, SHDN, FB to GND ...............................-0.3V to (V+ + 0.3V)LX to V+..................................................................+0.3V to -21VLX Peak Current ...................................................................1.5AContinuous Power Dissipation (TA = +70°C)

Plastic DIP (derate 9.09mW/°C above +70°C) ............727mWSO (derate 5.88mW/°C above +70°C) .........................471mWCERDIP (derate 8.00mW/°C above +70°C) .................640mW

Operating Temperature RangesMAX76_C_A ........................................................0°C to +70°CMAX76_E_A .....................................................-40°C to +85°CMAX76_MJA ..................................................-55°C to +125°C

Maximum Junction TemperaturesMAX76_C_A/E_A ..........................................................+150°CMAX76_MJA .................................................................+175°C

Storage Temperature Range ............................-65°C to +160°CLead Temperature (soldering, 10sec) ............................+300°C

3V ≤ V+ ≤ 16V

V+ = 16V, SHDN = 0V or V+

V+ = 16V, SHDN < 0.4V

4V ≤ V+ ≤ 6V

0mA ≤ ILOAD ≤ 100mA

MAX76_M

3V ≤ V+ ≤ 16V

MAX76_C/E

0µA ≤ IREF ≤ 100µA

MAX76_M

MAX765C/E, -11.52V ≤ VOUT ≤ 12.48V

MAX764, -4.8V ≤ VOUT ≤ 5.2V

MAX76_E

MAX76_C

MAX76_M

MAX76_E

V+ = 16V, SHDN > 1.6V

V+ = 10V, SHDN > 1.6V

3V ≤ V+ ≤ 16V

MAX766, -14.40V ≤ VOUT ≤ -15.60V

MAX76_C

MAX765M, -11.52V ≤ VOUT ≤ 12.48V

CONDITIONS

V1.6VIHSHDN Input Voltage High

µA±1SHDN Leakage Current

80

%/V0.12Line Regulation (Note 2)

%/mA0.008Load Regulation (Note 2)

µV/V40 100REF Line Regulation

4 15mV

4 10REF Load Regulation

1.4550 1.5 1.5450

1.4625 1.5 1.5375 V

1.4700 1.5 1.5300

VREFReference Voltage

35 105

50 120

µA

90 120ISSupply Current

3.5V+ V

3.0 16.0V+ Input Voltage Range

68 120mA

150 260

IOUTOutput Current and Voltage (Note 1)

±90

±70

2ISHDNShutdown Current

1 5

mV-10 10FB Trip Point

nA

±50

IFBFB Input Current

UNITSMIN TYP MAXSYMBOLPARAMETER

MAX76_C/E

MAX76_M

VOUT = -5V

82VOUT = -15VEfficiency (Note 2)

10mA ≤ ILOAD ≤ 100mA,VIN = 5V

%

3V ≤ V+ ≤ 16V V0.4VILSHDN Input Voltage Low

MA

X7

64

/MA

X7

65

/MA

X7

66

-5V/-12V/-15V or Adjustable,High-Efficiency, Low IQ DC-DC Inverters

_______________________________________________________________________________________ 3

Note 1: See Maximum Output Current vs. Supply Voltage graph in the Typical Operating Characteristics. Guarantees are based oncorrelation to switch on-time, switch off-time, on-resistance, and peak current rating.

Note 2: Circuit of Figure 2.

ELECTRICAL CHARACTERISTICS (continued)(V+ = 5V, ILOAD = 0mA, CREF = 0.1µF, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.)

IVOUTI + (V+) ≥ 10V

ILXI + (V+) ≤ 20V

IVOUTI + (V+) ≥ 10V

CONDITIONS

µs1.8 2.3 2.8tOFFMinimum Switch Off-Time

µs12 16 20tONMaximum Switch On-Time

A0.5 0.75IPEAKPeak Current at LX

±30

±10 µA

±5

LX Leakage Current

Ω1.4 2.5LX On-Resistance

UNITSMIN TYP MAXSYMBOLPARAMETER

MAX76_C

MAX76_E

MAX76_M

__________________________________________Typical Operating Characteristics(V+ = 5V, VOUT = -5V, TA = +25°C, unless otherwise noted.)

100

00.1 10 1000

MAX764 EFFICIENCY vs. LOAD CURRENT

MAX

764-

01

LOAD CURRENT (mA)

EFFI

CIEN

CY (%

)

90

80

70

60

50

40

30

20

10

1 100

CIRCUIT OF FIGURE 2 VOUT = -5V ±4%

V+ = 5V

V+ = 10V

V+ = 15V

100

00.1 10 1000

MAX765 EFFICIENCY vs. LOAD CURRENT

MAX

764-

02

LOAD CURRENT (mA)

EFFI

CIEN

CY (%

)

90

80

70

60

50

40

30

20

10

1 100

V+ = 8V

V+ = 5V

CIRCUIT OF FIGURE 2 VOUT = -12V ±4%

100

00.1 10 1000

MAX766 EFFICIENCY vs. LOAD CURRENT

MAX

764-

03

LOAD CURRENT (mA)

EFFI

CIEN

CY (%

)

90

80

70

60

50

40

30

20

10

1 100

V+ = 5V

CIRCUIT OF FIGURE 2 VOUT = -15V ±4%

MA

X7

64

/MA

X7

65

/MA

X7

66

-5V/-12V/-15V or Adjustable,High-Efficiency, Low IQ DC-DC Inverters

4 _______________________________________________________________________________________

____________________________Typical Operating Characteristics (continued)(V+ = 5V, VOUT = -5V, TA = +25°C, unless otherwise noted.)

0-60

SHUTDOWN CURRENT vs. TEMPERATURE

MAX

764

-07

TEMPERATURE (°C)

SHUT

DOW

N CU

RREN

T (µ

A)

-40 -20 0 20 40 60 80 100 120 140

V+ = 15V

0.5

1.0

1.5

2.0

2.5

3.0

4.0

3.5

V+ = 8V

V+ = 4V15.0

-60

MAXIMUM SWITCH ON-TIME vs. TEMPERATURE

MAX

764

-08

TEMPERATURE (°C)

MAX

IMUM

SW

ITCH

ON-

TIM

E (µ

s)

-40 -20 0 20 40 60 80 100 120 140

V+ = 15V

V+ = 5V

15.2

15.4

15.6

15.8

16.0

16.2

16.4

16.6

16.8

17.0

2.20-60

MINIMUM SWITCH OFF-TIME vs. TEMPERATURE

MAX

764

-09

TEMPERATURE (°C)

MIN

IMUM

SW

ITCH

OFF

-TIM

E (µ

s)

-40 -20 0 20 40 60 80 100 120 140

2.25

2.30

2.35

2.40

2.45

2.50

2.60

2.55

V+ = 5V

V+ = 15V

6.2-60

SWITCH ON/OFF-TIME RATIO vs. TEMPERATURE

MAX

764

-10

TEMPERATURE (°C)

SWIT

CH O

N/OF

F-TI

ME

RATI

O (µ

s/µs

)

-40 -20 0 20 40 60 80 100 120 140

V+ = 5V

6.3

6.4

6.5

6.6

6.7

6.8

6.9

7.0

7.1

7.2

0

START-UP SUPPLY VOLTAGE vs. OUTPUT CURRENT

MAX

764

-11

OUTPUT CURRENT (mA)

STAR

T-UP

SUP

PLY

VOLT

AGE

(V)

0

1

2

3

4

5

6

8

7

50 100 150 200 250 300

CIRCUIT OF FIGURE 210,000

120

LX LEAKAGE CURRENT vs. TEMPERATURE

10

100

MAX

764-

12

TEMPERATURE (°C)

LX L

EAKA

GE C

URRE

NT (n

A)

1000

30 40 50 60 70 80 90 100 110 120 130

IVOUTI + (V+) = 20V

MAXIMUM OUTPUT CURRENT vs. SUPPLY VOLTAGE

MAX

764

-04

SUPPLY VOLTAGE (V)

MAX

IMUM

OUT

PUT

CURR

ENT

(mA)

3

600

4 5 6 7 8 9 10 11 12 13 14 15 16

500

400

300

200

100

0

VOUT = -5V

VOUT = -12V

VOUT = -15V

CIRCUIT OF FIGURE 2

60

NO-LOAD SUPPLY CURRENT vs. SUPPLY VOLTAGE

MAX

764

-05

SUPPLY VOLTAGE (V)

NO-L

OAD

SUPP

LY C

URRE

NT (µ

A)

3

65

70

75

80

85

90

100

95

4 5 6 7 8 9 10 11 12 13 14 15 1650

-60

NO-LOAD SUPPLY CURRENT vs. TEMPERATURE

55

MAX

764

-06

TEMPERATURE (°C)

NO-L

OAD

SUPP

LY C

URRE

NT (µ

A)

-40 -20 0 20 40 60 80 100 120 140

60

6570758085

90

95100

105110

V+ = 15V

V+ = 5V

MA

X7

64

/MA

X7

65

/MA

X7

66

-5V/-12V/-15V or Adjustable,High-Efficiency, Low IQ DC-DC Inverters

_______________________________________________________________________________________ 5

1000

0.010 2 4 6 10 12 148 16

SUPPLY CURRENT vs. SUPPLY VOLTAGE

0.1

MAX

764-

17

SUPPLY VOLTAGE (V)

SUPP

LY C

URRE

NT (m

A)

1

10

100ILOAD = 100mA

ILOAD = 0mA

CIRCUIT OF FIGURE 2

-60

REFERENCE OUTPUT RESISTANCE vs. TEMPERATURE

MAX

764

-15

TEMPERATURE (°C)

REFE

RENC

E OU

TPUT

RES

ISTA

NCE

(Ω)

-40 -20 0 20 40 60 80 100 120 1400

50

100

150

200

250

IREF = 10µA

IREF = 50µA

IREF = 100µA

____________________________Typical Operating Characteristics (continued)(V+ = 5V, VOUT = -5V, TA = +25°C, unless otherwise noted.)

0.8-60

LX ON-RESISTANCE vs. TEMPERATURE

MAX

764

-13

TEMPERATURE (°C)

LX O

N-RE

SIST

ANCE

(Ω)

-40 -20 0 20 40 60 80 100 120 140

IVOUTI + (V+) = 10V

1.0

1.2

1.4

1.6

1.8

2.0

2.2

IVOUTI + (V+) = 15V

IVOUTI + (V+) = 20V

-60

PEAK CURRENT AT LX vs. TEMPERATURE

MAX

764

-14

TEMPERATURE (°C)

CURR

ENT

AT

LX (A

)

-40 -20 0 20 40 60 80 100 120 1400.65

0.70

0.75

0.80

0.85

0.90

0.95

IVOUTI + (V+) = 20V

IVOUTI + (V+) = 15V

IVOUTI + (V+) = 10V

-60

REFERENCE OUTPUT vs. TEMPERATURE

MAX

764

-16

TEMPERATURE (°C)

REFE

RENC

E OU

TPUT

(V)

-40 -20 0 20 40 60 80 100 120 140

1.506

1.504

1.502

1.500

1.498

1.496

1.494

1.492

MA

X7

64

/MA

X7

65

/MA

X7

66

-5V/-12V/-15V or Adjustable,High-Efficiency, Low IQ DC-DC Inverters

6 _______________________________________________________________________________________

CIRCUIT OF FIGURE 2, VOUT = -5V, ILOAD = 100mA A: VOUT, 50mV/div, AC-COUPLED B: V+, 5V TO 10V, 5V/div

5ms/div

LINE-TRANSIENT RESPONSE

A

B

0V

CIRCUIT OF FIGURE 2, V+ = 5V, VOUT = -5V, ILOAD = 140mA A: OUTPUT RIPPLE, 100mV/div B: INDUCTOR CURRENT, 500mA/div C: LX WAVEFORM, 10V/div

5µs/div

DISCONTINUOUS CONDUCTION AT HALF AND FULL CURRENT LIMIT

A

B

0A

C0V

CIRCUIT OF FIGURE 2, V+ = 5V, ILOAD = 100mA, VOUT = -5V A: VOUT, 2V/div B: SHUTDOWN PULSE, 0V TO 5V, 5V/div

2ms/div

TIME TO ENTER/EXIT SHUTDOWN

A

B

0V

0V

CIRCUIT OF FIGURE 2, V+ = 5V, VOUT = -5V A: VOUT, 50mV/div, AC-COUPLED B: ILOAD, 0mA TO 100mA, 100mA/div

5ms/div

LOAD-TRANSIENT RESPONSE

A

B0mA

____________________________Typical Operating Characteristics (continued)(V+ = 5V, VOUT = -5V, TA = +25°C, unless otherwise noted.)

MA

X7

64

/MA

X7

65

/MA

X7

66

-5V/-12V/-15V or Adjustable,High-Efficiency, Low IQ DC-DC Inverters

_______________________________________________________________________________________ 7

CIRCUIT OF FIGURE 2, V+ = 5V, VOUT = -5V, ILOAD = 80mA A: OUTPUT RIPPLE, 100mV/div B: INDUCTOR CURRENT, 500mA/div C: LX WAVEFORM, 10V/div

5µs/div

DISCONTINUOUS CONDUCTION AT HALF CURRENT LIMIT

A

B0A

C0V

CIRCUIT OF FIGURE 2, V+ = 5V, VOUT = -5V, ILOAD = 240mA A: OUTPUT RIPPLE, 100mV/div B: INDUCTOR CURRENT, 500mA/div C: LX WAVEFORM, 10V/div

5µs/div

CONTINUOUS CONDUCTION AT FULL CURRENT LIMIT

A

B

0A

C0V

______________________________________________________________Pin Description

GroundGND5

Positive Power-Supply Input. Must be tied together. Place a 0.1µF input bypass capacitor as close tothe V+ and GND pins as possible.

V+6, 7

Drain of the Internal P-Channel Power MOSFET. LX has a peak current limit of 0.75A.LX8

1.5V Reference Output that can source 100µA for external loads. Bypass to ground with a 0.1µF capacitor.REF4

Active-High Shutdown Input. With SHDN high, the part is in shutdown mode and the supply current is lessthan 5µA. Connect to ground for normal operation.

SHDN3

PIN

Feedback Input. Connect FB to REF to use the internal voltage divider for a preset output. For adjustable-output operation, use an external voltage divider, as described in the section Setting the Output Voltage.FB2

Sense Input for Fixed-Output Operation (VFB = VREF). OUT must be connected to VOUT.OUT1

FUNCTIONNAME

____________________________Typical Operating Characteristics (continued)(V+ = 5V, VOUT = -5V, TA = +25°C, unless otherwise noted.)

MA

X7

64

/MA

X7

65

/MA

X7

66

-5V/-12V/-15V or Adjustable,High-Efficiency, Low IQ DC-DC Inverters

8 _______________________________________________________________________________________

_______________Detailed DescriptionOperating Principle

The MAX764/MAX765/MAX766 are BiCMOS, inverting,switch-mode power supplies that provide fixed outputsof -5V, -12V, and -15V, respectively; they can also beset to any desired output voltage using an externalresistor divider. Their unique control scheme combinesthe advantages of pulse-frequency modulation (pulseskipping) and pulse-width modulation (continuous puls-ing). The internal P-channel power MOSFET allowspeak currents of 0.75A, increasing the output currentcapability over previous pulse-frequency-modulation(PFM) devices. Figure 1 shows the MAX764/MAX765/MAX766 block diagram.

The MAX764/MAX765/MAX766 offer three mainimprovements over prior solutions:

1) They can operate with miniature (less than 5mmdiameter) surface-mount inductors, because of their300kHz switching frequency.

2) The current-limited PFM control scheme allows efficien-cies exceeding 80% over a wide range of load currents.

3) Maximum quiescent supply current is only 120µA.

Figures 2 and 3 show the standard application circuitsfor these devices. In these configurations, the IC ispowered from the total differential voltage between theinput (V+) and output (VOUT). The principal benefit ofthis arrangement is that it applies the largest availablesignal to the gate of the internal P-channel power MOS-FET. This increased gate drive lowers switch on-resis-tance and increases DC-DC converter efficiency.

Since the voltage on the LX pin swings from V+ (when theswitch is ON) to IVOUTI plus a diode drop (when the

MAX764 MAX765 MAX766

P

TRIG Q

ONE-SHOT

TRIGQONE-SHOT

S

R

Q

CURRENT CONTROL CIRCUITS

1.5V REFERENCE

N

FROM OUT

FROM V+

FROM V+

0.1V (HALF CURRENT)

0.2V (FULL

CURRENT)

GND

LX

V+

OUT

V+

REF

SHDN ERROR COMPARATOR

COMPARATOR

CURRENT COMPARATOR

FB

Figure 1. Block Diagram

switch is OFF), the range of input and output voltages islimited to a 21V absolute maximum differential voltage.

When output voltages more negative than -16V arerequired, substitute the MAX764/MAX765/MAX766 withMaxim’s MAX774/MAX775/MAX776 or MAX1774, whichuse an external switch.

PFM Control SchemeThe MAX764/MAX765/MAX766 use a proprietary, cur-rent-limited PFM control scheme that blends the bestfeatures of PFM and PWM devices. It combines theultra-low supply currents of traditional pulse-skippingPFM converters with the high full-load efficiencies ofcurrent-mode pulse-width modulation (PWM) convert-ers. This control scheme allows the devices to achievehigh efficiencies over a wide range of loads, while thecurrent-sense function and high operating frequencyallow the use of miniature external components.

As with traditional PFM converters, the internal powerMOSFET is turned on when the voltage comparatorsenses that the output is out of regulation (Figure 1).However, unlike traditional PFM converters, switching isaccomplished through the combination of a peak cur-rent limit and a pair of one-shots that set the maximumon-time (16µs) and minimum off-time (2.3µs) for theswitch. Once off, the minimum off-time one-shot holdsthe switch off for 2.3µs. After this minimum time, theswitch either 1) stays off if the output is in regulation, or2) turns on again if the output is out of regulation.

The MAX764/MAX765/MAX766 limit the peak inductorcurrent, which allows them to run in continuous-con-duction mode and maintain high efficiency with heavyloads. (See the photo Continuous Conduction at FullCurrent Limit in the Typical Operating Characteristics.)This current-limiting feature is a key component of thecontrol circuitry. Once turned on, the switch stays onuntil either 1) the maximum on-time one shot turns it off(16µs later), or 2) the current limit is reached.

To increase light-load efficiency, the current limit is set tohalf the peak current limit for the first two pulses. If thosepulses bring the output voltage into regulation, the volt-age comparator holds the MOSFET off and the currentlimit remains at half the peak current limit. If the outputvoltage is still out of regulation after two pulses, the cur-rent limit is raised to its 0.75A peak for the next pulse.(See the photo Discontinuous Conduction at Half and FullCurrent Limit in the Typical Operating Characteristics.)

Shutdown ModeWhen SHDN is high, the MAX764/MAX765/MAX766enter a shutdown mode in which the supply currentdrops to less than 5µA. In this mode, the internal biasingcircuitry (including the reference) is turned off and OUTdischarges to ground. SHDN is a TTL/CMOS-logic levelinput. Connect SHDN to GND for normal operation.With a current-limited supply, power-up the device whileunloaded or in shutdown mode (hold SHDN high until V+exceeds 3.0V) to save power and reduce power-up cur-rent surges. (See the Supply Current vs. Supply Voltagegraph in the Typical Operating Characteristics.)

MA

X7

64

/MA

X7

65

/MA

X7

66

-5V/-12V/-15V or Adjustable,High-Efficiency, Low IQ DC-DC Inverters

_______________________________________________________________________________________ 9

MAX764 MAX765 MAX766

SHDN

REF

LX

V+

GND

FBVOUT

V+OUT

C4 68µF

20V

D1 1N5817

L1 47µH

8

6

7

3

4

2

1

C3 0.1µF

C2 0.1µF

C1 120µF

20V

VIN

MAX764 MAX765 MAX766

-5 -12 -15

3 to 15 3 to 8 3 to 5

PRODUCTOUTPUT

VOLTAGE (V)INPUT

VOLTAGE (V)

5

Figure 2. Fixed Output Voltage Operation

MAX764 MAX765 MAX766

SHDN

REF

LX

V+

GND

FBVOUT -1V to -16V

V+OUT

C4 68µF

20V

D1 1N5817

L1 47µH

8

6

7

3

4

2

1

C3 0.1µF

C2 0.1µF

C1 120µF

20V

VIN

5

R2

R1

Figure 3. Adjustable Output Voltage Operation

MA

X7

64

/MA

X7

65

/MA

X7

66 Modes of Operation

When delivering high output currents, the MAX764/MAX765/MAX766 operate in continuous-conductionmode. In this mode, current always flows in the induc-tor, and the control circuit adjusts the duty-cycle of theswitch on a cycle-by-cycle basis to maintain regulationwithout exceeding the switch-current capability. Thisprovides excellent load-transient response and highefficiency.

In discontinuous-conduction mode, current through theinductor starts at zero, rises to a peak value, thenramps down to zero on each cycle. Although efficiencyis still excellent, the output ripple may increase slightly.

__________________Design ProcedureSetting the Output Voltage

The MAX764/MAX765/MAX766’s output voltage can beadjusted from -1.0V to -16V using external resistors R1and R2, configured as shown in Figure 3. Foradjustable-output operation, select feedback resistorR1 = 150kΩ. R2 is given by:

VOUTR2 = (R1) I ——— IVREF

where VREF = 1.5V.

For fixed-output operation, tie FB to REF.

Inductor SelectionIn both continuous- and discontinuous-conductionmodes, practical inductor values range from 22µH to68µH. If the inductor value is too low, the current in thecoil will ramp up to a high level before the current-limitcomparator can turn off the switch, wasting power andreducing efficiency. The maximum inductor value is notcritical. A 47µH inductor is ideal for most applications.

For highest efficiency, use a coil with low DC resis-tance, preferably under 100mΩ. To minimize radiatednoise, use a toroid, pot core, or shielded coil.Inductors with a ferrite core or equivalent are recom-mended. The inductor’s incremental saturation-currentrating should be greater than the 0.75A peak currentlimit. It is generally acceptable to bias the inductor intosaturation by approximately 20% (the point where theinductance is 20% below the nominal value).

Table 1 lists inductor types and suppliers for variousapplications. The listed surface-mount inductors’ effi-ciencies are nearly equivalent to those of the larger-size through-hole inductors.

Diode SelectionThe MAX764/MAX765/MAX766’s high switching fre-quency demands a high-speed rectifier. Use aSchottky diode with a 0.75A average current rating,such as the 1N5817 or 1N5818. High leakage currentsmay make Schottky diodes inadequate for high-temper-ature and light-load applications. In these cases youcan use high-speed silicon diodes, such as theMUR105 or the EC11FS1. At heavy loads and hightemperatures, the benefits of a Schottky diode’s low for-ward voltage may outweigh the disadvantages of itshigh leakage current.

Capacitor Selection Output Filter Capacitor

The primary criterion for selecting the output filtercapacitor (C4) is low effective series resistance (ESR).The product of the inductor-current variation and theoutput filter capacitor’s ESR determines the amplitudeof the high-frequency ripple seen on the output voltage.A 68µF, 20V Sanyo OS-CON capacitor with ESR =45mΩ (SA series) typically provides 50mV ripple whenconverting from 5V to -5V at 150mA.

Output filter capacitor ESR also affects efficiency. Toobtain optimum performance, use a 68µF or larger,low-ESR capacitor with a voltage rating of at least20V. The smallest low-ESR surface-mount tantalumcapacitors currently available are from the Sprague595D series. Sanyo OS-CON series organic semi-conductors and AVX TPS series tantalum capacitorsalso exhibit very low ESR. OS-CON capacitors areparticularly useful at low temperatures. Table 1 listssome suppliers of low-ESR capacitors.

For best results when using capacitors other than thosesuggested in Table 1 (or their equivalents), increasethe output filter capacitor’s size or use capacitators inparallel to reduce ESR.

Input Bypass CapacitorThe input bypass capacitor, C1, reduces peak currentsdrawn from the voltage source and reduces the amountof noise at the voltage source caused by the switchingaction of the MAX764–MAX766. The input voltagesource impedance determines the size of the capacitorrequired at the V+ input. As with the output filtercapacitor, a low-ESR capacitor is highly recommended.For output currents up to 250mA, a 100µF to 120µFcapacitor with a voltage rating of at least 20V (C1) inparallel with a 0.1µF capacitor (C2) is adequate in mostapplications. C2 must be placed as close as possi-ble to the V+ and GND pins.

-5V/-12V/-15V or Adjustable,High-Efficiency, Low IQ DC-DC Inverters

10 ______________________________________________________________________________________

MA

X7

64

/MA

X7

65

/MA

X7

66

-5V/-12V/-15V or Adjustable,High-Efficiency, Low IQ DC-DC Inverters

______________________________________________________________________________________ 11

Table 1. Component Suppliers

PRODUCTION METHOD INDUCTORS CAPACITORS DIODES

Surface Mount

Matsuo267 series

Sprague595D/293D series

AVXTPS series

NihonEC10QS02L (Schottky)

EC11FS1 (high-speed silicon)

Miniature Through-HoleSumidaRCH895 series

SanyoOS-CON series (very low ESR)

Low-Cost Through-HoleRencoRL1284 series

NichiconPL series

Motorola1N5817, 1N5818, (Schottky)MUR105 (high-speed silicon)

SumidaCD75/105 series

CoiltronicsCTX series

CoilcraftDT/D03316 series

Reference CapacitorBypass REF with a 0.1µF capacitor (C3). The REF out-put can source up to 100µA for external loads.

Layout ConsiderationsProper PC board layout is essential to reduce noisegenerated by high current levels and fast switchingwaveforms. Minimize ground noise by connectingGND, the input bypass capacitor ground lead, and the

output filter capacitor ground lead to a single point (starground configuration). Also minimize lead lengths toreduce stray capacitance, trace resistance, and radiat-ed noise. In particular, keep the traces connected toFB and LX short. C2 must be placed as close as pos-sible to the V+ and GND pins. If an external resistordivider is used (Figure 3), the trace from FB to the resis-tors must be extremely short.

SUPPLIER PHONE FAX

AVX USA: (803) 448-9411 (803) 448-1943

Coilcraft USA: (708) 639-6400 (708) 639-1469

Coiltronics USA: (407) 241-7876 (407) 241-9339

Matsuo USA: (714) 969-2491Japan: 81-6-337-6450

(714) 960-649281-6-337-6456

Motorola USA: (800) 521-6274 (602) 952-4190

Nichicon USA: (708) 843-7500Japan: 81-7-5231-8461

(708) 843-279881-7-5256-4158

Renco USA: (516) 586-5566 (516) 586-5562

Sanyo OS-CON USA: (619) 661-6835Japan: 81-7-2070-1005

(619) 661-105581-7-2070-1174

Sprague Electric Co. USA: (603) 224-1961 (603) 224-1430

Nihon USA: (805) 867-2555Japan: 81-3-3494-7411

(805) 867-255681-3-3494-7414

Sumida USA: (708) 956-0666Japan: 81-3-3607-5111

(708) 956-070281-3-3607-5144

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses areimplied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

12 __________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600

© 1994 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.

MA

X7

64

/MA

X7

65

/MA

X7

66

-5V/-12V/-15V or Adjustable,High-Efficiency, Low IQ DC-DC Inverters_Ordering Information (continued) ___________________Chip Topography

GND

V+

V+

OUT

FB

SHDN

REF

LX

0.145" (3683µm)

0.080" (2032µm)

TRANSISTOR COUNT: 443SUBSTRATE CONNECTED TO V+

PART

MAX766CPA

MAX766CSA

MAX766C/D 0°C to +70°C

0°C to +70°C

0°C to +70°C

TEMP. RANGE PIN-PACKAGE

8 Plastic DIP

8 SO

Dice*

MAX766EPA

MAX766ESA -40°C to +85°C

-40°C to +85°C 8 Plastic DIP

8 SO

MAX766MJA -55°C to +125°C 8 CERDIP**

* Dice are tested at TA = +25°C, DC parameters only.**Contact factory for availability and processing to MIL-STD-883.